Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
math_64.c
Go to the documentation of this file.
1 /*
2  * arch/sparc64/math-emu/math.c
3  *
4  * Copyright (C) 1997,1999 Jakub Jelinek ([email protected])
5  * Copyright (C) 1999 David S. Miller ([email protected])
6  *
7  * Emulation routines originate from soft-fp package, which is part
8  * of glibc and has appropriate copyrights in it.
9  */
10 
11 #include <linux/types.h>
12 #include <linux/sched.h>
13 #include <linux/errno.h>
14 #include <linux/perf_event.h>
15 
16 #include <asm/fpumacro.h>
17 #include <asm/ptrace.h>
18 #include <asm/uaccess.h>
19 #include <asm/cacheflush.h>
20 
21 #include "sfp-util_64.h"
22 #include <math-emu/soft-fp.h>
23 #include <math-emu/single.h>
24 #include <math-emu/double.h>
25 #include <math-emu/quad.h>
26 
27 /* QUAD - ftt == 3 */
28 #define FMOVQ 0x003
29 #define FNEGQ 0x007
30 #define FABSQ 0x00b
31 #define FSQRTQ 0x02b
32 #define FADDQ 0x043
33 #define FSUBQ 0x047
34 #define FMULQ 0x04b
35 #define FDIVQ 0x04f
36 #define FDMULQ 0x06e
37 #define FQTOX 0x083
38 #define FXTOQ 0x08c
39 #define FQTOS 0x0c7
40 #define FQTOD 0x0cb
41 #define FITOQ 0x0cc
42 #define FSTOQ 0x0cd
43 #define FDTOQ 0x0ce
44 #define FQTOI 0x0d3
45 /* SUBNORMAL - ftt == 2 */
46 #define FSQRTS 0x029
47 #define FSQRTD 0x02a
48 #define FADDS 0x041
49 #define FADDD 0x042
50 #define FSUBS 0x045
51 #define FSUBD 0x046
52 #define FMULS 0x049
53 #define FMULD 0x04a
54 #define FDIVS 0x04d
55 #define FDIVD 0x04e
56 #define FSMULD 0x069
57 #define FSTOX 0x081
58 #define FDTOX 0x082
59 #define FDTOS 0x0c6
60 #define FSTOD 0x0c9
61 #define FSTOI 0x0d1
62 #define FDTOI 0x0d2
63 #define FXTOS 0x084 /* Only Ultra-III generates this. */
64 #define FXTOD 0x088 /* Only Ultra-III generates this. */
65 #if 0 /* Optimized inline in sparc64/kernel/entry.S */
66 #define FITOS 0x0c4 /* Only Ultra-III generates this. */
67 #endif
68 #define FITOD 0x0c8 /* Only Ultra-III generates this. */
69 /* FPOP2 */
70 #define FCMPQ 0x053
71 #define FCMPEQ 0x057
72 #define FMOVQ0 0x003
73 #define FMOVQ1 0x043
74 #define FMOVQ2 0x083
75 #define FMOVQ3 0x0c3
76 #define FMOVQI 0x103
77 #define FMOVQX 0x183
78 #define FMOVQZ 0x027
79 #define FMOVQLE 0x047
80 #define FMOVQLZ 0x067
81 #define FMOVQNZ 0x0a7
82 #define FMOVQGZ 0x0c7
83 #define FMOVQGE 0x0e7
84 
85 #define FSR_TEM_SHIFT 23UL
86 #define FSR_TEM_MASK (0x1fUL << FSR_TEM_SHIFT)
87 #define FSR_AEXC_SHIFT 5UL
88 #define FSR_AEXC_MASK (0x1fUL << FSR_AEXC_SHIFT)
89 #define FSR_CEXC_SHIFT 0UL
90 #define FSR_CEXC_MASK (0x1fUL << FSR_CEXC_SHIFT)
91 
92 /* All routines returning an exception to raise should detect
93  * such exceptions _before_ rounding to be consistent with
94  * the behavior of the hardware in the implemented cases
95  * (and thus with the recommendations in the V9 architecture
96  * manual).
97  *
98  * We return 0 if a SIGFPE should be sent, 1 otherwise.
99  */
100 static inline int record_exception(struct pt_regs *regs, int eflag)
101 {
102  u64 fsr = current_thread_info()->xfsr[0];
103  int would_trap;
104 
105  /* Determine if this exception would have generated a trap. */
106  would_trap = (fsr & ((long)eflag << FSR_TEM_SHIFT)) != 0UL;
107 
108  /* If trapping, we only want to signal one bit. */
109  if(would_trap != 0) {
110  eflag &= ((fsr & FSR_TEM_MASK) >> FSR_TEM_SHIFT);
111  if((eflag & (eflag - 1)) != 0) {
112  if(eflag & FP_EX_INVALID)
113  eflag = FP_EX_INVALID;
114  else if(eflag & FP_EX_OVERFLOW)
115  eflag = FP_EX_OVERFLOW;
116  else if(eflag & FP_EX_UNDERFLOW)
117  eflag = FP_EX_UNDERFLOW;
118  else if(eflag & FP_EX_DIVZERO)
119  eflag = FP_EX_DIVZERO;
120  else if(eflag & FP_EX_INEXACT)
121  eflag = FP_EX_INEXACT;
122  }
123  }
124 
125  /* Set CEXC, here is the rule:
126  *
127  * In general all FPU ops will set one and only one
128  * bit in the CEXC field, this is always the case
129  * when the IEEE exception trap is enabled in TEM.
130  */
131  fsr &= ~(FSR_CEXC_MASK);
132  fsr |= ((long)eflag << FSR_CEXC_SHIFT);
133 
134  /* Set the AEXC field, rule is:
135  *
136  * If a trap would not be generated, the
137  * CEXC just generated is OR'd into the
138  * existing value of AEXC.
139  */
140  if(would_trap == 0)
141  fsr |= ((long)eflag << FSR_AEXC_SHIFT);
142 
143  /* If trapping, indicate fault trap type IEEE. */
144  if(would_trap != 0)
145  fsr |= (1UL << 14);
146 
147  current_thread_info()->xfsr[0] = fsr;
148 
149  /* If we will not trap, advance the program counter over
150  * the instruction being handled.
151  */
152  if(would_trap == 0) {
153  regs->tpc = regs->tnpc;
154  regs->tnpc += 4;
155  }
156 
157  return (would_trap ? 0 : 1);
158 }
159 
160 typedef union {
161  u32 s;
162  u64 d;
163  u64 q[2];
164 } *argp;
165 
166 int do_mathemu(struct pt_regs *regs, struct fpustate *f, bool illegal_insn_trap)
167 {
168  unsigned long pc = regs->tpc;
169  unsigned long tstate = regs->tstate;
170  u32 insn = 0;
171  int type = 0;
172  /* ftt tells which ftt it may happen in, r is rd, b is rs2 and a is rs1. The *u arg tells
173  whether the argument should be packed/unpacked (0 - do not unpack/pack, 1 - unpack/pack)
174  non-u args tells the size of the argument (0 - no argument, 1 - single, 2 - double, 3 - quad */
175 #define TYPE(ftt, r, ru, b, bu, a, au) type = (au << 2) | (a << 0) | (bu << 5) | (b << 3) | (ru << 8) | (r << 6) | (ftt << 9)
176  int freg;
177  static u64 zero[2] = { 0L, 0L };
178  int flags;
179  FP_DECL_EX;
182  FP_DECL_Q(QA); FP_DECL_Q(QB); FP_DECL_Q(QR);
183  int IR;
184  long XR, xfsr;
185 
186  if (tstate & TSTATE_PRIV)
187  die_if_kernel("unfinished/unimplemented FPop from kernel", regs);
188  perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
189  if (test_thread_flag(TIF_32BIT))
190  pc = (u32)pc;
191  if (get_user(insn, (u32 __user *) pc) != -EFAULT) {
192  if ((insn & 0xc1f80000) == 0x81a00000) /* FPOP1 */ {
193  switch ((insn >> 5) & 0x1ff) {
194  /* QUAD - ftt == 3 */
195  case FMOVQ:
196  case FNEGQ:
197  case FABSQ: TYPE(3,3,0,3,0,0,0); break;
198  case FSQRTQ: TYPE(3,3,1,3,1,0,0); break;
199  case FADDQ:
200  case FSUBQ:
201  case FMULQ:
202  case FDIVQ: TYPE(3,3,1,3,1,3,1); break;
203  case FDMULQ: TYPE(3,3,1,2,1,2,1); break;
204  case FQTOX: TYPE(3,2,0,3,1,0,0); break;
205  case FXTOQ: TYPE(3,3,1,2,0,0,0); break;
206  case FQTOS: TYPE(3,1,1,3,1,0,0); break;
207  case FQTOD: TYPE(3,2,1,3,1,0,0); break;
208  case FITOQ: TYPE(3,3,1,1,0,0,0); break;
209  case FSTOQ: TYPE(3,3,1,1,1,0,0); break;
210  case FDTOQ: TYPE(3,3,1,2,1,0,0); break;
211  case FQTOI: TYPE(3,1,0,3,1,0,0); break;
212 
213  /* We can get either unimplemented or unfinished
214  * for these cases. Pre-Niagara systems generate
215  * unfinished fpop for SUBNORMAL cases, and Niagara
216  * always gives unimplemented fpop for fsqrt{s,d}.
217  */
218  case FSQRTS: {
219  unsigned long x = current_thread_info()->xfsr[0];
220 
221  x = (x >> 14) & 0x7;
222  TYPE(x,1,1,1,1,0,0);
223  break;
224  }
225 
226  case FSQRTD: {
227  unsigned long x = current_thread_info()->xfsr[0];
228 
229  x = (x >> 14) & 0x7;
230  TYPE(x,2,1,2,1,0,0);
231  break;
232  }
233 
234  /* SUBNORMAL - ftt == 2 */
235  case FADDD:
236  case FSUBD:
237  case FMULD:
238  case FDIVD: TYPE(2,2,1,2,1,2,1); break;
239  case FADDS:
240  case FSUBS:
241  case FMULS:
242  case FDIVS: TYPE(2,1,1,1,1,1,1); break;
243  case FSMULD: TYPE(2,2,1,1,1,1,1); break;
244  case FSTOX: TYPE(2,2,0,1,1,0,0); break;
245  case FDTOX: TYPE(2,2,0,2,1,0,0); break;
246  case FDTOS: TYPE(2,1,1,2,1,0,0); break;
247  case FSTOD: TYPE(2,2,1,1,1,0,0); break;
248  case FSTOI: TYPE(2,1,0,1,1,0,0); break;
249  case FDTOI: TYPE(2,1,0,2,1,0,0); break;
250 
251  /* Only Ultra-III generates these */
252  case FXTOS: TYPE(2,1,1,2,0,0,0); break;
253  case FXTOD: TYPE(2,2,1,2,0,0,0); break;
254 #if 0 /* Optimized inline in sparc64/kernel/entry.S */
255  case FITOS: TYPE(2,1,1,1,0,0,0); break;
256 #endif
257  case FITOD: TYPE(2,2,1,1,0,0,0); break;
258  }
259  }
260  else if ((insn & 0xc1f80000) == 0x81a80000) /* FPOP2 */ {
261  IR = 2;
262  switch ((insn >> 5) & 0x1ff) {
263  case FCMPQ: TYPE(3,0,0,3,1,3,1); break;
264  case FCMPEQ: TYPE(3,0,0,3,1,3,1); break;
265  /* Now the conditional fmovq support */
266  case FMOVQ0:
267  case FMOVQ1:
268  case FMOVQ2:
269  case FMOVQ3:
270  /* fmovq %fccX, %fY, %fZ */
271  if (!((insn >> 11) & 3))
272  XR = current_thread_info()->xfsr[0] >> 10;
273  else
274  XR = current_thread_info()->xfsr[0] >> (30 + ((insn >> 10) & 0x6));
275  XR &= 3;
276  IR = 0;
277  switch ((insn >> 14) & 0x7) {
278  /* case 0: IR = 0; break; */ /* Never */
279  case 1: if (XR) IR = 1; break; /* Not Equal */
280  case 2: if (XR == 1 || XR == 2) IR = 1; break; /* Less or Greater */
281  case 3: if (XR & 1) IR = 1; break; /* Unordered or Less */
282  case 4: if (XR == 1) IR = 1; break; /* Less */
283  case 5: if (XR & 2) IR = 1; break; /* Unordered or Greater */
284  case 6: if (XR == 2) IR = 1; break; /* Greater */
285  case 7: if (XR == 3) IR = 1; break; /* Unordered */
286  }
287  if ((insn >> 14) & 8)
288  IR ^= 1;
289  break;
290  case FMOVQI:
291  case FMOVQX:
292  /* fmovq %[ix]cc, %fY, %fZ */
293  XR = regs->tstate >> 32;
294  if ((insn >> 5) & 0x80)
295  XR >>= 4;
296  XR &= 0xf;
297  IR = 0;
298  freg = ((XR >> 2) ^ XR) & 2;
299  switch ((insn >> 14) & 0x7) {
300  /* case 0: IR = 0; break; */ /* Never */
301  case 1: if (XR & 4) IR = 1; break; /* Equal */
302  case 2: if ((XR & 4) || freg) IR = 1; break; /* Less or Equal */
303  case 3: if (freg) IR = 1; break; /* Less */
304  case 4: if (XR & 5) IR = 1; break; /* Less or Equal Unsigned */
305  case 5: if (XR & 1) IR = 1; break; /* Carry Set */
306  case 6: if (XR & 8) IR = 1; break; /* Negative */
307  case 7: if (XR & 2) IR = 1; break; /* Overflow Set */
308  }
309  if ((insn >> 14) & 8)
310  IR ^= 1;
311  break;
312  case FMOVQZ:
313  case FMOVQLE:
314  case FMOVQLZ:
315  case FMOVQNZ:
316  case FMOVQGZ:
317  case FMOVQGE:
318  freg = (insn >> 14) & 0x1f;
319  if (!freg)
320  XR = 0;
321  else if (freg < 16)
322  XR = regs->u_regs[freg];
323  else if (!test_thread_64bit_stack(regs->u_regs[UREG_FP])) {
324  struct reg_window32 __user *win32;
325  flushw_user ();
326  win32 = (struct reg_window32 __user *)((unsigned long)((u32)regs->u_regs[UREG_FP]));
327  get_user(XR, &win32->locals[freg - 16]);
328  } else {
329  struct reg_window __user *win;
330  flushw_user ();
331  win = (struct reg_window __user *)(regs->u_regs[UREG_FP] + STACK_BIAS);
332  get_user(XR, &win->locals[freg - 16]);
333  }
334  IR = 0;
335  switch ((insn >> 10) & 3) {
336  case 1: if (!XR) IR = 1; break; /* Register Zero */
337  case 2: if (XR <= 0) IR = 1; break; /* Register Less Than or Equal to Zero */
338  case 3: if (XR < 0) IR = 1; break; /* Register Less Than Zero */
339  }
340  if ((insn >> 10) & 4)
341  IR ^= 1;
342  break;
343  }
344  if (IR == 0) {
345  /* The fmov test was false. Do a nop instead */
346  current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
347  regs->tpc = regs->tnpc;
348  regs->tnpc += 4;
349  return 1;
350  } else if (IR == 1) {
351  /* Change the instruction into plain fmovq */
352  insn = (insn & 0x3e00001f) | 0x81a00060;
353  TYPE(3,3,0,3,0,0,0);
354  }
355  }
356  }
357  if (type) {
358  argp rs1 = NULL, rs2 = NULL, rd = NULL;
359 
360  /* Starting with UltraSPARC-T2, the cpu does not set the FP Trap
361  * Type field in the %fsr to unimplemented_FPop. Nor does it
362  * use the fp_exception_other trap. Instead it signals an
363  * illegal instruction and leaves the FP trap type field of
364  * the %fsr unchanged.
365  */
366  if (!illegal_insn_trap) {
367  int ftt = (current_thread_info()->xfsr[0] >> 14) & 0x7;
368  if (ftt != (type >> 9))
369  goto err;
370  }
371  current_thread_info()->xfsr[0] &= ~0x1c000;
372  freg = ((insn >> 14) & 0x1f);
373  switch (type & 0x3) {
374  case 3: if (freg & 2) {
375  current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
376  goto err;
377  }
378  case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
379  case 1: rs1 = (argp)&f->regs[freg];
380  flags = (freg < 32) ? FPRS_DL : FPRS_DU;
381  if (!(current_thread_info()->fpsaved[0] & flags))
382  rs1 = (argp)&zero;
383  break;
384  }
385  switch (type & 0x7) {
386  case 7: FP_UNPACK_QP (QA, rs1); break;
387  case 6: FP_UNPACK_DP (DA, rs1); break;
388  case 5: FP_UNPACK_SP (SA, rs1); break;
389  }
390  freg = (insn & 0x1f);
391  switch ((type >> 3) & 0x3) {
392  case 3: if (freg & 2) {
393  current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
394  goto err;
395  }
396  case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
397  case 1: rs2 = (argp)&f->regs[freg];
398  flags = (freg < 32) ? FPRS_DL : FPRS_DU;
399  if (!(current_thread_info()->fpsaved[0] & flags))
400  rs2 = (argp)&zero;
401  break;
402  }
403  switch ((type >> 3) & 0x7) {
404  case 7: FP_UNPACK_QP (QB, rs2); break;
405  case 6: FP_UNPACK_DP (DB, rs2); break;
406  case 5: FP_UNPACK_SP (SB, rs2); break;
407  }
408  freg = ((insn >> 25) & 0x1f);
409  switch ((type >> 6) & 0x3) {
410  case 3: if (freg & 2) {
411  current_thread_info()->xfsr[0] |= (6 << 14) /* invalid_fp_register */;
412  goto err;
413  }
414  case 2: freg = ((freg & 1) << 5) | (freg & 0x1e);
415  case 1: rd = (argp)&f->regs[freg];
416  flags = (freg < 32) ? FPRS_DL : FPRS_DU;
417  if (!(current_thread_info()->fpsaved[0] & FPRS_FEF)) {
418  current_thread_info()->fpsaved[0] = FPRS_FEF;
419  current_thread_info()->gsr[0] = 0;
420  }
421  if (!(current_thread_info()->fpsaved[0] & flags)) {
422  if (freg < 32)
423  memset(f->regs, 0, 32*sizeof(u32));
424  else
425  memset(f->regs+32, 0, 32*sizeof(u32));
426  }
427  current_thread_info()->fpsaved[0] |= flags;
428  break;
429  }
430  switch ((insn >> 5) & 0x1ff) {
431  /* + */
432  case FADDS: FP_ADD_S (SR, SA, SB); break;
433  case FADDD: FP_ADD_D (DR, DA, DB); break;
434  case FADDQ: FP_ADD_Q (QR, QA, QB); break;
435  /* - */
436  case FSUBS: FP_SUB_S (SR, SA, SB); break;
437  case FSUBD: FP_SUB_D (DR, DA, DB); break;
438  case FSUBQ: FP_SUB_Q (QR, QA, QB); break;
439  /* * */
440  case FMULS: FP_MUL_S (SR, SA, SB); break;
441  case FSMULD: FP_CONV (D, S, 1, 1, DA, SA);
442  FP_CONV (D, S, 1, 1, DB, SB);
443  case FMULD: FP_MUL_D (DR, DA, DB); break;
444  case FDMULQ: FP_CONV (Q, D, 2, 1, QA, DA);
445  FP_CONV (Q, D, 2, 1, QB, DB);
446  case FMULQ: FP_MUL_Q (QR, QA, QB); break;
447  /* / */
448  case FDIVS: FP_DIV_S (SR, SA, SB); break;
449  case FDIVD: FP_DIV_D (DR, DA, DB); break;
450  case FDIVQ: FP_DIV_Q (QR, QA, QB); break;
451  /* sqrt */
452  case FSQRTS: FP_SQRT_S (SR, SB); break;
453  case FSQRTD: FP_SQRT_D (DR, DB); break;
454  case FSQRTQ: FP_SQRT_Q (QR, QB); break;
455  /* mov */
456  case FMOVQ: rd->q[0] = rs2->q[0]; rd->q[1] = rs2->q[1]; break;
457  case FABSQ: rd->q[0] = rs2->q[0] & 0x7fffffffffffffffUL; rd->q[1] = rs2->q[1]; break;
458  case FNEGQ: rd->q[0] = rs2->q[0] ^ 0x8000000000000000UL; rd->q[1] = rs2->q[1]; break;
459  /* float to int */
460  case FSTOI: FP_TO_INT_S (IR, SB, 32, 1); break;
461  case FDTOI: FP_TO_INT_D (IR, DB, 32, 1); break;
462  case FQTOI: FP_TO_INT_Q (IR, QB, 32, 1); break;
463  case FSTOX: FP_TO_INT_S (XR, SB, 64, 1); break;
464  case FDTOX: FP_TO_INT_D (XR, DB, 64, 1); break;
465  case FQTOX: FP_TO_INT_Q (XR, QB, 64, 1); break;
466  /* int to float */
467  case FITOQ: IR = rs2->s; FP_FROM_INT_Q (QR, IR, 32, int); break;
468  case FXTOQ: XR = rs2->d; FP_FROM_INT_Q (QR, XR, 64, long); break;
469  /* Only Ultra-III generates these */
470  case FXTOS: XR = rs2->d; FP_FROM_INT_S (SR, XR, 64, long); break;
471  case FXTOD: XR = rs2->d; FP_FROM_INT_D (DR, XR, 64, long); break;
472 #if 0 /* Optimized inline in sparc64/kernel/entry.S */
473  case FITOS: IR = rs2->s; FP_FROM_INT_S (SR, IR, 32, int); break;
474 #endif
475  case FITOD: IR = rs2->s; FP_FROM_INT_D (DR, IR, 32, int); break;
476  /* float to float */
477  case FSTOD: FP_CONV (D, S, 1, 1, DR, SB); break;
478  case FSTOQ: FP_CONV (Q, S, 2, 1, QR, SB); break;
479  case FDTOQ: FP_CONV (Q, D, 2, 1, QR, DB); break;
480  case FDTOS: FP_CONV (S, D, 1, 1, SR, DB); break;
481  case FQTOS: FP_CONV (S, Q, 1, 2, SR, QB); break;
482  case FQTOD: FP_CONV (D, Q, 1, 2, DR, QB); break;
483  /* comparison */
484  case FCMPQ:
485  case FCMPEQ:
486  FP_CMP_Q(XR, QB, QA, 3);
487  if (XR == 3 &&
488  (((insn >> 5) & 0x1ff) == FCMPEQ ||
489  FP_ISSIGNAN_Q(QA) ||
490  FP_ISSIGNAN_Q(QB)))
492  }
493  if (!FP_INHIBIT_RESULTS) {
494  switch ((type >> 6) & 0x7) {
495  case 0: xfsr = current_thread_info()->xfsr[0];
496  if (XR == -1) XR = 2;
497  switch (freg & 3) {
498  /* fcc0, 1, 2, 3 */
499  case 0: xfsr &= ~0xc00; xfsr |= (XR << 10); break;
500  case 1: xfsr &= ~0x300000000UL; xfsr |= (XR << 32); break;
501  case 2: xfsr &= ~0xc00000000UL; xfsr |= (XR << 34); break;
502  case 3: xfsr &= ~0x3000000000UL; xfsr |= (XR << 36); break;
503  }
504  current_thread_info()->xfsr[0] = xfsr;
505  break;
506  case 1: rd->s = IR; break;
507  case 2: rd->d = XR; break;
508  case 5: FP_PACK_SP (rd, SR); break;
509  case 6: FP_PACK_DP (rd, DR); break;
510  case 7: FP_PACK_QP (rd, QR); break;
511  }
512  }
513 
514  if(_fex != 0)
515  return record_exception(regs, _fex);
516 
517  /* Success and no exceptions detected. */
518  current_thread_info()->xfsr[0] &= ~(FSR_CEXC_MASK);
519  regs->tpc = regs->tnpc;
520  regs->tnpc += 4;
521  return 1;
522  }
523 err: return 0;
524 }