Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
lock_dlm.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) Sistina Software, Inc. 1997-2003 All rights reserved.
3  * Copyright 2004-2011 Red Hat, Inc.
4  *
5  * This copyrighted material is made available to anyone wishing to use,
6  * modify, copy, or redistribute it subject to the terms and conditions
7  * of the GNU General Public License version 2.
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/dlm.h>
12 #include <linux/slab.h>
13 #include <linux/types.h>
14 #include <linux/delay.h>
15 #include <linux/gfs2_ondisk.h>
16 
17 #include "incore.h"
18 #include "glock.h"
19 #include "util.h"
20 #include "sys.h"
21 #include "trace_gfs2.h"
22 
23 extern struct workqueue_struct *gfs2_control_wq;
24 
45 static inline void gfs2_update_stats(struct gfs2_lkstats *s, unsigned index,
46  s64 sample)
47 {
48  s64 delta = sample - s->stats[index];
49  s->stats[index] += (delta >> 3);
50  index++;
51  s->stats[index] += ((abs64(delta) - s->stats[index]) >> 2);
52 }
53 
71 static inline void gfs2_update_reply_times(struct gfs2_glock *gl)
72 {
73  struct gfs2_pcpu_lkstats *lks;
74  const unsigned gltype = gl->gl_name.ln_type;
75  unsigned index = test_bit(GLF_BLOCKING, &gl->gl_flags) ?
77  s64 rtt;
78 
80  rtt = ktime_to_ns(ktime_sub(ktime_get_real(), gl->gl_dstamp));
81  lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
82  gfs2_update_stats(&gl->gl_stats, index, rtt); /* Local */
83  gfs2_update_stats(&lks->lkstats[gltype], index, rtt); /* Global */
85 
86  trace_gfs2_glock_lock_time(gl, rtt);
87 }
88 
98 static inline void gfs2_update_request_times(struct gfs2_glock *gl)
99 {
100  struct gfs2_pcpu_lkstats *lks;
101  const unsigned gltype = gl->gl_name.ln_type;
102  ktime_t dstamp;
103  s64 irt;
104 
105  preempt_disable();
106  dstamp = gl->gl_dstamp;
107  gl->gl_dstamp = ktime_get_real();
108  irt = ktime_to_ns(ktime_sub(gl->gl_dstamp, dstamp));
109  lks = this_cpu_ptr(gl->gl_sbd->sd_lkstats);
110  gfs2_update_stats(&gl->gl_stats, GFS2_LKS_SIRT, irt); /* Local */
111  gfs2_update_stats(&lks->lkstats[gltype], GFS2_LKS_SIRT, irt); /* Global */
112  preempt_enable();
113 }
114 
115 static void gdlm_ast(void *arg)
116 {
117  struct gfs2_glock *gl = arg;
118  unsigned ret = gl->gl_state;
119 
120  gfs2_update_reply_times(gl);
121  BUG_ON(gl->gl_lksb.sb_flags & DLM_SBF_DEMOTED);
122 
123  if (gl->gl_lksb.sb_flags & DLM_SBF_VALNOTVALID)
124  memset(gl->gl_lvb, 0, GDLM_LVB_SIZE);
125 
126  switch (gl->gl_lksb.sb_status) {
127  case -DLM_EUNLOCK: /* Unlocked, so glock can be freed */
128  gfs2_glock_free(gl);
129  return;
130  case -DLM_ECANCEL: /* Cancel while getting lock */
131  ret |= LM_OUT_CANCELED;
132  goto out;
133  case -EAGAIN: /* Try lock fails */
134  case -EDEADLK: /* Deadlock detected */
135  goto out;
136  case -ETIMEDOUT: /* Canceled due to timeout */
137  ret |= LM_OUT_ERROR;
138  goto out;
139  case 0: /* Success */
140  break;
141  default: /* Something unexpected */
142  BUG();
143  }
144 
145  ret = gl->gl_req;
146  if (gl->gl_lksb.sb_flags & DLM_SBF_ALTMODE) {
147  if (gl->gl_req == LM_ST_SHARED)
148  ret = LM_ST_DEFERRED;
149  else if (gl->gl_req == LM_ST_DEFERRED)
150  ret = LM_ST_SHARED;
151  else
152  BUG();
153  }
154 
156  gfs2_glock_complete(gl, ret);
157  return;
158 out:
159  if (!test_bit(GLF_INITIAL, &gl->gl_flags))
160  gl->gl_lksb.sb_lkid = 0;
161  gfs2_glock_complete(gl, ret);
162 }
163 
164 static void gdlm_bast(void *arg, int mode)
165 {
166  struct gfs2_glock *gl = arg;
167 
168  switch (mode) {
169  case DLM_LOCK_EX:
171  break;
172  case DLM_LOCK_CW:
174  break;
175  case DLM_LOCK_PR:
177  break;
178  default:
179  printk(KERN_ERR "unknown bast mode %d", mode);
180  BUG();
181  }
182 }
183 
184 /* convert gfs lock-state to dlm lock-mode */
185 
186 static int make_mode(const unsigned int lmstate)
187 {
188  switch (lmstate) {
189  case LM_ST_UNLOCKED:
190  return DLM_LOCK_NL;
191  case LM_ST_EXCLUSIVE:
192  return DLM_LOCK_EX;
193  case LM_ST_DEFERRED:
194  return DLM_LOCK_CW;
195  case LM_ST_SHARED:
196  return DLM_LOCK_PR;
197  }
198  printk(KERN_ERR "unknown LM state %d", lmstate);
199  BUG();
200  return -1;
201 }
202 
203 static u32 make_flags(struct gfs2_glock *gl, const unsigned int gfs_flags,
204  const int req)
205 {
206  u32 lkf = DLM_LKF_VALBLK;
207  u32 lkid = gl->gl_lksb.sb_lkid;
208 
209  if (gfs_flags & LM_FLAG_TRY)
210  lkf |= DLM_LKF_NOQUEUE;
211 
212  if (gfs_flags & LM_FLAG_TRY_1CB) {
213  lkf |= DLM_LKF_NOQUEUE;
214  lkf |= DLM_LKF_NOQUEUEBAST;
215  }
216 
217  if (gfs_flags & LM_FLAG_PRIORITY) {
218  lkf |= DLM_LKF_NOORDER;
219  lkf |= DLM_LKF_HEADQUE;
220  }
221 
222  if (gfs_flags & LM_FLAG_ANY) {
223  if (req == DLM_LOCK_PR)
224  lkf |= DLM_LKF_ALTCW;
225  else if (req == DLM_LOCK_CW)
226  lkf |= DLM_LKF_ALTPR;
227  else
228  BUG();
229  }
230 
231  if (lkid != 0) {
232  lkf |= DLM_LKF_CONVERT;
233  if (test_bit(GLF_BLOCKING, &gl->gl_flags))
234  lkf |= DLM_LKF_QUECVT;
235  }
236 
237  return lkf;
238 }
239 
240 static void gfs2_reverse_hex(char *c, u64 value)
241 {
242  while (value) {
243  *c-- = hex_asc[value & 0x0f];
244  value >>= 4;
245  }
246 }
247 
248 static int gdlm_lock(struct gfs2_glock *gl, unsigned int req_state,
249  unsigned int flags)
250 {
251  struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
252  int req;
253  u32 lkf;
254  char strname[GDLM_STRNAME_BYTES] = "";
255 
256  req = make_mode(req_state);
257  lkf = make_flags(gl, flags, req);
258  gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
259  gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
260  if (gl->gl_lksb.sb_lkid) {
261  gfs2_update_request_times(gl);
262  } else {
263  memset(strname, ' ', GDLM_STRNAME_BYTES - 1);
264  strname[GDLM_STRNAME_BYTES - 1] = '\0';
265  gfs2_reverse_hex(strname + 7, gl->gl_name.ln_type);
266  gfs2_reverse_hex(strname + 23, gl->gl_name.ln_number);
267  gl->gl_dstamp = ktime_get_real();
268  }
269  /*
270  * Submit the actual lock request.
271  */
272 
273  return dlm_lock(ls->ls_dlm, req, &gl->gl_lksb, lkf, strname,
274  GDLM_STRNAME_BYTES - 1, 0, gdlm_ast, gl, gdlm_bast);
275 }
276 
277 static void gdlm_put_lock(struct gfs2_glock *gl)
278 {
279  struct gfs2_sbd *sdp = gl->gl_sbd;
280  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
281  int error;
282 
283  if (gl->gl_lksb.sb_lkid == 0) {
284  gfs2_glock_free(gl);
285  return;
286  }
287 
289  gfs2_glstats_inc(gl, GFS2_LKS_DCOUNT);
290  gfs2_sbstats_inc(gl, GFS2_LKS_DCOUNT);
291  gfs2_update_request_times(gl);
292  error = dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_VALBLK,
293  NULL, gl);
294  if (error) {
295  printk(KERN_ERR "gdlm_unlock %x,%llx err=%d\n",
296  gl->gl_name.ln_type,
297  (unsigned long long)gl->gl_name.ln_number, error);
298  return;
299  }
300 }
301 
302 static void gdlm_cancel(struct gfs2_glock *gl)
303 {
304  struct lm_lockstruct *ls = &gl->gl_sbd->sd_lockstruct;
305  dlm_unlock(ls->ls_dlm, gl->gl_lksb.sb_lkid, DLM_LKF_CANCEL, NULL, gl);
306 }
307 
308 /*
309  * dlm/gfs2 recovery coordination using dlm_recover callbacks
310  *
311  * 1. dlm_controld sees lockspace members change
312  * 2. dlm_controld blocks dlm-kernel locking activity
313  * 3. dlm_controld within dlm-kernel notifies gfs2 (recover_prep)
314  * 4. dlm_controld starts and finishes its own user level recovery
315  * 5. dlm_controld starts dlm-kernel dlm_recoverd to do kernel recovery
316  * 6. dlm_recoverd notifies gfs2 of failed nodes (recover_slot)
317  * 7. dlm_recoverd does its own lock recovery
318  * 8. dlm_recoverd unblocks dlm-kernel locking activity
319  * 9. dlm_recoverd notifies gfs2 when done (recover_done with new generation)
320  * 10. gfs2_control updates control_lock lvb with new generation and jid bits
321  * 11. gfs2_control enqueues journals for gfs2_recover to recover (maybe none)
322  * 12. gfs2_recover dequeues and recovers journals of failed nodes
323  * 13. gfs2_recover provides recovery results to gfs2_control (recovery_result)
324  * 14. gfs2_control updates control_lock lvb jid bits for recovered journals
325  * 15. gfs2_control unblocks normal locking when all journals are recovered
326  *
327  * - failures during recovery
328  *
329  * recover_prep() may set BLOCK_LOCKS (step 3) again before gfs2_control
330  * clears BLOCK_LOCKS (step 15), e.g. another node fails while still
331  * recovering for a prior failure. gfs2_control needs a way to detect
332  * this so it can leave BLOCK_LOCKS set in step 15. This is managed using
333  * the recover_block and recover_start values.
334  *
335  * recover_done() provides a new lockspace generation number each time it
336  * is called (step 9). This generation number is saved as recover_start.
337  * When recover_prep() is called, it sets BLOCK_LOCKS and sets
338  * recover_block = recover_start. So, while recover_block is equal to
339  * recover_start, BLOCK_LOCKS should remain set. (recover_spin must
340  * be held around the BLOCK_LOCKS/recover_block/recover_start logic.)
341  *
342  * - more specific gfs2 steps in sequence above
343  *
344  * 3. recover_prep sets BLOCK_LOCKS and sets recover_block = recover_start
345  * 6. recover_slot records any failed jids (maybe none)
346  * 9. recover_done sets recover_start = new generation number
347  * 10. gfs2_control sets control_lock lvb = new gen + bits for failed jids
348  * 12. gfs2_recover does journal recoveries for failed jids identified above
349  * 14. gfs2_control clears control_lock lvb bits for recovered jids
350  * 15. gfs2_control checks if recover_block == recover_start (step 3 occured
351  * again) then do nothing, otherwise if recover_start > recover_block
352  * then clear BLOCK_LOCKS.
353  *
354  * - parallel recovery steps across all nodes
355  *
356  * All nodes attempt to update the control_lock lvb with the new generation
357  * number and jid bits, but only the first to get the control_lock EX will
358  * do so; others will see that it's already done (lvb already contains new
359  * generation number.)
360  *
361  * . All nodes get the same recover_prep/recover_slot/recover_done callbacks
362  * . All nodes attempt to set control_lock lvb gen + bits for the new gen
363  * . One node gets control_lock first and writes the lvb, others see it's done
364  * . All nodes attempt to recover jids for which they see control_lock bits set
365  * . One node succeeds for a jid, and that one clears the jid bit in the lvb
366  * . All nodes will eventually see all lvb bits clear and unblock locks
367  *
368  * - is there a problem with clearing an lvb bit that should be set
369  * and missing a journal recovery?
370  *
371  * 1. jid fails
372  * 2. lvb bit set for step 1
373  * 3. jid recovered for step 1
374  * 4. jid taken again (new mount)
375  * 5. jid fails (for step 4)
376  * 6. lvb bit set for step 5 (will already be set)
377  * 7. lvb bit cleared for step 3
378  *
379  * This is not a problem because the failure in step 5 does not
380  * require recovery, because the mount in step 4 could not have
381  * progressed far enough to unblock locks and access the fs. The
382  * control_mount() function waits for all recoveries to be complete
383  * for the latest lockspace generation before ever unblocking locks
384  * and returning. The mount in step 4 waits until the recovery in
385  * step 1 is done.
386  *
387  * - special case of first mounter: first node to mount the fs
388  *
389  * The first node to mount a gfs2 fs needs to check all the journals
390  * and recover any that need recovery before other nodes are allowed
391  * to mount the fs. (Others may begin mounting, but they must wait
392  * for the first mounter to be done before taking locks on the fs
393  * or accessing the fs.) This has two parts:
394  *
395  * 1. The mounted_lock tells a node it's the first to mount the fs.
396  * Each node holds the mounted_lock in PR while it's mounted.
397  * Each node tries to acquire the mounted_lock in EX when it mounts.
398  * If a node is granted the mounted_lock EX it means there are no
399  * other mounted nodes (no PR locks exist), and it is the first mounter.
400  * The mounted_lock is demoted to PR when first recovery is done, so
401  * others will fail to get an EX lock, but will get a PR lock.
402  *
403  * 2. The control_lock blocks others in control_mount() while the first
404  * mounter is doing first mount recovery of all journals.
405  * A mounting node needs to acquire control_lock in EX mode before
406  * it can proceed. The first mounter holds control_lock in EX while doing
407  * the first mount recovery, blocking mounts from other nodes, then demotes
408  * control_lock to NL when it's done (others_may_mount/first_done),
409  * allowing other nodes to continue mounting.
410  *
411  * first mounter:
412  * control_lock EX/NOQUEUE success
413  * mounted_lock EX/NOQUEUE success (no other PR, so no other mounters)
414  * set first=1
415  * do first mounter recovery
416  * mounted_lock EX->PR
417  * control_lock EX->NL, write lvb generation
418  *
419  * other mounter:
420  * control_lock EX/NOQUEUE success (if fail -EAGAIN, retry)
421  * mounted_lock EX/NOQUEUE fail -EAGAIN (expected due to other mounters PR)
422  * mounted_lock PR/NOQUEUE success
423  * read lvb generation
424  * control_lock EX->NL
425  * set first=0
426  *
427  * - mount during recovery
428  *
429  * If a node mounts while others are doing recovery (not first mounter),
430  * the mounting node will get its initial recover_done() callback without
431  * having seen any previous failures/callbacks.
432  *
433  * It must wait for all recoveries preceding its mount to be finished
434  * before it unblocks locks. It does this by repeating the "other mounter"
435  * steps above until the lvb generation number is >= its mount generation
436  * number (from initial recover_done) and all lvb bits are clear.
437  *
438  * - control_lock lvb format
439  *
440  * 4 bytes generation number: the latest dlm lockspace generation number
441  * from recover_done callback. Indicates the jid bitmap has been updated
442  * to reflect all slot failures through that generation.
443  * 4 bytes unused.
444  * GDLM_LVB_SIZE-8 bytes of jid bit map. If bit N is set, it indicates
445  * that jid N needs recovery.
446  */
447 
448 #define JID_BITMAP_OFFSET 8 /* 4 byte generation number + 4 byte unused */
449 
450 static void control_lvb_read(struct lm_lockstruct *ls, uint32_t *lvb_gen,
451  char *lvb_bits)
452 {
453  uint32_t gen;
454  memcpy(lvb_bits, ls->ls_control_lvb, GDLM_LVB_SIZE);
455  memcpy(&gen, lvb_bits, sizeof(uint32_t));
456  *lvb_gen = le32_to_cpu(gen);
457 }
458 
459 static void control_lvb_write(struct lm_lockstruct *ls, uint32_t lvb_gen,
460  char *lvb_bits)
461 {
462  uint32_t gen;
463  memcpy(ls->ls_control_lvb, lvb_bits, GDLM_LVB_SIZE);
464  gen = cpu_to_le32(lvb_gen);
465  memcpy(ls->ls_control_lvb, &gen, sizeof(uint32_t));
466 }
467 
468 static int all_jid_bits_clear(char *lvb)
469 {
470  int i;
471  for (i = JID_BITMAP_OFFSET; i < GDLM_LVB_SIZE; i++) {
472  if (lvb[i])
473  return 0;
474  }
475  return 1;
476 }
477 
478 static void sync_wait_cb(void *arg)
479 {
480  struct lm_lockstruct *ls = arg;
481  complete(&ls->ls_sync_wait);
482 }
483 
484 static int sync_unlock(struct gfs2_sbd *sdp, struct dlm_lksb *lksb, char *name)
485 {
486  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
487  int error;
488 
489  error = dlm_unlock(ls->ls_dlm, lksb->sb_lkid, 0, lksb, ls);
490  if (error) {
491  fs_err(sdp, "%s lkid %x error %d\n",
492  name, lksb->sb_lkid, error);
493  return error;
494  }
495 
497 
498  if (lksb->sb_status != -DLM_EUNLOCK) {
499  fs_err(sdp, "%s lkid %x status %d\n",
500  name, lksb->sb_lkid, lksb->sb_status);
501  return -1;
502  }
503  return 0;
504 }
505 
506 static int sync_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags,
507  unsigned int num, struct dlm_lksb *lksb, char *name)
508 {
509  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
510  char strname[GDLM_STRNAME_BYTES];
511  int error, status;
512 
513  memset(strname, 0, GDLM_STRNAME_BYTES);
514  snprintf(strname, GDLM_STRNAME_BYTES, "%8x%16x", LM_TYPE_NONDISK, num);
515 
516  error = dlm_lock(ls->ls_dlm, mode, lksb, flags,
517  strname, GDLM_STRNAME_BYTES - 1,
518  0, sync_wait_cb, ls, NULL);
519  if (error) {
520  fs_err(sdp, "%s lkid %x flags %x mode %d error %d\n",
521  name, lksb->sb_lkid, flags, mode, error);
522  return error;
523  }
524 
526 
527  status = lksb->sb_status;
528 
529  if (status && status != -EAGAIN) {
530  fs_err(sdp, "%s lkid %x flags %x mode %d status %d\n",
531  name, lksb->sb_lkid, flags, mode, status);
532  }
533 
534  return status;
535 }
536 
537 static int mounted_unlock(struct gfs2_sbd *sdp)
538 {
539  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
540  return sync_unlock(sdp, &ls->ls_mounted_lksb, "mounted_lock");
541 }
542 
543 static int mounted_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
544 {
545  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
546  return sync_lock(sdp, mode, flags, GFS2_MOUNTED_LOCK,
547  &ls->ls_mounted_lksb, "mounted_lock");
548 }
549 
550 static int control_unlock(struct gfs2_sbd *sdp)
551 {
552  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
553  return sync_unlock(sdp, &ls->ls_control_lksb, "control_lock");
554 }
555 
556 static int control_lock(struct gfs2_sbd *sdp, int mode, uint32_t flags)
557 {
558  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
559  return sync_lock(sdp, mode, flags, GFS2_CONTROL_LOCK,
560  &ls->ls_control_lksb, "control_lock");
561 }
562 
563 static void gfs2_control_func(struct work_struct *work)
564 {
565  struct gfs2_sbd *sdp = container_of(work, struct gfs2_sbd, sd_control_work.work);
566  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
567  char lvb_bits[GDLM_LVB_SIZE];
568  uint32_t block_gen, start_gen, lvb_gen, flags;
569  int recover_set = 0;
570  int write_lvb = 0;
571  int recover_size;
572  int i, error;
573 
574  spin_lock(&ls->ls_recover_spin);
575  /*
576  * No MOUNT_DONE means we're still mounting; control_mount()
577  * will set this flag, after which this thread will take over
578  * all further clearing of BLOCK_LOCKS.
579  *
580  * FIRST_MOUNT means this node is doing first mounter recovery,
581  * for which recovery control is handled by
582  * control_mount()/control_first_done(), not this thread.
583  */
586  spin_unlock(&ls->ls_recover_spin);
587  return;
588  }
589  block_gen = ls->ls_recover_block;
590  start_gen = ls->ls_recover_start;
591  spin_unlock(&ls->ls_recover_spin);
592 
593  /*
594  * Equal block_gen and start_gen implies we are between
595  * recover_prep and recover_done callbacks, which means
596  * dlm recovery is in progress and dlm locking is blocked.
597  * There's no point trying to do any work until recover_done.
598  */
599 
600  if (block_gen == start_gen)
601  return;
602 
603  /*
604  * Propagate recover_submit[] and recover_result[] to lvb:
605  * dlm_recoverd adds to recover_submit[] jids needing recovery
606  * gfs2_recover adds to recover_result[] journal recovery results
607  *
608  * set lvb bit for jids in recover_submit[] if the lvb has not
609  * yet been updated for the generation of the failure
610  *
611  * clear lvb bit for jids in recover_result[] if the result of
612  * the journal recovery is SUCCESS
613  */
614 
615  error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
616  if (error) {
617  fs_err(sdp, "control lock EX error %d\n", error);
618  return;
619  }
620 
621  control_lvb_read(ls, &lvb_gen, lvb_bits);
622 
623  spin_lock(&ls->ls_recover_spin);
624  if (block_gen != ls->ls_recover_block ||
625  start_gen != ls->ls_recover_start) {
626  fs_info(sdp, "recover generation %u block1 %u %u\n",
627  start_gen, block_gen, ls->ls_recover_block);
628  spin_unlock(&ls->ls_recover_spin);
629  control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
630  return;
631  }
632 
633  recover_size = ls->ls_recover_size;
634 
635  if (lvb_gen <= start_gen) {
636  /*
637  * Clear lvb bits for jids we've successfully recovered.
638  * Because all nodes attempt to recover failed journals,
639  * a journal can be recovered multiple times successfully
640  * in succession. Only the first will really do recovery,
641  * the others find it clean, but still report a successful
642  * recovery. So, another node may have already recovered
643  * the jid and cleared the lvb bit for it.
644  */
645  for (i = 0; i < recover_size; i++) {
646  if (ls->ls_recover_result[i] != LM_RD_SUCCESS)
647  continue;
648 
649  ls->ls_recover_result[i] = 0;
650 
651  if (!test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET))
652  continue;
653 
654  __clear_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
655  write_lvb = 1;
656  }
657  }
658 
659  if (lvb_gen == start_gen) {
660  /*
661  * Failed slots before start_gen are already set in lvb.
662  */
663  for (i = 0; i < recover_size; i++) {
664  if (!ls->ls_recover_submit[i])
665  continue;
666  if (ls->ls_recover_submit[i] < lvb_gen)
667  ls->ls_recover_submit[i] = 0;
668  }
669  } else if (lvb_gen < start_gen) {
670  /*
671  * Failed slots before start_gen are not yet set in lvb.
672  */
673  for (i = 0; i < recover_size; i++) {
674  if (!ls->ls_recover_submit[i])
675  continue;
676  if (ls->ls_recover_submit[i] < start_gen) {
677  ls->ls_recover_submit[i] = 0;
678  __set_bit_le(i, lvb_bits + JID_BITMAP_OFFSET);
679  }
680  }
681  /* even if there are no bits to set, we need to write the
682  latest generation to the lvb */
683  write_lvb = 1;
684  } else {
685  /*
686  * we should be getting a recover_done() for lvb_gen soon
687  */
688  }
689  spin_unlock(&ls->ls_recover_spin);
690 
691  if (write_lvb) {
692  control_lvb_write(ls, start_gen, lvb_bits);
694  } else {
695  flags = DLM_LKF_CONVERT;
696  }
697 
698  error = control_lock(sdp, DLM_LOCK_NL, flags);
699  if (error) {
700  fs_err(sdp, "control lock NL error %d\n", error);
701  return;
702  }
703 
704  /*
705  * Everyone will see jid bits set in the lvb, run gfs2_recover_set(),
706  * and clear a jid bit in the lvb if the recovery is a success.
707  * Eventually all journals will be recovered, all jid bits will
708  * be cleared in the lvb, and everyone will clear BLOCK_LOCKS.
709  */
710 
711  for (i = 0; i < recover_size; i++) {
712  if (test_bit_le(i, lvb_bits + JID_BITMAP_OFFSET)) {
713  fs_info(sdp, "recover generation %u jid %d\n",
714  start_gen, i);
715  gfs2_recover_set(sdp, i);
716  recover_set++;
717  }
718  }
719  if (recover_set)
720  return;
721 
722  /*
723  * No more jid bits set in lvb, all recovery is done, unblock locks
724  * (unless a new recover_prep callback has occured blocking locks
725  * again while working above)
726  */
727 
728  spin_lock(&ls->ls_recover_spin);
729  if (ls->ls_recover_block == block_gen &&
730  ls->ls_recover_start == start_gen) {
732  spin_unlock(&ls->ls_recover_spin);
733  fs_info(sdp, "recover generation %u done\n", start_gen);
734  gfs2_glock_thaw(sdp);
735  } else {
736  fs_info(sdp, "recover generation %u block2 %u %u\n",
737  start_gen, block_gen, ls->ls_recover_block);
738  spin_unlock(&ls->ls_recover_spin);
739  }
740 }
741 
742 static int control_mount(struct gfs2_sbd *sdp)
743 {
744  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
745  char lvb_bits[GDLM_LVB_SIZE];
746  uint32_t start_gen, block_gen, mount_gen, lvb_gen;
747  int mounted_mode;
748  int retries = 0;
749  int error;
750 
751  memset(&ls->ls_mounted_lksb, 0, sizeof(struct dlm_lksb));
752  memset(&ls->ls_control_lksb, 0, sizeof(struct dlm_lksb));
753  memset(&ls->ls_control_lvb, 0, GDLM_LVB_SIZE);
754  ls->ls_control_lksb.sb_lvbptr = ls->ls_control_lvb;
755  init_completion(&ls->ls_sync_wait);
756 
758 
759  error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_VALBLK);
760  if (error) {
761  fs_err(sdp, "control_mount control_lock NL error %d\n", error);
762  return error;
763  }
764 
765  error = mounted_lock(sdp, DLM_LOCK_NL, 0);
766  if (error) {
767  fs_err(sdp, "control_mount mounted_lock NL error %d\n", error);
768  control_unlock(sdp);
769  return error;
770  }
771  mounted_mode = DLM_LOCK_NL;
772 
773 restart:
774  if (retries++ && signal_pending(current)) {
775  error = -EINTR;
776  goto fail;
777  }
778 
779  /*
780  * We always start with both locks in NL. control_lock is
781  * demoted to NL below so we don't need to do it here.
782  */
783 
784  if (mounted_mode != DLM_LOCK_NL) {
785  error = mounted_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
786  if (error)
787  goto fail;
788  mounted_mode = DLM_LOCK_NL;
789  }
790 
791  /*
792  * Other nodes need to do some work in dlm recovery and gfs2_control
793  * before the recover_done and control_lock will be ready for us below.
794  * A delay here is not required but often avoids having to retry.
795  */
796 
798 
799  /*
800  * Acquire control_lock in EX and mounted_lock in either EX or PR.
801  * control_lock lvb keeps track of any pending journal recoveries.
802  * mounted_lock indicates if any other nodes have the fs mounted.
803  */
804 
805  error = control_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE|DLM_LKF_VALBLK);
806  if (error == -EAGAIN) {
807  goto restart;
808  } else if (error) {
809  fs_err(sdp, "control_mount control_lock EX error %d\n", error);
810  goto fail;
811  }
812 
813  error = mounted_lock(sdp, DLM_LOCK_EX, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
814  if (!error) {
815  mounted_mode = DLM_LOCK_EX;
816  goto locks_done;
817  } else if (error != -EAGAIN) {
818  fs_err(sdp, "control_mount mounted_lock EX error %d\n", error);
819  goto fail;
820  }
821 
822  error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT|DLM_LKF_NOQUEUE);
823  if (!error) {
824  mounted_mode = DLM_LOCK_PR;
825  goto locks_done;
826  } else {
827  /* not even -EAGAIN should happen here */
828  fs_err(sdp, "control_mount mounted_lock PR error %d\n", error);
829  goto fail;
830  }
831 
832 locks_done:
833  /*
834  * If we got both locks above in EX, then we're the first mounter.
835  * If not, then we need to wait for the control_lock lvb to be
836  * updated by other mounted nodes to reflect our mount generation.
837  *
838  * In simple first mounter cases, first mounter will see zero lvb_gen,
839  * but in cases where all existing nodes leave/fail before mounting
840  * nodes finish control_mount, then all nodes will be mounting and
841  * lvb_gen will be non-zero.
842  */
843 
844  control_lvb_read(ls, &lvb_gen, lvb_bits);
845 
846  if (lvb_gen == 0xFFFFFFFF) {
847  /* special value to force mount attempts to fail */
848  fs_err(sdp, "control_mount control_lock disabled\n");
849  error = -EINVAL;
850  goto fail;
851  }
852 
853  if (mounted_mode == DLM_LOCK_EX) {
854  /* first mounter, keep both EX while doing first recovery */
855  spin_lock(&ls->ls_recover_spin);
859  spin_unlock(&ls->ls_recover_spin);
860  fs_info(sdp, "first mounter control generation %u\n", lvb_gen);
861  return 0;
862  }
863 
864  error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT);
865  if (error)
866  goto fail;
867 
868  /*
869  * We are not first mounter, now we need to wait for the control_lock
870  * lvb generation to be >= the generation from our first recover_done
871  * and all lvb bits to be clear (no pending journal recoveries.)
872  */
873 
874  if (!all_jid_bits_clear(lvb_bits)) {
875  /* journals need recovery, wait until all are clear */
876  fs_info(sdp, "control_mount wait for journal recovery\n");
877  goto restart;
878  }
879 
880  spin_lock(&ls->ls_recover_spin);
881  block_gen = ls->ls_recover_block;
882  start_gen = ls->ls_recover_start;
883  mount_gen = ls->ls_recover_mount;
884 
885  if (lvb_gen < mount_gen) {
886  /* wait for mounted nodes to update control_lock lvb to our
887  generation, which might include new recovery bits set */
888  fs_info(sdp, "control_mount wait1 block %u start %u mount %u "
889  "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
890  lvb_gen, ls->ls_recover_flags);
891  spin_unlock(&ls->ls_recover_spin);
892  goto restart;
893  }
894 
895  if (lvb_gen != start_gen) {
896  /* wait for mounted nodes to update control_lock lvb to the
897  latest recovery generation */
898  fs_info(sdp, "control_mount wait2 block %u start %u mount %u "
899  "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
900  lvb_gen, ls->ls_recover_flags);
901  spin_unlock(&ls->ls_recover_spin);
902  goto restart;
903  }
904 
905  if (block_gen == start_gen) {
906  /* dlm recovery in progress, wait for it to finish */
907  fs_info(sdp, "control_mount wait3 block %u start %u mount %u "
908  "lvb %u flags %lx\n", block_gen, start_gen, mount_gen,
909  lvb_gen, ls->ls_recover_flags);
910  spin_unlock(&ls->ls_recover_spin);
911  goto restart;
912  }
913 
916  memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
917  memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
918  spin_unlock(&ls->ls_recover_spin);
919  return 0;
920 
921 fail:
922  mounted_unlock(sdp);
923  control_unlock(sdp);
924  return error;
925 }
926 
927 static int dlm_recovery_wait(void *word)
928 {
929  schedule();
930  return 0;
931 }
932 
933 static int control_first_done(struct gfs2_sbd *sdp)
934 {
935  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
936  char lvb_bits[GDLM_LVB_SIZE];
937  uint32_t start_gen, block_gen;
938  int error;
939 
940 restart:
941  spin_lock(&ls->ls_recover_spin);
942  start_gen = ls->ls_recover_start;
943  block_gen = ls->ls_recover_block;
944 
948  /* sanity check, should not happen */
949  fs_err(sdp, "control_first_done start %u block %u flags %lx\n",
950  start_gen, block_gen, ls->ls_recover_flags);
951  spin_unlock(&ls->ls_recover_spin);
952  control_unlock(sdp);
953  return -1;
954  }
955 
956  if (start_gen == block_gen) {
957  /*
958  * Wait for the end of a dlm recovery cycle to switch from
959  * first mounter recovery. We can ignore any recover_slot
960  * callbacks between the recover_prep and next recover_done
961  * because we are still the first mounter and any failed nodes
962  * have not fully mounted, so they don't need recovery.
963  */
964  spin_unlock(&ls->ls_recover_spin);
965  fs_info(sdp, "control_first_done wait gen %u\n", start_gen);
966 
967  wait_on_bit(&ls->ls_recover_flags, DFL_DLM_RECOVERY,
968  dlm_recovery_wait, TASK_UNINTERRUPTIBLE);
969  goto restart;
970  }
971 
974  memset(ls->ls_recover_submit, 0, ls->ls_recover_size*sizeof(uint32_t));
975  memset(ls->ls_recover_result, 0, ls->ls_recover_size*sizeof(uint32_t));
976  spin_unlock(&ls->ls_recover_spin);
977 
978  memset(lvb_bits, 0, sizeof(lvb_bits));
979  control_lvb_write(ls, start_gen, lvb_bits);
980 
981  error = mounted_lock(sdp, DLM_LOCK_PR, DLM_LKF_CONVERT);
982  if (error)
983  fs_err(sdp, "control_first_done mounted PR error %d\n", error);
984 
985  error = control_lock(sdp, DLM_LOCK_NL, DLM_LKF_CONVERT|DLM_LKF_VALBLK);
986  if (error)
987  fs_err(sdp, "control_first_done control NL error %d\n", error);
988 
989  return error;
990 }
991 
992 /*
993  * Expand static jid arrays if necessary (by increments of RECOVER_SIZE_INC)
994  * to accomodate the largest slot number. (NB dlm slot numbers start at 1,
995  * gfs2 jids start at 0, so jid = slot - 1)
996  */
997 
998 #define RECOVER_SIZE_INC 16
999 
1000 static int set_recover_size(struct gfs2_sbd *sdp, struct dlm_slot *slots,
1001  int num_slots)
1002 {
1003  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1004  uint32_t *submit = NULL;
1005  uint32_t *result = NULL;
1006  uint32_t old_size, new_size;
1007  int i, max_jid;
1008 
1009  max_jid = 0;
1010  for (i = 0; i < num_slots; i++) {
1011  if (max_jid < slots[i].slot - 1)
1012  max_jid = slots[i].slot - 1;
1013  }
1014 
1015  old_size = ls->ls_recover_size;
1016 
1017  if (old_size >= max_jid + 1)
1018  return 0;
1019 
1020  new_size = old_size + RECOVER_SIZE_INC;
1021 
1022  submit = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1023  result = kzalloc(new_size * sizeof(uint32_t), GFP_NOFS);
1024  if (!submit || !result) {
1025  kfree(submit);
1026  kfree(result);
1027  return -ENOMEM;
1028  }
1029 
1030  spin_lock(&ls->ls_recover_spin);
1031  memcpy(submit, ls->ls_recover_submit, old_size * sizeof(uint32_t));
1032  memcpy(result, ls->ls_recover_result, old_size * sizeof(uint32_t));
1033  kfree(ls->ls_recover_submit);
1034  kfree(ls->ls_recover_result);
1035  ls->ls_recover_submit = submit;
1036  ls->ls_recover_result = result;
1037  ls->ls_recover_size = new_size;
1038  spin_unlock(&ls->ls_recover_spin);
1039  return 0;
1040 }
1041 
1042 static void free_recover_size(struct lm_lockstruct *ls)
1043 {
1044  kfree(ls->ls_recover_submit);
1045  kfree(ls->ls_recover_result);
1046  ls->ls_recover_submit = NULL;
1047  ls->ls_recover_result = NULL;
1048  ls->ls_recover_size = 0;
1049 }
1050 
1051 /* dlm calls before it does lock recovery */
1052 
1053 static void gdlm_recover_prep(void *arg)
1054 {
1055  struct gfs2_sbd *sdp = arg;
1056  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1057 
1058  spin_lock(&ls->ls_recover_spin);
1061 
1064  spin_unlock(&ls->ls_recover_spin);
1065  return;
1066  }
1068  spin_unlock(&ls->ls_recover_spin);
1069 }
1070 
1071 /* dlm calls after recover_prep has been completed on all lockspace members;
1072  identifies slot/jid of failed member */
1073 
1074 static void gdlm_recover_slot(void *arg, struct dlm_slot *slot)
1075 {
1076  struct gfs2_sbd *sdp = arg;
1077  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1078  int jid = slot->slot - 1;
1079 
1080  spin_lock(&ls->ls_recover_spin);
1081  if (ls->ls_recover_size < jid + 1) {
1082  fs_err(sdp, "recover_slot jid %d gen %u short size %d",
1083  jid, ls->ls_recover_block, ls->ls_recover_size);
1084  spin_unlock(&ls->ls_recover_spin);
1085  return;
1086  }
1087 
1088  if (ls->ls_recover_submit[jid]) {
1089  fs_info(sdp, "recover_slot jid %d gen %u prev %u",
1090  jid, ls->ls_recover_block, ls->ls_recover_submit[jid]);
1091  }
1092  ls->ls_recover_submit[jid] = ls->ls_recover_block;
1093  spin_unlock(&ls->ls_recover_spin);
1094 }
1095 
1096 /* dlm calls after recover_slot and after it completes lock recovery */
1097 
1098 static void gdlm_recover_done(void *arg, struct dlm_slot *slots, int num_slots,
1099  int our_slot, uint32_t generation)
1100 {
1101  struct gfs2_sbd *sdp = arg;
1102  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1103 
1104  /* ensure the ls jid arrays are large enough */
1105  set_recover_size(sdp, slots, num_slots);
1106 
1107  spin_lock(&ls->ls_recover_spin);
1109 
1110  if (!ls->ls_recover_mount) {
1112  ls->ls_jid = our_slot - 1;
1113  }
1114 
1116  queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work, 0);
1117 
1121  spin_unlock(&ls->ls_recover_spin);
1122 }
1123 
1124 /* gfs2_recover thread has a journal recovery result */
1125 
1126 static void gdlm_recovery_result(struct gfs2_sbd *sdp, unsigned int jid,
1127  unsigned int result)
1128 {
1129  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1130 
1132  return;
1133 
1134  /* don't care about the recovery of own journal during mount */
1135  if (jid == ls->ls_jid)
1136  return;
1137 
1138  spin_lock(&ls->ls_recover_spin);
1140  spin_unlock(&ls->ls_recover_spin);
1141  return;
1142  }
1143  if (ls->ls_recover_size < jid + 1) {
1144  fs_err(sdp, "recovery_result jid %d short size %d",
1145  jid, ls->ls_recover_size);
1146  spin_unlock(&ls->ls_recover_spin);
1147  return;
1148  }
1149 
1150  fs_info(sdp, "recover jid %d result %s\n", jid,
1151  result == LM_RD_GAVEUP ? "busy" : "success");
1152 
1153  ls->ls_recover_result[jid] = result;
1154 
1155  /* GAVEUP means another node is recovering the journal; delay our
1156  next attempt to recover it, to give the other node a chance to
1157  finish before trying again */
1158 
1160  queue_delayed_work(gfs2_control_wq, &sdp->sd_control_work,
1161  result == LM_RD_GAVEUP ? HZ : 0);
1162  spin_unlock(&ls->ls_recover_spin);
1163 }
1164 
1166  .recover_prep = gdlm_recover_prep,
1167  .recover_slot = gdlm_recover_slot,
1168  .recover_done = gdlm_recover_done,
1169 };
1170 
1171 static int gdlm_mount(struct gfs2_sbd *sdp, const char *table)
1172 {
1173  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1174  char cluster[GFS2_LOCKNAME_LEN];
1175  const char *fsname;
1176  uint32_t flags;
1177  int error, ops_result;
1178 
1179  /*
1180  * initialize everything
1181  */
1182 
1183  INIT_DELAYED_WORK(&sdp->sd_control_work, gfs2_control_func);
1185  ls->ls_recover_flags = 0;
1186  ls->ls_recover_mount = 0;
1187  ls->ls_recover_start = 0;
1188  ls->ls_recover_block = 0;
1189  ls->ls_recover_size = 0;
1190  ls->ls_recover_submit = NULL;
1191  ls->ls_recover_result = NULL;
1192 
1193  error = set_recover_size(sdp, NULL, 0);
1194  if (error)
1195  goto fail;
1196 
1197  /*
1198  * prepare dlm_new_lockspace args
1199  */
1200 
1201  fsname = strchr(table, ':');
1202  if (!fsname) {
1203  fs_info(sdp, "no fsname found\n");
1204  error = -EINVAL;
1205  goto fail_free;
1206  }
1207  memset(cluster, 0, sizeof(cluster));
1208  memcpy(cluster, table, strlen(table) - strlen(fsname));
1209  fsname++;
1210 
1211  flags = DLM_LSFL_FS | DLM_LSFL_NEWEXCL;
1212 
1213  /*
1214  * create/join lockspace
1215  */
1216 
1217  error = dlm_new_lockspace(fsname, cluster, flags, GDLM_LVB_SIZE,
1218  &gdlm_lockspace_ops, sdp, &ops_result,
1219  &ls->ls_dlm);
1220  if (error) {
1221  fs_err(sdp, "dlm_new_lockspace error %d\n", error);
1222  goto fail_free;
1223  }
1224 
1225  if (ops_result < 0) {
1226  /*
1227  * dlm does not support ops callbacks,
1228  * old dlm_controld/gfs_controld are used, try without ops.
1229  */
1230  fs_info(sdp, "dlm lockspace ops not used\n");
1231  free_recover_size(ls);
1233  return 0;
1234  }
1235 
1236  if (!test_bit(SDF_NOJOURNALID, &sdp->sd_flags)) {
1237  fs_err(sdp, "dlm lockspace ops disallow jid preset\n");
1238  error = -EINVAL;
1239  goto fail_release;
1240  }
1241 
1242  /*
1243  * control_mount() uses control_lock to determine first mounter,
1244  * and for later mounts, waits for any recoveries to be cleared.
1245  */
1246 
1247  error = control_mount(sdp);
1248  if (error) {
1249  fs_err(sdp, "mount control error %d\n", error);
1250  goto fail_release;
1251  }
1252 
1257  return 0;
1258 
1259 fail_release:
1260  dlm_release_lockspace(ls->ls_dlm, 2);
1261 fail_free:
1262  free_recover_size(ls);
1263 fail:
1264  return error;
1265 }
1266 
1267 static void gdlm_first_done(struct gfs2_sbd *sdp)
1268 {
1269  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1270  int error;
1271 
1273  return;
1274 
1275  error = control_first_done(sdp);
1276  if (error)
1277  fs_err(sdp, "mount first_done error %d\n", error);
1278 }
1279 
1280 static void gdlm_unmount(struct gfs2_sbd *sdp)
1281 {
1282  struct lm_lockstruct *ls = &sdp->sd_lockstruct;
1283 
1285  goto release;
1286 
1287  /* wait for gfs2_control_wq to be done with this mount */
1288 
1289  spin_lock(&ls->ls_recover_spin);
1291  spin_unlock(&ls->ls_recover_spin);
1293 
1294  /* mounted_lock and control_lock will be purged in dlm recovery */
1295 release:
1296  if (ls->ls_dlm) {
1297  dlm_release_lockspace(ls->ls_dlm, 2);
1298  ls->ls_dlm = NULL;
1299  }
1300 
1301  free_recover_size(ls);
1302 }
1303 
1304 static const match_table_t dlm_tokens = {
1305  { Opt_jid, "jid=%d"},
1306  { Opt_id, "id=%d"},
1307  { Opt_first, "first=%d"},
1308  { Opt_nodir, "nodir=%d"},
1309  { Opt_err, NULL },
1310 };
1311 
1312 const struct lm_lockops gfs2_dlm_ops = {
1313  .lm_proto_name = "lock_dlm",
1314  .lm_mount = gdlm_mount,
1315  .lm_first_done = gdlm_first_done,
1316  .lm_recovery_result = gdlm_recovery_result,
1317  .lm_unmount = gdlm_unmount,
1318  .lm_put_lock = gdlm_put_lock,
1319  .lm_lock = gdlm_lock,
1320  .lm_cancel = gdlm_cancel,
1321  .lm_tokens = &dlm_tokens,
1322 };
1323