Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mempolicy.c
Go to the documentation of this file.
1 /*
2  * Simple NUMA memory policy for the Linux kernel.
3  *
4  * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5  * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6  * Subject to the GNU Public License, version 2.
7  *
8  * NUMA policy allows the user to give hints in which node(s) memory should
9  * be allocated.
10  *
11  * Support four policies per VMA and per process:
12  *
13  * The VMA policy has priority over the process policy for a page fault.
14  *
15  * interleave Allocate memory interleaved over a set of nodes,
16  * with normal fallback if it fails.
17  * For VMA based allocations this interleaves based on the
18  * offset into the backing object or offset into the mapping
19  * for anonymous memory. For process policy an process counter
20  * is used.
21  *
22  * bind Only allocate memory on a specific set of nodes,
23  * no fallback.
24  * FIXME: memory is allocated starting with the first node
25  * to the last. It would be better if bind would truly restrict
26  * the allocation to memory nodes instead
27  *
28  * preferred Try a specific node first before normal fallback.
29  * As a special case node -1 here means do the allocation
30  * on the local CPU. This is normally identical to default,
31  * but useful to set in a VMA when you have a non default
32  * process policy.
33  *
34  * default Allocate on the local node first, or when on a VMA
35  * use the process policy. This is what Linux always did
36  * in a NUMA aware kernel and still does by, ahem, default.
37  *
38  * The process policy is applied for most non interrupt memory allocations
39  * in that process' context. Interrupts ignore the policies and always
40  * try to allocate on the local CPU. The VMA policy is only applied for memory
41  * allocations for a VMA in the VM.
42  *
43  * Currently there are a few corner cases in swapping where the policy
44  * is not applied, but the majority should be handled. When process policy
45  * is used it is not remembered over swap outs/swap ins.
46  *
47  * Only the highest zone in the zone hierarchy gets policied. Allocations
48  * requesting a lower zone just use default policy. This implies that
49  * on systems with highmem kernel lowmem allocation don't get policied.
50  * Same with GFP_DMA allocations.
51  *
52  * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53  * all users and remembered even when nobody has memory mapped.
54  */
55 
56 /* Notebook:
57  fix mmap readahead to honour policy and enable policy for any page cache
58  object
59  statistics for bigpages
60  global policy for page cache? currently it uses process policy. Requires
61  first item above.
62  handle mremap for shared memory (currently ignored for the policy)
63  grows down?
64  make bind policy root only? It can trigger oom much faster and the
65  kernel is not always grateful with that.
66 */
67 
68 #include <linux/mempolicy.h>
69 #include <linux/mm.h>
70 #include <linux/highmem.h>
71 #include <linux/hugetlb.h>
72 #include <linux/kernel.h>
73 #include <linux/sched.h>
74 #include <linux/nodemask.h>
75 #include <linux/cpuset.h>
76 #include <linux/slab.h>
77 #include <linux/string.h>
78 #include <linux/export.h>
79 #include <linux/nsproxy.h>
80 #include <linux/interrupt.h>
81 #include <linux/init.h>
82 #include <linux/compat.h>
83 #include <linux/swap.h>
84 #include <linux/seq_file.h>
85 #include <linux/proc_fs.h>
86 #include <linux/migrate.h>
87 #include <linux/ksm.h>
88 #include <linux/rmap.h>
89 #include <linux/security.h>
90 #include <linux/syscalls.h>
91 #include <linux/ctype.h>
92 #include <linux/mm_inline.h>
93 
94 #include <asm/tlbflush.h>
95 #include <asm/uaccess.h>
96 #include <linux/random.h>
97 
98 #include "internal.h"
99 
100 /* Internal flags */
101 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
102 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
103 
104 static struct kmem_cache *policy_cache;
105 static struct kmem_cache *sn_cache;
106 
107 /* Highest zone. An specific allocation for a zone below that is not
108  policied. */
110 
111 /*
112  * run-time system-wide default policy => local allocation
113  */
114 static struct mempolicy default_policy = {
115  .refcnt = ATOMIC_INIT(1), /* never free it */
116  .mode = MPOL_PREFERRED,
117  .flags = MPOL_F_LOCAL,
118 };
119 
120 static const struct mempolicy_operations {
121  int (*create)(struct mempolicy *pol, const nodemask_t *nodes);
122  /*
123  * If read-side task has no lock to protect task->mempolicy, write-side
124  * task will rebind the task->mempolicy by two step. The first step is
125  * setting all the newly nodes, and the second step is cleaning all the
126  * disallowed nodes. In this way, we can avoid finding no node to alloc
127  * page.
128  * If we have a lock to protect task->mempolicy in read-side, we do
129  * rebind directly.
130  *
131  * step:
132  * MPOL_REBIND_ONCE - do rebind work at once
133  * MPOL_REBIND_STEP1 - set all the newly nodes
134  * MPOL_REBIND_STEP2 - clean all the disallowed nodes
135  */
136  void (*rebind)(struct mempolicy *pol, const nodemask_t *nodes,
137  enum mpol_rebind_step step);
138 } mpol_ops[MPOL_MAX];
139 
140 /* Check that the nodemask contains at least one populated zone */
141 static int is_valid_nodemask(const nodemask_t *nodemask)
142 {
143  int nd, k;
144 
145  for_each_node_mask(nd, *nodemask) {
146  struct zone *z;
147 
148  for (k = 0; k <= policy_zone; k++) {
149  z = &NODE_DATA(nd)->node_zones[k];
150  if (z->present_pages > 0)
151  return 1;
152  }
153  }
154 
155  return 0;
156 }
157 
158 static inline int mpol_store_user_nodemask(const struct mempolicy *pol)
159 {
160  return pol->flags & MPOL_MODE_FLAGS;
161 }
162 
163 static void mpol_relative_nodemask(nodemask_t *ret, const nodemask_t *orig,
164  const nodemask_t *rel)
165 {
166  nodemask_t tmp;
167  nodes_fold(tmp, *orig, nodes_weight(*rel));
168  nodes_onto(*ret, tmp, *rel);
169 }
170 
171 static int mpol_new_interleave(struct mempolicy *pol, const nodemask_t *nodes)
172 {
173  if (nodes_empty(*nodes))
174  return -EINVAL;
175  pol->v.nodes = *nodes;
176  return 0;
177 }
178 
179 static int mpol_new_preferred(struct mempolicy *pol, const nodemask_t *nodes)
180 {
181  if (!nodes)
182  pol->flags |= MPOL_F_LOCAL; /* local allocation */
183  else if (nodes_empty(*nodes))
184  return -EINVAL; /* no allowed nodes */
185  else
186  pol->v.preferred_node = first_node(*nodes);
187  return 0;
188 }
189 
190 static int mpol_new_bind(struct mempolicy *pol, const nodemask_t *nodes)
191 {
192  if (!is_valid_nodemask(nodes))
193  return -EINVAL;
194  pol->v.nodes = *nodes;
195  return 0;
196 }
197 
198 /*
199  * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
200  * any, for the new policy. mpol_new() has already validated the nodes
201  * parameter with respect to the policy mode and flags. But, we need to
202  * handle an empty nodemask with MPOL_PREFERRED here.
203  *
204  * Must be called holding task's alloc_lock to protect task's mems_allowed
205  * and mempolicy. May also be called holding the mmap_semaphore for write.
206  */
207 static int mpol_set_nodemask(struct mempolicy *pol,
208  const nodemask_t *nodes, struct nodemask_scratch *nsc)
209 {
210  int ret;
211 
212  /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
213  if (pol == NULL)
214  return 0;
215  /* Check N_HIGH_MEMORY */
216  nodes_and(nsc->mask1,
218 
219  VM_BUG_ON(!nodes);
220  if (pol->mode == MPOL_PREFERRED && nodes_empty(*nodes))
221  nodes = NULL; /* explicit local allocation */
222  else {
223  if (pol->flags & MPOL_F_RELATIVE_NODES)
224  mpol_relative_nodemask(&nsc->mask2, nodes,&nsc->mask1);
225  else
226  nodes_and(nsc->mask2, *nodes, nsc->mask1);
227 
228  if (mpol_store_user_nodemask(pol))
229  pol->w.user_nodemask = *nodes;
230  else
231  pol->w.cpuset_mems_allowed =
233  }
234 
235  if (nodes)
236  ret = mpol_ops[pol->mode].create(pol, &nsc->mask2);
237  else
238  ret = mpol_ops[pol->mode].create(pol, NULL);
239  return ret;
240 }
241 
242 /*
243  * This function just creates a new policy, does some check and simple
244  * initialization. You must invoke mpol_set_nodemask() to set nodes.
245  */
246 static struct mempolicy *mpol_new(unsigned short mode, unsigned short flags,
247  nodemask_t *nodes)
248 {
249  struct mempolicy *policy;
250 
251  pr_debug("setting mode %d flags %d nodes[0] %lx\n",
252  mode, flags, nodes ? nodes_addr(*nodes)[0] : -1);
253 
254  if (mode == MPOL_DEFAULT) {
255  if (nodes && !nodes_empty(*nodes))
256  return ERR_PTR(-EINVAL);
257  return NULL; /* simply delete any existing policy */
258  }
259  VM_BUG_ON(!nodes);
260 
261  /*
262  * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
263  * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
264  * All other modes require a valid pointer to a non-empty nodemask.
265  */
266  if (mode == MPOL_PREFERRED) {
267  if (nodes_empty(*nodes)) {
268  if (((flags & MPOL_F_STATIC_NODES) ||
269  (flags & MPOL_F_RELATIVE_NODES)))
270  return ERR_PTR(-EINVAL);
271  }
272  } else if (nodes_empty(*nodes))
273  return ERR_PTR(-EINVAL);
274  policy = kmem_cache_alloc(policy_cache, GFP_KERNEL);
275  if (!policy)
276  return ERR_PTR(-ENOMEM);
277  atomic_set(&policy->refcnt, 1);
278  policy->mode = mode;
279  policy->flags = flags;
280 
281  return policy;
282 }
283 
284 /* Slow path of a mpol destructor. */
285 void __mpol_put(struct mempolicy *p)
286 {
287  if (!atomic_dec_and_test(&p->refcnt))
288  return;
289  kmem_cache_free(policy_cache, p);
290 }
291 
292 static void mpol_rebind_default(struct mempolicy *pol, const nodemask_t *nodes,
293  enum mpol_rebind_step step)
294 {
295 }
296 
297 /*
298  * step:
299  * MPOL_REBIND_ONCE - do rebind work at once
300  * MPOL_REBIND_STEP1 - set all the newly nodes
301  * MPOL_REBIND_STEP2 - clean all the disallowed nodes
302  */
303 static void mpol_rebind_nodemask(struct mempolicy *pol, const nodemask_t *nodes,
304  enum mpol_rebind_step step)
305 {
306  nodemask_t tmp;
307 
308  if (pol->flags & MPOL_F_STATIC_NODES)
309  nodes_and(tmp, pol->w.user_nodemask, *nodes);
310  else if (pol->flags & MPOL_F_RELATIVE_NODES)
311  mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
312  else {
313  /*
314  * if step == 1, we use ->w.cpuset_mems_allowed to cache the
315  * result
316  */
317  if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP1) {
318  nodes_remap(tmp, pol->v.nodes,
319  pol->w.cpuset_mems_allowed, *nodes);
320  pol->w.cpuset_mems_allowed = step ? tmp : *nodes;
321  } else if (step == MPOL_REBIND_STEP2) {
322  tmp = pol->w.cpuset_mems_allowed;
323  pol->w.cpuset_mems_allowed = *nodes;
324  } else
325  BUG();
326  }
327 
328  if (nodes_empty(tmp))
329  tmp = *nodes;
330 
331  if (step == MPOL_REBIND_STEP1)
332  nodes_or(pol->v.nodes, pol->v.nodes, tmp);
333  else if (step == MPOL_REBIND_ONCE || step == MPOL_REBIND_STEP2)
334  pol->v.nodes = tmp;
335  else
336  BUG();
337 
338  if (!node_isset(current->il_next, tmp)) {
339  current->il_next = next_node(current->il_next, tmp);
340  if (current->il_next >= MAX_NUMNODES)
341  current->il_next = first_node(tmp);
342  if (current->il_next >= MAX_NUMNODES)
343  current->il_next = numa_node_id();
344  }
345 }
346 
347 static void mpol_rebind_preferred(struct mempolicy *pol,
348  const nodemask_t *nodes,
349  enum mpol_rebind_step step)
350 {
351  nodemask_t tmp;
352 
353  if (pol->flags & MPOL_F_STATIC_NODES) {
354  int node = first_node(pol->w.user_nodemask);
355 
356  if (node_isset(node, *nodes)) {
357  pol->v.preferred_node = node;
358  pol->flags &= ~MPOL_F_LOCAL;
359  } else
360  pol->flags |= MPOL_F_LOCAL;
361  } else if (pol->flags & MPOL_F_RELATIVE_NODES) {
362  mpol_relative_nodemask(&tmp, &pol->w.user_nodemask, nodes);
363  pol->v.preferred_node = first_node(tmp);
364  } else if (!(pol->flags & MPOL_F_LOCAL)) {
365  pol->v.preferred_node = node_remap(pol->v.preferred_node,
366  pol->w.cpuset_mems_allowed,
367  *nodes);
368  pol->w.cpuset_mems_allowed = *nodes;
369  }
370 }
371 
372 /*
373  * mpol_rebind_policy - Migrate a policy to a different set of nodes
374  *
375  * If read-side task has no lock to protect task->mempolicy, write-side
376  * task will rebind the task->mempolicy by two step. The first step is
377  * setting all the newly nodes, and the second step is cleaning all the
378  * disallowed nodes. In this way, we can avoid finding no node to alloc
379  * page.
380  * If we have a lock to protect task->mempolicy in read-side, we do
381  * rebind directly.
382  *
383  * step:
384  * MPOL_REBIND_ONCE - do rebind work at once
385  * MPOL_REBIND_STEP1 - set all the newly nodes
386  * MPOL_REBIND_STEP2 - clean all the disallowed nodes
387  */
388 static void mpol_rebind_policy(struct mempolicy *pol, const nodemask_t *newmask,
389  enum mpol_rebind_step step)
390 {
391  if (!pol)
392  return;
393  if (!mpol_store_user_nodemask(pol) && step == MPOL_REBIND_ONCE &&
394  nodes_equal(pol->w.cpuset_mems_allowed, *newmask))
395  return;
396 
397  if (step == MPOL_REBIND_STEP1 && (pol->flags & MPOL_F_REBINDING))
398  return;
399 
400  if (step == MPOL_REBIND_STEP2 && !(pol->flags & MPOL_F_REBINDING))
401  BUG();
402 
403  if (step == MPOL_REBIND_STEP1)
404  pol->flags |= MPOL_F_REBINDING;
405  else if (step == MPOL_REBIND_STEP2)
406  pol->flags &= ~MPOL_F_REBINDING;
407  else if (step >= MPOL_REBIND_NSTEP)
408  BUG();
409 
410  mpol_ops[pol->mode].rebind(pol, newmask, step);
411 }
412 
413 /*
414  * Wrapper for mpol_rebind_policy() that just requires task
415  * pointer, and updates task mempolicy.
416  *
417  * Called with task's alloc_lock held.
418  */
419 
420 void mpol_rebind_task(struct task_struct *tsk, const nodemask_t *new,
421  enum mpol_rebind_step step)
422 {
423  mpol_rebind_policy(tsk->mempolicy, new, step);
424 }
425 
426 /*
427  * Rebind each vma in mm to new nodemask.
428  *
429  * Call holding a reference to mm. Takes mm->mmap_sem during call.
430  */
431 
432 void mpol_rebind_mm(struct mm_struct *mm, nodemask_t *new)
433 {
434  struct vm_area_struct *vma;
435 
436  down_write(&mm->mmap_sem);
437  for (vma = mm->mmap; vma; vma = vma->vm_next)
438  mpol_rebind_policy(vma->vm_policy, new, MPOL_REBIND_ONCE);
439  up_write(&mm->mmap_sem);
440 }
441 
442 static const struct mempolicy_operations mpol_ops[MPOL_MAX] = {
443  [MPOL_DEFAULT] = {
444  .rebind = mpol_rebind_default,
445  },
446  [MPOL_INTERLEAVE] = {
447  .create = mpol_new_interleave,
448  .rebind = mpol_rebind_nodemask,
449  },
450  [MPOL_PREFERRED] = {
451  .create = mpol_new_preferred,
452  .rebind = mpol_rebind_preferred,
453  },
454  [MPOL_BIND] = {
455  .create = mpol_new_bind,
456  .rebind = mpol_rebind_nodemask,
457  },
458 };
459 
460 static void migrate_page_add(struct page *page, struct list_head *pagelist,
461  unsigned long flags);
462 
463 /* Scan through pages checking if pages follow certain conditions. */
464 static int check_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
465  unsigned long addr, unsigned long end,
466  const nodemask_t *nodes, unsigned long flags,
467  void *private)
468 {
469  pte_t *orig_pte;
470  pte_t *pte;
471  spinlock_t *ptl;
472 
473  orig_pte = pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
474  do {
475  struct page *page;
476  int nid;
477 
478  if (!pte_present(*pte))
479  continue;
480  page = vm_normal_page(vma, addr, *pte);
481  if (!page)
482  continue;
483  /*
484  * vm_normal_page() filters out zero pages, but there might
485  * still be PageReserved pages to skip, perhaps in a VDSO.
486  * And we cannot move PageKsm pages sensibly or safely yet.
487  */
488  if (PageReserved(page) || PageKsm(page))
489  continue;
490  nid = page_to_nid(page);
491  if (node_isset(nid, *nodes) == !!(flags & MPOL_MF_INVERT))
492  continue;
493 
494  if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
495  migrate_page_add(page, private, flags);
496  else
497  break;
498  } while (pte++, addr += PAGE_SIZE, addr != end);
499  pte_unmap_unlock(orig_pte, ptl);
500  return addr != end;
501 }
502 
503 static inline int check_pmd_range(struct vm_area_struct *vma, pud_t *pud,
504  unsigned long addr, unsigned long end,
505  const nodemask_t *nodes, unsigned long flags,
506  void *private)
507 {
508  pmd_t *pmd;
509  unsigned long next;
510 
511  pmd = pmd_offset(pud, addr);
512  do {
513  next = pmd_addr_end(addr, end);
514  split_huge_page_pmd(vma->vm_mm, pmd);
515  if (pmd_none_or_trans_huge_or_clear_bad(pmd))
516  continue;
517  if (check_pte_range(vma, pmd, addr, next, nodes,
518  flags, private))
519  return -EIO;
520  } while (pmd++, addr = next, addr != end);
521  return 0;
522 }
523 
524 static inline int check_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
525  unsigned long addr, unsigned long end,
526  const nodemask_t *nodes, unsigned long flags,
527  void *private)
528 {
529  pud_t *pud;
530  unsigned long next;
531 
532  pud = pud_offset(pgd, addr);
533  do {
534  next = pud_addr_end(addr, end);
535  if (pud_none_or_clear_bad(pud))
536  continue;
537  if (check_pmd_range(vma, pud, addr, next, nodes,
538  flags, private))
539  return -EIO;
540  } while (pud++, addr = next, addr != end);
541  return 0;
542 }
543 
544 static inline int check_pgd_range(struct vm_area_struct *vma,
545  unsigned long addr, unsigned long end,
546  const nodemask_t *nodes, unsigned long flags,
547  void *private)
548 {
549  pgd_t *pgd;
550  unsigned long next;
551 
552  pgd = pgd_offset(vma->vm_mm, addr);
553  do {
554  next = pgd_addr_end(addr, end);
555  if (pgd_none_or_clear_bad(pgd))
556  continue;
557  if (check_pud_range(vma, pgd, addr, next, nodes,
558  flags, private))
559  return -EIO;
560  } while (pgd++, addr = next, addr != end);
561  return 0;
562 }
563 
564 /*
565  * Check if all pages in a range are on a set of nodes.
566  * If pagelist != NULL then isolate pages from the LRU and
567  * put them on the pagelist.
568  */
569 static struct vm_area_struct *
570 check_range(struct mm_struct *mm, unsigned long start, unsigned long end,
571  const nodemask_t *nodes, unsigned long flags, void *private)
572 {
573  int err;
574  struct vm_area_struct *first, *vma, *prev;
575 
576 
577  first = find_vma(mm, start);
578  if (!first)
579  return ERR_PTR(-EFAULT);
580  prev = NULL;
581  for (vma = first; vma && vma->vm_start < end; vma = vma->vm_next) {
582  if (!(flags & MPOL_MF_DISCONTIG_OK)) {
583  if (!vma->vm_next && vma->vm_end < end)
584  return ERR_PTR(-EFAULT);
585  if (prev && prev->vm_end < vma->vm_start)
586  return ERR_PTR(-EFAULT);
587  }
588  if (!is_vm_hugetlb_page(vma) &&
589  ((flags & MPOL_MF_STRICT) ||
590  ((flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) &&
591  vma_migratable(vma)))) {
592  unsigned long endvma = vma->vm_end;
593 
594  if (endvma > end)
595  endvma = end;
596  if (vma->vm_start > start)
597  start = vma->vm_start;
598  err = check_pgd_range(vma, start, endvma, nodes,
599  flags, private);
600  if (err) {
601  first = ERR_PTR(err);
602  break;
603  }
604  }
605  prev = vma;
606  }
607  return first;
608 }
609 
610 /*
611  * Apply policy to a single VMA
612  * This must be called with the mmap_sem held for writing.
613  */
614 static int vma_replace_policy(struct vm_area_struct *vma,
615  struct mempolicy *pol)
616 {
617  int err;
618  struct mempolicy *old;
619  struct mempolicy *new;
620 
621  pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
622  vma->vm_start, vma->vm_end, vma->vm_pgoff,
623  vma->vm_ops, vma->vm_file,
624  vma->vm_ops ? vma->vm_ops->set_policy : NULL);
625 
626  new = mpol_dup(pol);
627  if (IS_ERR(new))
628  return PTR_ERR(new);
629 
630  if (vma->vm_ops && vma->vm_ops->set_policy) {
631  err = vma->vm_ops->set_policy(vma, new);
632  if (err)
633  goto err_out;
634  }
635 
636  old = vma->vm_policy;
637  vma->vm_policy = new; /* protected by mmap_sem */
638  mpol_put(old);
639 
640  return 0;
641  err_out:
642  mpol_put(new);
643  return err;
644 }
645 
646 /* Step 2: apply policy to a range and do splits. */
647 static int mbind_range(struct mm_struct *mm, unsigned long start,
648  unsigned long end, struct mempolicy *new_pol)
649 {
650  struct vm_area_struct *next;
651  struct vm_area_struct *prev;
652  struct vm_area_struct *vma;
653  int err = 0;
654  pgoff_t pgoff;
655  unsigned long vmstart;
656  unsigned long vmend;
657 
658  vma = find_vma(mm, start);
659  if (!vma || vma->vm_start > start)
660  return -EFAULT;
661 
662  prev = vma->vm_prev;
663  if (start > vma->vm_start)
664  prev = vma;
665 
666  for (; vma && vma->vm_start < end; prev = vma, vma = next) {
667  next = vma->vm_next;
668  vmstart = max(start, vma->vm_start);
669  vmend = min(end, vma->vm_end);
670 
671  if (mpol_equal(vma_policy(vma), new_pol))
672  continue;
673 
674  pgoff = vma->vm_pgoff +
675  ((vmstart - vma->vm_start) >> PAGE_SHIFT);
676  prev = vma_merge(mm, prev, vmstart, vmend, vma->vm_flags,
677  vma->anon_vma, vma->vm_file, pgoff,
678  new_pol);
679  if (prev) {
680  vma = prev;
681  next = vma->vm_next;
682  continue;
683  }
684  if (vma->vm_start != vmstart) {
685  err = split_vma(vma->vm_mm, vma, vmstart, 1);
686  if (err)
687  goto out;
688  }
689  if (vma->vm_end != vmend) {
690  err = split_vma(vma->vm_mm, vma, vmend, 0);
691  if (err)
692  goto out;
693  }
694  err = vma_replace_policy(vma, new_pol);
695  if (err)
696  goto out;
697  }
698 
699  out:
700  return err;
701 }
702 
703 /*
704  * Update task->flags PF_MEMPOLICY bit: set iff non-default
705  * mempolicy. Allows more rapid checking of this (combined perhaps
706  * with other PF_* flag bits) on memory allocation hot code paths.
707  *
708  * If called from outside this file, the task 'p' should -only- be
709  * a newly forked child not yet visible on the task list, because
710  * manipulating the task flags of a visible task is not safe.
711  *
712  * The above limitation is why this routine has the funny name
713  * mpol_fix_fork_child_flag().
714  *
715  * It is also safe to call this with a task pointer of current,
716  * which the static wrapper mpol_set_task_struct_flag() does,
717  * for use within this file.
718  */
719 
721 {
722  if (p->mempolicy)
723  p->flags |= PF_MEMPOLICY;
724  else
725  p->flags &= ~PF_MEMPOLICY;
726 }
727 
728 static void mpol_set_task_struct_flag(void)
729 {
731 }
732 
733 /* Set the process memory policy */
734 static long do_set_mempolicy(unsigned short mode, unsigned short flags,
735  nodemask_t *nodes)
736 {
737  struct mempolicy *new, *old;
738  struct mm_struct *mm = current->mm;
740  int ret;
741 
742  if (!scratch)
743  return -ENOMEM;
744 
745  new = mpol_new(mode, flags, nodes);
746  if (IS_ERR(new)) {
747  ret = PTR_ERR(new);
748  goto out;
749  }
750  /*
751  * prevent changing our mempolicy while show_numa_maps()
752  * is using it.
753  * Note: do_set_mempolicy() can be called at init time
754  * with no 'mm'.
755  */
756  if (mm)
757  down_write(&mm->mmap_sem);
758  task_lock(current);
759  ret = mpol_set_nodemask(new, nodes, scratch);
760  if (ret) {
761  task_unlock(current);
762  if (mm)
763  up_write(&mm->mmap_sem);
764  mpol_put(new);
765  goto out;
766  }
767  old = current->mempolicy;
768  current->mempolicy = new;
769  mpol_set_task_struct_flag();
770  if (new && new->mode == MPOL_INTERLEAVE &&
771  nodes_weight(new->v.nodes))
772  current->il_next = first_node(new->v.nodes);
773  task_unlock(current);
774  if (mm)
775  up_write(&mm->mmap_sem);
776 
777  mpol_put(old);
778  ret = 0;
779 out:
781  return ret;
782 }
783 
784 /*
785  * Return nodemask for policy for get_mempolicy() query
786  *
787  * Called with task's alloc_lock held
788  */
789 static void get_policy_nodemask(struct mempolicy *p, nodemask_t *nodes)
790 {
791  nodes_clear(*nodes);
792  if (p == &default_policy)
793  return;
794 
795  switch (p->mode) {
796  case MPOL_BIND:
797  /* Fall through */
798  case MPOL_INTERLEAVE:
799  *nodes = p->v.nodes;
800  break;
801  case MPOL_PREFERRED:
802  if (!(p->flags & MPOL_F_LOCAL))
803  node_set(p->v.preferred_node, *nodes);
804  /* else return empty node mask for local allocation */
805  break;
806  default:
807  BUG();
808  }
809 }
810 
811 static int lookup_node(struct mm_struct *mm, unsigned long addr)
812 {
813  struct page *p;
814  int err;
815 
816  err = get_user_pages(current, mm, addr & PAGE_MASK, 1, 0, 0, &p, NULL);
817  if (err >= 0) {
818  err = page_to_nid(p);
819  put_page(p);
820  }
821  return err;
822 }
823 
824 /* Retrieve NUMA policy */
825 static long do_get_mempolicy(int *policy, nodemask_t *nmask,
826  unsigned long addr, unsigned long flags)
827 {
828  int err;
829  struct mm_struct *mm = current->mm;
830  struct vm_area_struct *vma = NULL;
831  struct mempolicy *pol = current->mempolicy;
832 
833  if (flags &
834  ~(unsigned long)(MPOL_F_NODE|MPOL_F_ADDR|MPOL_F_MEMS_ALLOWED))
835  return -EINVAL;
836 
837  if (flags & MPOL_F_MEMS_ALLOWED) {
838  if (flags & (MPOL_F_NODE|MPOL_F_ADDR))
839  return -EINVAL;
840  *policy = 0; /* just so it's initialized */
841  task_lock(current);
843  task_unlock(current);
844  return 0;
845  }
846 
847  if (flags & MPOL_F_ADDR) {
848  /*
849  * Do NOT fall back to task policy if the
850  * vma/shared policy at addr is NULL. We
851  * want to return MPOL_DEFAULT in this case.
852  */
853  down_read(&mm->mmap_sem);
854  vma = find_vma_intersection(mm, addr, addr+1);
855  if (!vma) {
856  up_read(&mm->mmap_sem);
857  return -EFAULT;
858  }
859  if (vma->vm_ops && vma->vm_ops->get_policy)
860  pol = vma->vm_ops->get_policy(vma, addr);
861  else
862  pol = vma->vm_policy;
863  } else if (addr)
864  return -EINVAL;
865 
866  if (!pol)
867  pol = &default_policy; /* indicates default behavior */
868 
869  if (flags & MPOL_F_NODE) {
870  if (flags & MPOL_F_ADDR) {
871  err = lookup_node(mm, addr);
872  if (err < 0)
873  goto out;
874  *policy = err;
875  } else if (pol == current->mempolicy &&
876  pol->mode == MPOL_INTERLEAVE) {
877  *policy = current->il_next;
878  } else {
879  err = -EINVAL;
880  goto out;
881  }
882  } else {
883  *policy = pol == &default_policy ? MPOL_DEFAULT :
884  pol->mode;
885  /*
886  * Internal mempolicy flags must be masked off before exposing
887  * the policy to userspace.
888  */
889  *policy |= (pol->flags & MPOL_MODE_FLAGS);
890  }
891 
892  if (vma) {
893  up_read(&current->mm->mmap_sem);
894  vma = NULL;
895  }
896 
897  err = 0;
898  if (nmask) {
899  if (mpol_store_user_nodemask(pol)) {
900  *nmask = pol->w.user_nodemask;
901  } else {
902  task_lock(current);
903  get_policy_nodemask(pol, nmask);
904  task_unlock(current);
905  }
906  }
907 
908  out:
909  mpol_cond_put(pol);
910  if (vma)
911  up_read(&current->mm->mmap_sem);
912  return err;
913 }
914 
915 #ifdef CONFIG_MIGRATION
916 /*
917  * page migration
918  */
919 static void migrate_page_add(struct page *page, struct list_head *pagelist,
920  unsigned long flags)
921 {
922  /*
923  * Avoid migrating a page that is shared with others.
924  */
925  if ((flags & MPOL_MF_MOVE_ALL) || page_mapcount(page) == 1) {
926  if (!isolate_lru_page(page)) {
927  list_add_tail(&page->lru, pagelist);
929  page_is_file_cache(page));
930  }
931  }
932 }
933 
934 static struct page *new_node_page(struct page *page, unsigned long node, int **x)
935 {
936  return alloc_pages_exact_node(node, GFP_HIGHUSER_MOVABLE, 0);
937 }
938 
939 /*
940  * Migrate pages from one node to a target node.
941  * Returns error or the number of pages not migrated.
942  */
943 static int migrate_to_node(struct mm_struct *mm, int source, int dest,
944  int flags)
945 {
946  nodemask_t nmask;
947  LIST_HEAD(pagelist);
948  int err = 0;
949 
950  nodes_clear(nmask);
951  node_set(source, nmask);
952 
953  /*
954  * This does not "check" the range but isolates all pages that
955  * need migration. Between passing in the full user address
956  * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
957  */
958  VM_BUG_ON(!(flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)));
959  check_range(mm, mm->mmap->vm_start, mm->task_size, &nmask,
960  flags | MPOL_MF_DISCONTIG_OK, &pagelist);
961 
962  if (!list_empty(&pagelist)) {
963  err = migrate_pages(&pagelist, new_node_page, dest,
964  false, MIGRATE_SYNC);
965  if (err)
966  putback_lru_pages(&pagelist);
967  }
968 
969  return err;
970 }
971 
972 /*
973  * Move pages between the two nodesets so as to preserve the physical
974  * layout as much as possible.
975  *
976  * Returns the number of page that could not be moved.
977  */
978 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
979  const nodemask_t *to, int flags)
980 {
981  int busy = 0;
982  int err;
983  nodemask_t tmp;
984 
985  err = migrate_prep();
986  if (err)
987  return err;
988 
989  down_read(&mm->mmap_sem);
990 
991  err = migrate_vmas(mm, from, to, flags);
992  if (err)
993  goto out;
994 
995  /*
996  * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
997  * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
998  * bit in 'tmp', and return that <source, dest> pair for migration.
999  * The pair of nodemasks 'to' and 'from' define the map.
1000  *
1001  * If no pair of bits is found that way, fallback to picking some
1002  * pair of 'source' and 'dest' bits that are not the same. If the
1003  * 'source' and 'dest' bits are the same, this represents a node
1004  * that will be migrating to itself, so no pages need move.
1005  *
1006  * If no bits are left in 'tmp', or if all remaining bits left
1007  * in 'tmp' correspond to the same bit in 'to', return false
1008  * (nothing left to migrate).
1009  *
1010  * This lets us pick a pair of nodes to migrate between, such that
1011  * if possible the dest node is not already occupied by some other
1012  * source node, minimizing the risk of overloading the memory on a
1013  * node that would happen if we migrated incoming memory to a node
1014  * before migrating outgoing memory source that same node.
1015  *
1016  * A single scan of tmp is sufficient. As we go, we remember the
1017  * most recent <s, d> pair that moved (s != d). If we find a pair
1018  * that not only moved, but what's better, moved to an empty slot
1019  * (d is not set in tmp), then we break out then, with that pair.
1020  * Otherwise when we finish scanning from_tmp, we at least have the
1021  * most recent <s, d> pair that moved. If we get all the way through
1022  * the scan of tmp without finding any node that moved, much less
1023  * moved to an empty node, then there is nothing left worth migrating.
1024  */
1025 
1026  tmp = *from;
1027  while (!nodes_empty(tmp)) {
1028  int s,d;
1029  int source = -1;
1030  int dest = 0;
1031 
1032  for_each_node_mask(s, tmp) {
1033 
1034  /*
1035  * do_migrate_pages() tries to maintain the relative
1036  * node relationship of the pages established between
1037  * threads and memory areas.
1038  *
1039  * However if the number of source nodes is not equal to
1040  * the number of destination nodes we can not preserve
1041  * this node relative relationship. In that case, skip
1042  * copying memory from a node that is in the destination
1043  * mask.
1044  *
1045  * Example: [2,3,4] -> [3,4,5] moves everything.
1046  * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1047  */
1048 
1049  if ((nodes_weight(*from) != nodes_weight(*to)) &&
1050  (node_isset(s, *to)))
1051  continue;
1052 
1053  d = node_remap(s, *from, *to);
1054  if (s == d)
1055  continue;
1056 
1057  source = s; /* Node moved. Memorize */
1058  dest = d;
1059 
1060  /* dest not in remaining from nodes? */
1061  if (!node_isset(dest, tmp))
1062  break;
1063  }
1064  if (source == -1)
1065  break;
1066 
1067  node_clear(source, tmp);
1068  err = migrate_to_node(mm, source, dest, flags);
1069  if (err > 0)
1070  busy += err;
1071  if (err < 0)
1072  break;
1073  }
1074 out:
1075  up_read(&mm->mmap_sem);
1076  if (err < 0)
1077  return err;
1078  return busy;
1079 
1080 }
1081 
1082 /*
1083  * Allocate a new page for page migration based on vma policy.
1084  * Start assuming that page is mapped by vma pointed to by @private.
1085  * Search forward from there, if not. N.B., this assumes that the
1086  * list of pages handed to migrate_pages()--which is how we get here--
1087  * is in virtual address order.
1088  */
1089 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1090 {
1091  struct vm_area_struct *vma = (struct vm_area_struct *)private;
1092  unsigned long uninitialized_var(address);
1093 
1094  while (vma) {
1095  address = page_address_in_vma(page, vma);
1096  if (address != -EFAULT)
1097  break;
1098  vma = vma->vm_next;
1099  }
1100 
1101  /*
1102  * if !vma, alloc_page_vma() will use task or system default policy
1103  */
1105 }
1106 #else
1107 
1108 static void migrate_page_add(struct page *page, struct list_head *pagelist,
1109  unsigned long flags)
1110 {
1111 }
1112 
1113 int do_migrate_pages(struct mm_struct *mm, const nodemask_t *from,
1114  const nodemask_t *to, int flags)
1115 {
1116  return -ENOSYS;
1117 }
1118 
1119 static struct page *new_vma_page(struct page *page, unsigned long private, int **x)
1120 {
1121  return NULL;
1122 }
1123 #endif
1124 
1125 static long do_mbind(unsigned long start, unsigned long len,
1126  unsigned short mode, unsigned short mode_flags,
1127  nodemask_t *nmask, unsigned long flags)
1128 {
1129  struct vm_area_struct *vma;
1130  struct mm_struct *mm = current->mm;
1131  struct mempolicy *new;
1132  unsigned long end;
1133  int err;
1134  LIST_HEAD(pagelist);
1135 
1136  if (flags & ~(unsigned long)(MPOL_MF_STRICT |
1137  MPOL_MF_MOVE | MPOL_MF_MOVE_ALL))
1138  return -EINVAL;
1139  if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1140  return -EPERM;
1141 
1142  if (start & ~PAGE_MASK)
1143  return -EINVAL;
1144 
1145  if (mode == MPOL_DEFAULT)
1146  flags &= ~MPOL_MF_STRICT;
1147 
1148  len = (len + PAGE_SIZE - 1) & PAGE_MASK;
1149  end = start + len;
1150 
1151  if (end < start)
1152  return -EINVAL;
1153  if (end == start)
1154  return 0;
1155 
1156  new = mpol_new(mode, mode_flags, nmask);
1157  if (IS_ERR(new))
1158  return PTR_ERR(new);
1159 
1160  /*
1161  * If we are using the default policy then operation
1162  * on discontinuous address spaces is okay after all
1163  */
1164  if (!new)
1165  flags |= MPOL_MF_DISCONTIG_OK;
1166 
1167  pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1168  start, start + len, mode, mode_flags,
1169  nmask ? nodes_addr(*nmask)[0] : -1);
1170 
1171  if (flags & (MPOL_MF_MOVE | MPOL_MF_MOVE_ALL)) {
1172 
1173  err = migrate_prep();
1174  if (err)
1175  goto mpol_out;
1176  }
1177  {
1179  if (scratch) {
1180  down_write(&mm->mmap_sem);
1181  task_lock(current);
1182  err = mpol_set_nodemask(new, nmask, scratch);
1183  task_unlock(current);
1184  if (err)
1185  up_write(&mm->mmap_sem);
1186  } else
1187  err = -ENOMEM;
1189  }
1190  if (err)
1191  goto mpol_out;
1192 
1193  vma = check_range(mm, start, end, nmask,
1194  flags | MPOL_MF_INVERT, &pagelist);
1195 
1196  err = PTR_ERR(vma);
1197  if (!IS_ERR(vma)) {
1198  int nr_failed = 0;
1199 
1200  err = mbind_range(mm, start, end, new);
1201 
1202  if (!list_empty(&pagelist)) {
1203  nr_failed = migrate_pages(&pagelist, new_vma_page,
1204  (unsigned long)vma,
1205  false, MIGRATE_SYNC);
1206  if (nr_failed)
1207  putback_lru_pages(&pagelist);
1208  }
1209 
1210  if (!err && nr_failed && (flags & MPOL_MF_STRICT))
1211  err = -EIO;
1212  } else
1213  putback_lru_pages(&pagelist);
1214 
1215  up_write(&mm->mmap_sem);
1216  mpol_out:
1217  mpol_put(new);
1218  return err;
1219 }
1220 
1221 /*
1222  * User space interface with variable sized bitmaps for nodelists.
1223  */
1224 
1225 /* Copy a node mask from user space. */
1226 static int get_nodes(nodemask_t *nodes, const unsigned long __user *nmask,
1227  unsigned long maxnode)
1228 {
1229  unsigned long k;
1230  unsigned long nlongs;
1231  unsigned long endmask;
1232 
1233  --maxnode;
1234  nodes_clear(*nodes);
1235  if (maxnode == 0 || !nmask)
1236  return 0;
1237  if (maxnode > PAGE_SIZE*BITS_PER_BYTE)
1238  return -EINVAL;
1239 
1240  nlongs = BITS_TO_LONGS(maxnode);
1241  if ((maxnode % BITS_PER_LONG) == 0)
1242  endmask = ~0UL;
1243  else
1244  endmask = (1UL << (maxnode % BITS_PER_LONG)) - 1;
1245 
1246  /* When the user specified more nodes than supported just check
1247  if the non supported part is all zero. */
1248  if (nlongs > BITS_TO_LONGS(MAX_NUMNODES)) {
1249  if (nlongs > PAGE_SIZE/sizeof(long))
1250  return -EINVAL;
1251  for (k = BITS_TO_LONGS(MAX_NUMNODES); k < nlongs; k++) {
1252  unsigned long t;
1253  if (get_user(t, nmask + k))
1254  return -EFAULT;
1255  if (k == nlongs - 1) {
1256  if (t & endmask)
1257  return -EINVAL;
1258  } else if (t)
1259  return -EINVAL;
1260  }
1261  nlongs = BITS_TO_LONGS(MAX_NUMNODES);
1262  endmask = ~0UL;
1263  }
1264 
1265  if (copy_from_user(nodes_addr(*nodes), nmask, nlongs*sizeof(unsigned long)))
1266  return -EFAULT;
1267  nodes_addr(*nodes)[nlongs-1] &= endmask;
1268  return 0;
1269 }
1270 
1271 /* Copy a kernel node mask to user space */
1272 static int copy_nodes_to_user(unsigned long __user *mask, unsigned long maxnode,
1273  nodemask_t *nodes)
1274 {
1275  unsigned long copy = ALIGN(maxnode-1, 64) / 8;
1276  const int nbytes = BITS_TO_LONGS(MAX_NUMNODES) * sizeof(long);
1277 
1278  if (copy > nbytes) {
1279  if (copy > PAGE_SIZE)
1280  return -EINVAL;
1281  if (clear_user((char __user *)mask + nbytes, copy - nbytes))
1282  return -EFAULT;
1283  copy = nbytes;
1284  }
1285  return copy_to_user(mask, nodes_addr(*nodes), copy) ? -EFAULT : 0;
1286 }
1287 
1288 SYSCALL_DEFINE6(mbind, unsigned long, start, unsigned long, len,
1289  unsigned long, mode, unsigned long __user *, nmask,
1290  unsigned long, maxnode, unsigned, flags)
1291 {
1292  nodemask_t nodes;
1293  int err;
1294  unsigned short mode_flags;
1295 
1296  mode_flags = mode & MPOL_MODE_FLAGS;
1297  mode &= ~MPOL_MODE_FLAGS;
1298  if (mode >= MPOL_MAX)
1299  return -EINVAL;
1300  if ((mode_flags & MPOL_F_STATIC_NODES) &&
1301  (mode_flags & MPOL_F_RELATIVE_NODES))
1302  return -EINVAL;
1303  err = get_nodes(&nodes, nmask, maxnode);
1304  if (err)
1305  return err;
1306  return do_mbind(start, len, mode, mode_flags, &nodes, flags);
1307 }
1308 
1309 /* Set the process memory policy */
1310 SYSCALL_DEFINE3(set_mempolicy, int, mode, unsigned long __user *, nmask,
1311  unsigned long, maxnode)
1312 {
1313  int err;
1314  nodemask_t nodes;
1315  unsigned short flags;
1316 
1317  flags = mode & MPOL_MODE_FLAGS;
1318  mode &= ~MPOL_MODE_FLAGS;
1319  if ((unsigned int)mode >= MPOL_MAX)
1320  return -EINVAL;
1321  if ((flags & MPOL_F_STATIC_NODES) && (flags & MPOL_F_RELATIVE_NODES))
1322  return -EINVAL;
1323  err = get_nodes(&nodes, nmask, maxnode);
1324  if (err)
1325  return err;
1326  return do_set_mempolicy(mode, flags, &nodes);
1327 }
1328 
1329 SYSCALL_DEFINE4(migrate_pages, pid_t, pid, unsigned long, maxnode,
1330  const unsigned long __user *, old_nodes,
1331  const unsigned long __user *, new_nodes)
1332 {
1333  const struct cred *cred = current_cred(), *tcred;
1334  struct mm_struct *mm = NULL;
1335  struct task_struct *task;
1336  nodemask_t task_nodes;
1337  int err;
1338  nodemask_t *old;
1339  nodemask_t *new;
1341 
1342  if (!scratch)
1343  return -ENOMEM;
1344 
1345  old = &scratch->mask1;
1346  new = &scratch->mask2;
1347 
1348  err = get_nodes(old, old_nodes, maxnode);
1349  if (err)
1350  goto out;
1351 
1352  err = get_nodes(new, new_nodes, maxnode);
1353  if (err)
1354  goto out;
1355 
1356  /* Find the mm_struct */
1357  rcu_read_lock();
1358  task = pid ? find_task_by_vpid(pid) : current;
1359  if (!task) {
1360  rcu_read_unlock();
1361  err = -ESRCH;
1362  goto out;
1363  }
1364  get_task_struct(task);
1365 
1366  err = -EINVAL;
1367 
1368  /*
1369  * Check if this process has the right to modify the specified
1370  * process. The right exists if the process has administrative
1371  * capabilities, superuser privileges or the same
1372  * userid as the target process.
1373  */
1374  tcred = __task_cred(task);
1375  if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1376  !uid_eq(cred->uid, tcred->suid) && !uid_eq(cred->uid, tcred->uid) &&
1377  !capable(CAP_SYS_NICE)) {
1378  rcu_read_unlock();
1379  err = -EPERM;
1380  goto out_put;
1381  }
1382  rcu_read_unlock();
1383 
1384  task_nodes = cpuset_mems_allowed(task);
1385  /* Is the user allowed to access the target nodes? */
1386  if (!nodes_subset(*new, task_nodes) && !capable(CAP_SYS_NICE)) {
1387  err = -EPERM;
1388  goto out_put;
1389  }
1390 
1391  if (!nodes_subset(*new, node_states[N_HIGH_MEMORY])) {
1392  err = -EINVAL;
1393  goto out_put;
1394  }
1395 
1396  err = security_task_movememory(task);
1397  if (err)
1398  goto out_put;
1399 
1400  mm = get_task_mm(task);
1401  put_task_struct(task);
1402 
1403  if (!mm) {
1404  err = -EINVAL;
1405  goto out;
1406  }
1407 
1408  err = do_migrate_pages(mm, old, new,
1409  capable(CAP_SYS_NICE) ? MPOL_MF_MOVE_ALL : MPOL_MF_MOVE);
1410 
1411  mmput(mm);
1412 out:
1414 
1415  return err;
1416 
1417 out_put:
1418  put_task_struct(task);
1419  goto out;
1420 
1421 }
1422 
1423 
1424 /* Retrieve NUMA policy */
1425 SYSCALL_DEFINE5(get_mempolicy, int __user *, policy,
1426  unsigned long __user *, nmask, unsigned long, maxnode,
1427  unsigned long, addr, unsigned long, flags)
1428 {
1429  int err;
1430  int uninitialized_var(pval);
1431  nodemask_t nodes;
1432 
1433  if (nmask != NULL && maxnode < MAX_NUMNODES)
1434  return -EINVAL;
1435 
1436  err = do_get_mempolicy(&pval, &nodes, addr, flags);
1437 
1438  if (err)
1439  return err;
1440 
1441  if (policy && put_user(pval, policy))
1442  return -EFAULT;
1443 
1444  if (nmask)
1445  err = copy_nodes_to_user(nmask, maxnode, &nodes);
1446 
1447  return err;
1448 }
1449 
1450 #ifdef CONFIG_COMPAT
1451 
1452 asmlinkage long compat_sys_get_mempolicy(int __user *policy,
1453  compat_ulong_t __user *nmask,
1454  compat_ulong_t maxnode,
1455  compat_ulong_t addr, compat_ulong_t flags)
1456 {
1457  long err;
1458  unsigned long __user *nm = NULL;
1459  unsigned long nr_bits, alloc_size;
1461 
1462  nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1463  alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1464 
1465  if (nmask)
1466  nm = compat_alloc_user_space(alloc_size);
1467 
1468  err = sys_get_mempolicy(policy, nm, nr_bits+1, addr, flags);
1469 
1470  if (!err && nmask) {
1471  unsigned long copy_size;
1472  copy_size = min_t(unsigned long, sizeof(bm), alloc_size);
1473  err = copy_from_user(bm, nm, copy_size);
1474  /* ensure entire bitmap is zeroed */
1475  err |= clear_user(nmask, ALIGN(maxnode-1, 8) / 8);
1476  err |= compat_put_bitmap(nmask, bm, nr_bits);
1477  }
1478 
1479  return err;
1480 }
1481 
1482 asmlinkage long compat_sys_set_mempolicy(int mode, compat_ulong_t __user *nmask,
1483  compat_ulong_t maxnode)
1484 {
1485  long err = 0;
1486  unsigned long __user *nm = NULL;
1487  unsigned long nr_bits, alloc_size;
1489 
1490  nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1491  alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1492 
1493  if (nmask) {
1494  err = compat_get_bitmap(bm, nmask, nr_bits);
1495  nm = compat_alloc_user_space(alloc_size);
1496  err |= copy_to_user(nm, bm, alloc_size);
1497  }
1498 
1499  if (err)
1500  return -EFAULT;
1501 
1502  return sys_set_mempolicy(mode, nm, nr_bits+1);
1503 }
1504 
1505 asmlinkage long compat_sys_mbind(compat_ulong_t start, compat_ulong_t len,
1506  compat_ulong_t mode, compat_ulong_t __user *nmask,
1507  compat_ulong_t maxnode, compat_ulong_t flags)
1508 {
1509  long err = 0;
1510  unsigned long __user *nm = NULL;
1511  unsigned long nr_bits, alloc_size;
1512  nodemask_t bm;
1513 
1514  nr_bits = min_t(unsigned long, maxnode-1, MAX_NUMNODES);
1515  alloc_size = ALIGN(nr_bits, BITS_PER_LONG) / 8;
1516 
1517  if (nmask) {
1518  err = compat_get_bitmap(nodes_addr(bm), nmask, nr_bits);
1519  nm = compat_alloc_user_space(alloc_size);
1520  err |= copy_to_user(nm, nodes_addr(bm), alloc_size);
1521  }
1522 
1523  if (err)
1524  return -EFAULT;
1525 
1526  return sys_mbind(start, len, mode, nm, nr_bits+1, flags);
1527 }
1528 
1529 #endif
1530 
1531 /*
1532  * get_vma_policy(@task, @vma, @addr)
1533  * @task - task for fallback if vma policy == default
1534  * @vma - virtual memory area whose policy is sought
1535  * @addr - address in @vma for shared policy lookup
1536  *
1537  * Returns effective policy for a VMA at specified address.
1538  * Falls back to @task or system default policy, as necessary.
1539  * Current or other task's task mempolicy and non-shared vma policies must be
1540  * protected by task_lock(task) by the caller.
1541  * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1542  * count--added by the get_policy() vm_op, as appropriate--to protect against
1543  * freeing by another task. It is the caller's responsibility to free the
1544  * extra reference for shared policies.
1545  */
1547  struct vm_area_struct *vma, unsigned long addr)
1548 {
1549  struct mempolicy *pol = task->mempolicy;
1550 
1551  if (vma) {
1552  if (vma->vm_ops && vma->vm_ops->get_policy) {
1553  struct mempolicy *vpol = vma->vm_ops->get_policy(vma,
1554  addr);
1555  if (vpol)
1556  pol = vpol;
1557  } else if (vma->vm_policy) {
1558  pol = vma->vm_policy;
1559 
1560  /*
1561  * shmem_alloc_page() passes MPOL_F_SHARED policy with
1562  * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1563  * count on these policies which will be dropped by
1564  * mpol_cond_put() later
1565  */
1566  if (mpol_needs_cond_ref(pol))
1567  mpol_get(pol);
1568  }
1569  }
1570  if (!pol)
1571  pol = &default_policy;
1572  return pol;
1573 }
1574 
1575 /*
1576  * Return a nodemask representing a mempolicy for filtering nodes for
1577  * page allocation
1578  */
1579 static nodemask_t *policy_nodemask(gfp_t gfp, struct mempolicy *policy)
1580 {
1581  /* Lower zones don't get a nodemask applied for MPOL_BIND */
1582  if (unlikely(policy->mode == MPOL_BIND) &&
1583  gfp_zone(gfp) >= policy_zone &&
1584  cpuset_nodemask_valid_mems_allowed(&policy->v.nodes))
1585  return &policy->v.nodes;
1586 
1587  return NULL;
1588 }
1589 
1590 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1591 static struct zonelist *policy_zonelist(gfp_t gfp, struct mempolicy *policy,
1592  int nd)
1593 {
1594  switch (policy->mode) {
1595  case MPOL_PREFERRED:
1596  if (!(policy->flags & MPOL_F_LOCAL))
1597  nd = policy->v.preferred_node;
1598  break;
1599  case MPOL_BIND:
1600  /*
1601  * Normally, MPOL_BIND allocations are node-local within the
1602  * allowed nodemask. However, if __GFP_THISNODE is set and the
1603  * current node isn't part of the mask, we use the zonelist for
1604  * the first node in the mask instead.
1605  */
1606  if (unlikely(gfp & __GFP_THISNODE) &&
1607  unlikely(!node_isset(nd, policy->v.nodes)))
1608  nd = first_node(policy->v.nodes);
1609  break;
1610  default:
1611  BUG();
1612  }
1613  return node_zonelist(nd, gfp);
1614 }
1615 
1616 /* Do dynamic interleaving for a process */
1617 static unsigned interleave_nodes(struct mempolicy *policy)
1618 {
1619  unsigned nid, next;
1620  struct task_struct *me = current;
1621 
1622  nid = me->il_next;
1623  next = next_node(nid, policy->v.nodes);
1624  if (next >= MAX_NUMNODES)
1625  next = first_node(policy->v.nodes);
1626  if (next < MAX_NUMNODES)
1627  me->il_next = next;
1628  return nid;
1629 }
1630 
1631 /*
1632  * Depending on the memory policy provide a node from which to allocate the
1633  * next slab entry.
1634  * @policy must be protected by freeing by the caller. If @policy is
1635  * the current task's mempolicy, this protection is implicit, as only the
1636  * task can change it's policy. The system default policy requires no
1637  * such protection.
1638  */
1639 unsigned slab_node(void)
1640 {
1641  struct mempolicy *policy;
1642 
1643  if (in_interrupt())
1644  return numa_node_id();
1645 
1646  policy = current->mempolicy;
1647  if (!policy || policy->flags & MPOL_F_LOCAL)
1648  return numa_node_id();
1649 
1650  switch (policy->mode) {
1651  case MPOL_PREFERRED:
1652  /*
1653  * handled MPOL_F_LOCAL above
1654  */
1655  return policy->v.preferred_node;
1656 
1657  case MPOL_INTERLEAVE:
1658  return interleave_nodes(policy);
1659 
1660  case MPOL_BIND: {
1661  /*
1662  * Follow bind policy behavior and start allocation at the
1663  * first node.
1664  */
1665  struct zonelist *zonelist;
1666  struct zone *zone;
1667  enum zone_type highest_zoneidx = gfp_zone(GFP_KERNEL);
1668  zonelist = &NODE_DATA(numa_node_id())->node_zonelists[0];
1669  (void)first_zones_zonelist(zonelist, highest_zoneidx,
1670  &policy->v.nodes,
1671  &zone);
1672  return zone ? zone->node : numa_node_id();
1673  }
1674 
1675  default:
1676  BUG();
1677  }
1678 }
1679 
1680 /* Do static interleaving for a VMA with known offset. */
1681 static unsigned offset_il_node(struct mempolicy *pol,
1682  struct vm_area_struct *vma, unsigned long off)
1683 {
1684  unsigned nnodes = nodes_weight(pol->v.nodes);
1685  unsigned target;
1686  int c;
1687  int nid = -1;
1688 
1689  if (!nnodes)
1690  return numa_node_id();
1691  target = (unsigned int)off % nnodes;
1692  c = 0;
1693  do {
1694  nid = next_node(nid, pol->v.nodes);
1695  c++;
1696  } while (c <= target);
1697  return nid;
1698 }
1699 
1700 /* Determine a node number for interleave */
1701 static inline unsigned interleave_nid(struct mempolicy *pol,
1702  struct vm_area_struct *vma, unsigned long addr, int shift)
1703 {
1704  if (vma) {
1705  unsigned long off;
1706 
1707  /*
1708  * for small pages, there is no difference between
1709  * shift and PAGE_SHIFT, so the bit-shift is safe.
1710  * for huge pages, since vm_pgoff is in units of small
1711  * pages, we need to shift off the always 0 bits to get
1712  * a useful offset.
1713  */
1714  BUG_ON(shift < PAGE_SHIFT);
1715  off = vma->vm_pgoff >> (shift - PAGE_SHIFT);
1716  off += (addr - vma->vm_start) >> shift;
1717  return offset_il_node(pol, vma, off);
1718  } else
1719  return interleave_nodes(pol);
1720 }
1721 
1722 /*
1723  * Return the bit number of a random bit set in the nodemask.
1724  * (returns -1 if nodemask is empty)
1725  */
1726 int node_random(const nodemask_t *maskp)
1727 {
1728  int w, bit = -1;
1729 
1730  w = nodes_weight(*maskp);
1731  if (w)
1732  bit = bitmap_ord_to_pos(maskp->bits,
1733  get_random_int() % w, MAX_NUMNODES);
1734  return bit;
1735 }
1736 
1737 #ifdef CONFIG_HUGETLBFS
1738 /*
1739  * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1740  * @vma = virtual memory area whose policy is sought
1741  * @addr = address in @vma for shared policy lookup and interleave policy
1742  * @gfp_flags = for requested zone
1743  * @mpol = pointer to mempolicy pointer for reference counted mempolicy
1744  * @nodemask = pointer to nodemask pointer for MPOL_BIND nodemask
1745  *
1746  * Returns a zonelist suitable for a huge page allocation and a pointer
1747  * to the struct mempolicy for conditional unref after allocation.
1748  * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1749  * @nodemask for filtering the zonelist.
1750  *
1751  * Must be protected by get_mems_allowed()
1752  */
1753 struct zonelist *huge_zonelist(struct vm_area_struct *vma, unsigned long addr,
1754  gfp_t gfp_flags, struct mempolicy **mpol,
1755  nodemask_t **nodemask)
1756 {
1757  struct zonelist *zl;
1758 
1759  *mpol = get_vma_policy(current, vma, addr);
1760  *nodemask = NULL; /* assume !MPOL_BIND */
1761 
1762  if (unlikely((*mpol)->mode == MPOL_INTERLEAVE)) {
1763  zl = node_zonelist(interleave_nid(*mpol, vma, addr,
1764  huge_page_shift(hstate_vma(vma))), gfp_flags);
1765  } else {
1766  zl = policy_zonelist(gfp_flags, *mpol, numa_node_id());
1767  if ((*mpol)->mode == MPOL_BIND)
1768  *nodemask = &(*mpol)->v.nodes;
1769  }
1770  return zl;
1771 }
1772 
1773 /*
1774  * init_nodemask_of_mempolicy
1775  *
1776  * If the current task's mempolicy is "default" [NULL], return 'false'
1777  * to indicate default policy. Otherwise, extract the policy nodemask
1778  * for 'bind' or 'interleave' policy into the argument nodemask, or
1779  * initialize the argument nodemask to contain the single node for
1780  * 'preferred' or 'local' policy and return 'true' to indicate presence
1781  * of non-default mempolicy.
1782  *
1783  * We don't bother with reference counting the mempolicy [mpol_get/put]
1784  * because the current task is examining it's own mempolicy and a task's
1785  * mempolicy is only ever changed by the task itself.
1786  *
1787  * N.B., it is the caller's responsibility to free a returned nodemask.
1788  */
1789 bool init_nodemask_of_mempolicy(nodemask_t *mask)
1790 {
1791  struct mempolicy *mempolicy;
1792  int nid;
1793 
1794  if (!(mask && current->mempolicy))
1795  return false;
1796 
1797  task_lock(current);
1798  mempolicy = current->mempolicy;
1799  switch (mempolicy->mode) {
1800  case MPOL_PREFERRED:
1801  if (mempolicy->flags & MPOL_F_LOCAL)
1802  nid = numa_node_id();
1803  else
1804  nid = mempolicy->v.preferred_node;
1805  init_nodemask_of_node(mask, nid);
1806  break;
1807 
1808  case MPOL_BIND:
1809  /* Fall through */
1810  case MPOL_INTERLEAVE:
1811  *mask = mempolicy->v.nodes;
1812  break;
1813 
1814  default:
1815  BUG();
1816  }
1817  task_unlock(current);
1818 
1819  return true;
1820 }
1821 #endif
1822 
1823 /*
1824  * mempolicy_nodemask_intersects
1825  *
1826  * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1827  * policy. Otherwise, check for intersection between mask and the policy
1828  * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1829  * policy, always return true since it may allocate elsewhere on fallback.
1830  *
1831  * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1832  */
1834  const nodemask_t *mask)
1835 {
1836  struct mempolicy *mempolicy;
1837  bool ret = true;
1838 
1839  if (!mask)
1840  return ret;
1841  task_lock(tsk);
1842  mempolicy = tsk->mempolicy;
1843  if (!mempolicy)
1844  goto out;
1845 
1846  switch (mempolicy->mode) {
1847  case MPOL_PREFERRED:
1848  /*
1849  * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1850  * allocate from, they may fallback to other nodes when oom.
1851  * Thus, it's possible for tsk to have allocated memory from
1852  * nodes in mask.
1853  */
1854  break;
1855  case MPOL_BIND:
1856  case MPOL_INTERLEAVE:
1857  ret = nodes_intersects(mempolicy->v.nodes, *mask);
1858  break;
1859  default:
1860  BUG();
1861  }
1862 out:
1863  task_unlock(tsk);
1864  return ret;
1865 }
1866 
1867 /* Allocate a page in interleaved policy.
1868  Own path because it needs to do special accounting. */
1869 static struct page *alloc_page_interleave(gfp_t gfp, unsigned order,
1870  unsigned nid)
1871 {
1872  struct zonelist *zl;
1873  struct page *page;
1874 
1875  zl = node_zonelist(nid, gfp);
1876  page = __alloc_pages(gfp, order, zl);
1877  if (page && page_zone(page) == zonelist_zone(&zl->_zonerefs[0]))
1878  inc_zone_page_state(page, NUMA_INTERLEAVE_HIT);
1879  return page;
1880 }
1881 
1905 struct page *
1906 alloc_pages_vma(gfp_t gfp, int order, struct vm_area_struct *vma,
1907  unsigned long addr, int node)
1908 {
1909  struct mempolicy *pol;
1910  struct zonelist *zl;
1911  struct page *page;
1912  unsigned int cpuset_mems_cookie;
1913 
1914 retry_cpuset:
1915  pol = get_vma_policy(current, vma, addr);
1916  cpuset_mems_cookie = get_mems_allowed();
1917 
1918  if (unlikely(pol->mode == MPOL_INTERLEAVE)) {
1919  unsigned nid;
1920 
1921  nid = interleave_nid(pol, vma, addr, PAGE_SHIFT + order);
1922  mpol_cond_put(pol);
1923  page = alloc_page_interleave(gfp, order, nid);
1924  if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1925  goto retry_cpuset;
1926 
1927  return page;
1928  }
1929  zl = policy_zonelist(gfp, pol, node);
1930  if (unlikely(mpol_needs_cond_ref(pol))) {
1931  /*
1932  * slow path: ref counted shared policy
1933  */
1934  struct page *page = __alloc_pages_nodemask(gfp, order,
1935  zl, policy_nodemask(gfp, pol));
1936  __mpol_put(pol);
1937  if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1938  goto retry_cpuset;
1939  return page;
1940  }
1941  /*
1942  * fast path: default or task policy
1943  */
1944  page = __alloc_pages_nodemask(gfp, order, zl,
1945  policy_nodemask(gfp, pol));
1946  if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1947  goto retry_cpuset;
1948  return page;
1949 }
1950 
1970 struct page *alloc_pages_current(gfp_t gfp, unsigned order)
1971 {
1972  struct mempolicy *pol = current->mempolicy;
1973  struct page *page;
1974  unsigned int cpuset_mems_cookie;
1975 
1976  if (!pol || in_interrupt() || (gfp & __GFP_THISNODE))
1977  pol = &default_policy;
1978 
1979 retry_cpuset:
1980  cpuset_mems_cookie = get_mems_allowed();
1981 
1982  /*
1983  * No reference counting needed for current->mempolicy
1984  * nor system default_policy
1985  */
1986  if (pol->mode == MPOL_INTERLEAVE)
1987  page = alloc_page_interleave(gfp, order, interleave_nodes(pol));
1988  else
1989  page = __alloc_pages_nodemask(gfp, order,
1990  policy_zonelist(gfp, pol, numa_node_id()),
1991  policy_nodemask(gfp, pol));
1992 
1993  if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
1994  goto retry_cpuset;
1995 
1996  return page;
1997 }
1999 
2000 /*
2001  * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2002  * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2003  * with the mems_allowed returned by cpuset_mems_allowed(). This
2004  * keeps mempolicies cpuset relative after its cpuset moves. See
2005  * further kernel/cpuset.c update_nodemask().
2006  *
2007  * current's mempolicy may be rebinded by the other task(the task that changes
2008  * cpuset's mems), so we needn't do rebind work for current task.
2009  */
2010 
2011 /* Slow path of a mempolicy duplicate */
2012 struct mempolicy *__mpol_dup(struct mempolicy *old)
2013 {
2014  struct mempolicy *new = kmem_cache_alloc(policy_cache, GFP_KERNEL);
2015 
2016  if (!new)
2017  return ERR_PTR(-ENOMEM);
2018 
2019  /* task's mempolicy is protected by alloc_lock */
2020  if (old == current->mempolicy) {
2021  task_lock(current);
2022  *new = *old;
2023  task_unlock(current);
2024  } else
2025  *new = *old;
2026 
2027  rcu_read_lock();
2030  if (new->flags & MPOL_F_REBINDING)
2031  mpol_rebind_policy(new, &mems, MPOL_REBIND_STEP2);
2032  else
2033  mpol_rebind_policy(new, &mems, MPOL_REBIND_ONCE);
2034  }
2035  rcu_read_unlock();
2036  atomic_set(&new->refcnt, 1);
2037  return new;
2038 }
2039 
2040 /* Slow path of a mempolicy comparison */
2041 bool __mpol_equal(struct mempolicy *a, struct mempolicy *b)
2042 {
2043  if (!a || !b)
2044  return false;
2045  if (a->mode != b->mode)
2046  return false;
2047  if (a->flags != b->flags)
2048  return false;
2049  if (mpol_store_user_nodemask(a))
2050  if (!nodes_equal(a->w.user_nodemask, b->w.user_nodemask))
2051  return false;
2052 
2053  switch (a->mode) {
2054  case MPOL_BIND:
2055  /* Fall through */
2056  case MPOL_INTERLEAVE:
2057  return !!nodes_equal(a->v.nodes, b->v.nodes);
2058  case MPOL_PREFERRED:
2059  return a->v.preferred_node == b->v.preferred_node;
2060  default:
2061  BUG();
2062  return false;
2063  }
2064 }
2065 
2066 /*
2067  * Shared memory backing store policy support.
2068  *
2069  * Remember policies even when nobody has shared memory mapped.
2070  * The policies are kept in Red-Black tree linked from the inode.
2071  * They are protected by the sp->lock spinlock, which should be held
2072  * for any accesses to the tree.
2073  */
2074 
2075 /* lookup first element intersecting start-end */
2076 /* Caller holds sp->mutex */
2077 static struct sp_node *
2078 sp_lookup(struct shared_policy *sp, unsigned long start, unsigned long end)
2079 {
2080  struct rb_node *n = sp->root.rb_node;
2081 
2082  while (n) {
2083  struct sp_node *p = rb_entry(n, struct sp_node, nd);
2084 
2085  if (start >= p->end)
2086  n = n->rb_right;
2087  else if (end <= p->start)
2088  n = n->rb_left;
2089  else
2090  break;
2091  }
2092  if (!n)
2093  return NULL;
2094  for (;;) {
2095  struct sp_node *w = NULL;
2096  struct rb_node *prev = rb_prev(n);
2097  if (!prev)
2098  break;
2099  w = rb_entry(prev, struct sp_node, nd);
2100  if (w->end <= start)
2101  break;
2102  n = prev;
2103  }
2104  return rb_entry(n, struct sp_node, nd);
2105 }
2106 
2107 /* Insert a new shared policy into the list. */
2108 /* Caller holds sp->lock */
2109 static void sp_insert(struct shared_policy *sp, struct sp_node *new)
2110 {
2111  struct rb_node **p = &sp->root.rb_node;
2112  struct rb_node *parent = NULL;
2113  struct sp_node *nd;
2114 
2115  while (*p) {
2116  parent = *p;
2117  nd = rb_entry(parent, struct sp_node, nd);
2118  if (new->start < nd->start)
2119  p = &(*p)->rb_left;
2120  else if (new->end > nd->end)
2121  p = &(*p)->rb_right;
2122  else
2123  BUG();
2124  }
2125  rb_link_node(&new->nd, parent, p);
2126  rb_insert_color(&new->nd, &sp->root);
2127  pr_debug("inserting %lx-%lx: %d\n", new->start, new->end,
2128  new->policy ? new->policy->mode : 0);
2129 }
2130 
2131 /* Find shared policy intersecting idx */
2132 struct mempolicy *
2133 mpol_shared_policy_lookup(struct shared_policy *sp, unsigned long idx)
2134 {
2135  struct mempolicy *pol = NULL;
2136  struct sp_node *sn;
2137 
2138  if (!sp->root.rb_node)
2139  return NULL;
2140  mutex_lock(&sp->mutex);
2141  sn = sp_lookup(sp, idx, idx+1);
2142  if (sn) {
2143  mpol_get(sn->policy);
2144  pol = sn->policy;
2145  }
2146  mutex_unlock(&sp->mutex);
2147  return pol;
2148 }
2149 
2150 static void sp_free(struct sp_node *n)
2151 {
2152  mpol_put(n->policy);
2153  kmem_cache_free(sn_cache, n);
2154 }
2155 
2156 static void sp_delete(struct shared_policy *sp, struct sp_node *n)
2157 {
2158  pr_debug("deleting %lx-l%lx\n", n->start, n->end);
2159  rb_erase(&n->nd, &sp->root);
2160  sp_free(n);
2161 }
2162 
2163 static struct sp_node *sp_alloc(unsigned long start, unsigned long end,
2164  struct mempolicy *pol)
2165 {
2166  struct sp_node *n;
2167  struct mempolicy *newpol;
2168 
2169  n = kmem_cache_alloc(sn_cache, GFP_KERNEL);
2170  if (!n)
2171  return NULL;
2172 
2173  newpol = mpol_dup(pol);
2174  if (IS_ERR(newpol)) {
2175  kmem_cache_free(sn_cache, n);
2176  return NULL;
2177  }
2178  newpol->flags |= MPOL_F_SHARED;
2179 
2180  n->start = start;
2181  n->end = end;
2182  n->policy = newpol;
2183 
2184  return n;
2185 }
2186 
2187 /* Replace a policy range. */
2188 static int shared_policy_replace(struct shared_policy *sp, unsigned long start,
2189  unsigned long end, struct sp_node *new)
2190 {
2191  struct sp_node *n;
2192  int ret = 0;
2193 
2194  mutex_lock(&sp->mutex);
2195  n = sp_lookup(sp, start, end);
2196  /* Take care of old policies in the same range. */
2197  while (n && n->start < end) {
2198  struct rb_node *next = rb_next(&n->nd);
2199  if (n->start >= start) {
2200  if (n->end <= end)
2201  sp_delete(sp, n);
2202  else
2203  n->start = end;
2204  } else {
2205  /* Old policy spanning whole new range. */
2206  if (n->end > end) {
2207  struct sp_node *new2;
2208  new2 = sp_alloc(end, n->end, n->policy);
2209  if (!new2) {
2210  ret = -ENOMEM;
2211  goto out;
2212  }
2213  n->end = start;
2214  sp_insert(sp, new2);
2215  break;
2216  } else
2217  n->end = start;
2218  }
2219  if (!next)
2220  break;
2221  n = rb_entry(next, struct sp_node, nd);
2222  }
2223  if (new)
2224  sp_insert(sp, new);
2225 out:
2226  mutex_unlock(&sp->mutex);
2227  return ret;
2228 }
2229 
2240 void mpol_shared_policy_init(struct shared_policy *sp, struct mempolicy *mpol)
2241 {
2242  int ret;
2243 
2244  sp->root = RB_ROOT; /* empty tree == default mempolicy */
2245  mutex_init(&sp->mutex);
2246 
2247  if (mpol) {
2248  struct vm_area_struct pvma;
2249  struct mempolicy *new;
2251 
2252  if (!scratch)
2253  goto put_mpol;
2254  /* contextualize the tmpfs mount point mempolicy */
2255  new = mpol_new(mpol->mode, mpol->flags, &mpol->w.user_nodemask);
2256  if (IS_ERR(new))
2257  goto free_scratch; /* no valid nodemask intersection */
2258 
2259  task_lock(current);
2260  ret = mpol_set_nodemask(new, &mpol->w.user_nodemask, scratch);
2261  task_unlock(current);
2262  if (ret)
2263  goto put_new;
2264 
2265  /* Create pseudo-vma that contains just the policy */
2266  memset(&pvma, 0, sizeof(struct vm_area_struct));
2267  pvma.vm_end = TASK_SIZE; /* policy covers entire file */
2268  mpol_set_shared_policy(sp, &pvma, new); /* adds ref */
2269 
2270 put_new:
2271  mpol_put(new); /* drop initial ref */
2272 free_scratch:
2274 put_mpol:
2275  mpol_put(mpol); /* drop our incoming ref on sb mpol */
2276  }
2277 }
2278 
2280  struct vm_area_struct *vma, struct mempolicy *npol)
2281 {
2282  int err;
2283  struct sp_node *new = NULL;
2284  unsigned long sz = vma_pages(vma);
2285 
2286  pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2287  vma->vm_pgoff,
2288  sz, npol ? npol->mode : -1,
2289  npol ? npol->flags : -1,
2290  npol ? nodes_addr(npol->v.nodes)[0] : -1);
2291 
2292  if (npol) {
2293  new = sp_alloc(vma->vm_pgoff, vma->vm_pgoff + sz, npol);
2294  if (!new)
2295  return -ENOMEM;
2296  }
2297  err = shared_policy_replace(info, vma->vm_pgoff, vma->vm_pgoff+sz, new);
2298  if (err && new)
2299  sp_free(new);
2300  return err;
2301 }
2302 
2303 /* Free a backing policy store on inode delete. */
2305 {
2306  struct sp_node *n;
2307  struct rb_node *next;
2308 
2309  if (!p->root.rb_node)
2310  return;
2311  mutex_lock(&p->mutex);
2312  next = rb_first(&p->root);
2313  while (next) {
2314  n = rb_entry(next, struct sp_node, nd);
2315  next = rb_next(&n->nd);
2316  sp_delete(p, n);
2317  }
2318  mutex_unlock(&p->mutex);
2319 }
2320 
2321 /* assumes fs == KERNEL_DS */
2323 {
2324  nodemask_t interleave_nodes;
2325  unsigned long largest = 0;
2326  int nid, prefer = 0;
2327 
2328  policy_cache = kmem_cache_create("numa_policy",
2329  sizeof(struct mempolicy),
2330  0, SLAB_PANIC, NULL);
2331 
2332  sn_cache = kmem_cache_create("shared_policy_node",
2333  sizeof(struct sp_node),
2334  0, SLAB_PANIC, NULL);
2335 
2336  /*
2337  * Set interleaving policy for system init. Interleaving is only
2338  * enabled across suitably sized nodes (default is >= 16MB), or
2339  * fall back to the largest node if they're all smaller.
2340  */
2341  nodes_clear(interleave_nodes);
2343  unsigned long total_pages = node_present_pages(nid);
2344 
2345  /* Preserve the largest node */
2346  if (largest < total_pages) {
2347  largest = total_pages;
2348  prefer = nid;
2349  }
2350 
2351  /* Interleave this node? */
2352  if ((total_pages << PAGE_SHIFT) >= (16 << 20))
2353  node_set(nid, interleave_nodes);
2354  }
2355 
2356  /* All too small, use the largest */
2357  if (unlikely(nodes_empty(interleave_nodes)))
2358  node_set(prefer, interleave_nodes);
2359 
2360  if (do_set_mempolicy(MPOL_INTERLEAVE, 0, &interleave_nodes))
2361  printk("numa_policy_init: interleaving failed\n");
2362 }
2363 
2364 /* Reset policy of current process to default */
2366 {
2367  do_set_mempolicy(MPOL_DEFAULT, 0, NULL);
2368 }
2369 
2370 /*
2371  * Parse and format mempolicy from/to strings
2372  */
2373 
2374 /*
2375  * "local" is pseudo-policy: MPOL_PREFERRED with MPOL_F_LOCAL flag
2376  * Used only for mpol_parse_str() and mpol_to_str()
2377  */
2378 #define MPOL_LOCAL MPOL_MAX
2379 static const char * const policy_modes[] =
2380 {
2381  [MPOL_DEFAULT] = "default",
2382  [MPOL_PREFERRED] = "prefer",
2383  [MPOL_BIND] = "bind",
2384  [MPOL_INTERLEAVE] = "interleave",
2385  [MPOL_LOCAL] = "local"
2386 };
2387 
2388 
2389 #ifdef CONFIG_TMPFS
2390 
2408 int mpol_parse_str(char *str, struct mempolicy **mpol, int no_context)
2409 {
2410  struct mempolicy *new = NULL;
2411  unsigned short mode;
2412  unsigned short uninitialized_var(mode_flags);
2413  nodemask_t nodes;
2414  char *nodelist = strchr(str, ':');
2415  char *flags = strchr(str, '=');
2416  int err = 1;
2417 
2418  if (nodelist) {
2419  /* NUL-terminate mode or flags string */
2420  *nodelist++ = '\0';
2421  if (nodelist_parse(nodelist, nodes))
2422  goto out;
2423  if (!nodes_subset(nodes, node_states[N_HIGH_MEMORY]))
2424  goto out;
2425  } else
2426  nodes_clear(nodes);
2427 
2428  if (flags)
2429  *flags++ = '\0'; /* terminate mode string */
2430 
2431  for (mode = 0; mode <= MPOL_LOCAL; mode++) {
2432  if (!strcmp(str, policy_modes[mode])) {
2433  break;
2434  }
2435  }
2436  if (mode > MPOL_LOCAL)
2437  goto out;
2438 
2439  switch (mode) {
2440  case MPOL_PREFERRED:
2441  /*
2442  * Insist on a nodelist of one node only
2443  */
2444  if (nodelist) {
2445  char *rest = nodelist;
2446  while (isdigit(*rest))
2447  rest++;
2448  if (*rest)
2449  goto out;
2450  }
2451  break;
2452  case MPOL_INTERLEAVE:
2453  /*
2454  * Default to online nodes with memory if no nodelist
2455  */
2456  if (!nodelist)
2457  nodes = node_states[N_HIGH_MEMORY];
2458  break;
2459  case MPOL_LOCAL:
2460  /*
2461  * Don't allow a nodelist; mpol_new() checks flags
2462  */
2463  if (nodelist)
2464  goto out;
2465  mode = MPOL_PREFERRED;
2466  break;
2467  case MPOL_DEFAULT:
2468  /*
2469  * Insist on a empty nodelist
2470  */
2471  if (!nodelist)
2472  err = 0;
2473  goto out;
2474  case MPOL_BIND:
2475  /*
2476  * Insist on a nodelist
2477  */
2478  if (!nodelist)
2479  goto out;
2480  }
2481 
2482  mode_flags = 0;
2483  if (flags) {
2484  /*
2485  * Currently, we only support two mutually exclusive
2486  * mode flags.
2487  */
2488  if (!strcmp(flags, "static"))
2489  mode_flags |= MPOL_F_STATIC_NODES;
2490  else if (!strcmp(flags, "relative"))
2491  mode_flags |= MPOL_F_RELATIVE_NODES;
2492  else
2493  goto out;
2494  }
2495 
2496  new = mpol_new(mode, mode_flags, &nodes);
2497  if (IS_ERR(new))
2498  goto out;
2499 
2500  if (no_context) {
2501  /* save for contextualization */
2502  new->w.user_nodemask = nodes;
2503  } else {
2504  int ret;
2506  if (scratch) {
2507  task_lock(current);
2508  ret = mpol_set_nodemask(new, &nodes, scratch);
2509  task_unlock(current);
2510  } else
2511  ret = -ENOMEM;
2513  if (ret) {
2514  mpol_put(new);
2515  goto out;
2516  }
2517  }
2518  err = 0;
2519 
2520 out:
2521  /* Restore string for error message */
2522  if (nodelist)
2523  *--nodelist = ':';
2524  if (flags)
2525  *--flags = '=';
2526  if (!err)
2527  *mpol = new;
2528  return err;
2529 }
2530 #endif /* CONFIG_TMPFS */
2531 
2543 int mpol_to_str(char *buffer, int maxlen, struct mempolicy *pol, int no_context)
2544 {
2545  char *p = buffer;
2546  int l;
2547  nodemask_t nodes;
2548  unsigned short mode;
2549  unsigned short flags = pol ? pol->flags : 0;
2550 
2551  /*
2552  * Sanity check: room for longest mode, flag and some nodes
2553  */
2554  VM_BUG_ON(maxlen < strlen("interleave") + strlen("relative") + 16);
2555 
2556  if (!pol || pol == &default_policy)
2557  mode = MPOL_DEFAULT;
2558  else
2559  mode = pol->mode;
2560 
2561  switch (mode) {
2562  case MPOL_DEFAULT:
2563  nodes_clear(nodes);
2564  break;
2565 
2566  case MPOL_PREFERRED:
2567  nodes_clear(nodes);
2568  if (flags & MPOL_F_LOCAL)
2569  mode = MPOL_LOCAL; /* pseudo-policy */
2570  else
2571  node_set(pol->v.preferred_node, nodes);
2572  break;
2573 
2574  case MPOL_BIND:
2575  /* Fall through */
2576  case MPOL_INTERLEAVE:
2577  if (no_context)
2578  nodes = pol->w.user_nodemask;
2579  else
2580  nodes = pol->v.nodes;
2581  break;
2582 
2583  default:
2584  return -EINVAL;
2585  }
2586 
2587  l = strlen(policy_modes[mode]);
2588  if (buffer + maxlen < p + l + 1)
2589  return -ENOSPC;
2590 
2591  strcpy(p, policy_modes[mode]);
2592  p += l;
2593 
2594  if (flags & MPOL_MODE_FLAGS) {
2595  if (buffer + maxlen < p + 2)
2596  return -ENOSPC;
2597  *p++ = '=';
2598 
2599  /*
2600  * Currently, the only defined flags are mutually exclusive
2601  */
2602  if (flags & MPOL_F_STATIC_NODES)
2603  p += snprintf(p, buffer + maxlen - p, "static");
2604  else if (flags & MPOL_F_RELATIVE_NODES)
2605  p += snprintf(p, buffer + maxlen - p, "relative");
2606  }
2607 
2608  if (!nodes_empty(nodes)) {
2609  if (buffer + maxlen < p + 2)
2610  return -ENOSPC;
2611  *p++ = ':';
2612  p += nodelist_scnprintf(p, buffer + maxlen - p, nodes);
2613  }
2614  return p - buffer;
2615 }