Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mmap.c
Go to the documentation of this file.
1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code <[email protected]>
7  */
8 
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
11 #include <linux/mm.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
20 #include <linux/fs.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/export.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/perf_event.h>
31 #include <linux/audit.h>
32 #include <linux/khugepaged.h>
33 #include <linux/uprobes.h>
34 
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39 
40 #include "internal.h"
41 
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags) (0)
44 #endif
45 
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len) (addr)
48 #endif
49 
50 static void unmap_region(struct mm_struct *mm,
51  struct vm_area_struct *vma, struct vm_area_struct *prev,
52  unsigned long start, unsigned long end);
53 
54 /* description of effects of mapping type and prot in current implementation.
55  * this is due to the limited x86 page protection hardware. The expected
56  * behavior is in parens:
57  *
58  * map_type prot
59  * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
60  * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
61  * w: (no) no w: (no) no w: (yes) yes w: (no) no
62  * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
63  *
64  * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
65  * w: (no) no w: (no) no w: (copy) copy w: (no) no
66  * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
67  *
68  */
72 };
73 
75 {
76  return __pgprot(pgprot_val(protection_map[vm_flags &
77  (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
79 }
81 
82 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS; /* heuristic overcommit */
83 int sysctl_overcommit_ratio __read_mostly = 50; /* default is 50% */
85 /*
86  * Make sure vm_committed_as in one cacheline and not cacheline shared with
87  * other variables. It can be updated by several CPUs frequently.
88  */
90 
91 /*
92  * Check that a process has enough memory to allocate a new virtual
93  * mapping. 0 means there is enough memory for the allocation to
94  * succeed and -ENOMEM implies there is not.
95  *
96  * We currently support three overcommit policies, which are set via the
97  * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
98  *
99  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
100  * Additional code 2002 Jul 20 by Robert Love.
101  *
102  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
103  *
104  * Note this is a helper function intended to be used by LSMs which
105  * wish to use this logic.
106  */
107 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
108 {
109  unsigned long free, allowed;
110 
111  vm_acct_memory(pages);
112 
113  /*
114  * Sometimes we want to use more memory than we have
115  */
117  return 0;
118 
120  free = global_page_state(NR_FREE_PAGES);
121  free += global_page_state(NR_FILE_PAGES);
122 
123  /*
124  * shmem pages shouldn't be counted as free in this
125  * case, they can't be purged, only swapped out, and
126  * that won't affect the overall amount of available
127  * memory in the system.
128  */
129  free -= global_page_state(NR_SHMEM);
130 
131  free += nr_swap_pages;
132 
133  /*
134  * Any slabs which are created with the
135  * SLAB_RECLAIM_ACCOUNT flag claim to have contents
136  * which are reclaimable, under pressure. The dentry
137  * cache and most inode caches should fall into this
138  */
139  free += global_page_state(NR_SLAB_RECLAIMABLE);
140 
141  /*
142  * Leave reserved pages. The pages are not for anonymous pages.
143  */
144  if (free <= totalreserve_pages)
145  goto error;
146  else
147  free -= totalreserve_pages;
148 
149  /*
150  * Leave the last 3% for root
151  */
152  if (!cap_sys_admin)
153  free -= free / 32;
154 
155  if (free > pages)
156  return 0;
157 
158  goto error;
159  }
160 
161  allowed = (totalram_pages - hugetlb_total_pages())
162  * sysctl_overcommit_ratio / 100;
163  /*
164  * Leave the last 3% for root
165  */
166  if (!cap_sys_admin)
167  allowed -= allowed / 32;
168  allowed += total_swap_pages;
169 
170  /* Don't let a single process grow too big:
171  leave 3% of the size of this process for other processes */
172  if (mm)
173  allowed -= mm->total_vm / 32;
174 
175  if (percpu_counter_read_positive(&vm_committed_as) < allowed)
176  return 0;
177 error:
178  vm_unacct_memory(pages);
179 
180  return -ENOMEM;
181 }
182 
183 /*
184  * Requires inode->i_mapping->i_mmap_mutex
185  */
186 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
187  struct file *file, struct address_space *mapping)
188 {
189  if (vma->vm_flags & VM_DENYWRITE)
190  atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
191  if (vma->vm_flags & VM_SHARED)
192  mapping->i_mmap_writable--;
193 
194  flush_dcache_mmap_lock(mapping);
195  if (unlikely(vma->vm_flags & VM_NONLINEAR))
196  list_del_init(&vma->shared.nonlinear);
197  else
198  vma_interval_tree_remove(vma, &mapping->i_mmap);
199  flush_dcache_mmap_unlock(mapping);
200 }
201 
202 /*
203  * Unlink a file-based vm structure from its interval tree, to hide
204  * vma from rmap and vmtruncate before freeing its page tables.
205  */
207 {
208  struct file *file = vma->vm_file;
209 
210  if (file) {
211  struct address_space *mapping = file->f_mapping;
212  mutex_lock(&mapping->i_mmap_mutex);
213  __remove_shared_vm_struct(vma, file, mapping);
214  mutex_unlock(&mapping->i_mmap_mutex);
215  }
216 }
217 
218 /*
219  * Close a vm structure and free it, returning the next.
220  */
221 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
222 {
223  struct vm_area_struct *next = vma->vm_next;
224 
225  might_sleep();
226  if (vma->vm_ops && vma->vm_ops->close)
227  vma->vm_ops->close(vma);
228  if (vma->vm_file)
229  fput(vma->vm_file);
230  mpol_put(vma_policy(vma));
232  return next;
233 }
234 
235 static unsigned long do_brk(unsigned long addr, unsigned long len);
236 
237 SYSCALL_DEFINE1(brk, unsigned long, brk)
238 {
239  unsigned long rlim, retval;
240  unsigned long newbrk, oldbrk;
241  struct mm_struct *mm = current->mm;
242  unsigned long min_brk;
243 
244  down_write(&mm->mmap_sem);
245 
246 #ifdef CONFIG_COMPAT_BRK
247  /*
248  * CONFIG_COMPAT_BRK can still be overridden by setting
249  * randomize_va_space to 2, which will still cause mm->start_brk
250  * to be arbitrarily shifted
251  */
252  if (current->brk_randomized)
253  min_brk = mm->start_brk;
254  else
255  min_brk = mm->end_data;
256 #else
257  min_brk = mm->start_brk;
258 #endif
259  if (brk < min_brk)
260  goto out;
261 
262  /*
263  * Check against rlimit here. If this check is done later after the test
264  * of oldbrk with newbrk then it can escape the test and let the data
265  * segment grow beyond its set limit the in case where the limit is
266  * not page aligned -Ram Gupta
267  */
268  rlim = rlimit(RLIMIT_DATA);
269  if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
270  (mm->end_data - mm->start_data) > rlim)
271  goto out;
272 
273  newbrk = PAGE_ALIGN(brk);
274  oldbrk = PAGE_ALIGN(mm->brk);
275  if (oldbrk == newbrk)
276  goto set_brk;
277 
278  /* Always allow shrinking brk. */
279  if (brk <= mm->brk) {
280  if (!do_munmap(mm, newbrk, oldbrk-newbrk))
281  goto set_brk;
282  goto out;
283  }
284 
285  /* Check against existing mmap mappings. */
286  if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
287  goto out;
288 
289  /* Ok, looks good - let it rip. */
290  if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
291  goto out;
292 set_brk:
293  mm->brk = brk;
294 out:
295  retval = mm->brk;
296  up_write(&mm->mmap_sem);
297  return retval;
298 }
299 
300 #ifdef CONFIG_DEBUG_VM_RB
301 static int browse_rb(struct rb_root *root)
302 {
303  int i = 0, j;
304  struct rb_node *nd, *pn = NULL;
305  unsigned long prev = 0, pend = 0;
306 
307  for (nd = rb_first(root); nd; nd = rb_next(nd)) {
308  struct vm_area_struct *vma;
309  vma = rb_entry(nd, struct vm_area_struct, vm_rb);
310  if (vma->vm_start < prev)
311  printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
312  if (vma->vm_start < pend)
313  printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
314  if (vma->vm_start > vma->vm_end)
315  printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
316  i++;
317  pn = nd;
318  prev = vma->vm_start;
319  pend = vma->vm_end;
320  }
321  j = 0;
322  for (nd = pn; nd; nd = rb_prev(nd)) {
323  j++;
324  }
325  if (i != j)
326  printk("backwards %d, forwards %d\n", j, i), i = 0;
327  return i;
328 }
329 
330 void validate_mm(struct mm_struct *mm)
331 {
332  int bug = 0;
333  int i = 0;
334  struct vm_area_struct *vma = mm->mmap;
335  while (vma) {
336  struct anon_vma_chain *avc;
337  vma_lock_anon_vma(vma);
339  anon_vma_interval_tree_verify(avc);
340  vma_unlock_anon_vma(vma);
341  vma = vma->vm_next;
342  i++;
343  }
344  if (i != mm->map_count)
345  printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
346  i = browse_rb(&mm->mm_rb);
347  if (i != mm->map_count)
348  printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
349  BUG_ON(bug);
350 }
351 #else
352 #define validate_mm(mm) do { } while (0)
353 #endif
354 
355 /*
356  * vma has some anon_vma assigned, and is already inserted on that
357  * anon_vma's interval trees.
358  *
359  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
360  * vma must be removed from the anon_vma's interval trees using
361  * anon_vma_interval_tree_pre_update_vma().
362  *
363  * After the update, the vma will be reinserted using
364  * anon_vma_interval_tree_post_update_vma().
365  *
366  * The entire update must be protected by exclusive mmap_sem and by
367  * the root anon_vma's mutex.
368  */
369 static inline void
370 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
371 {
372  struct anon_vma_chain *avc;
373 
375  anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
376 }
377 
378 static inline void
379 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
380 {
381  struct anon_vma_chain *avc;
382 
384  anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
385 }
386 
387 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
388  unsigned long end, struct vm_area_struct **pprev,
389  struct rb_node ***rb_link, struct rb_node **rb_parent)
390 {
391  struct rb_node **__rb_link, *__rb_parent, *rb_prev;
392 
393  __rb_link = &mm->mm_rb.rb_node;
394  rb_prev = __rb_parent = NULL;
395 
396  while (*__rb_link) {
397  struct vm_area_struct *vma_tmp;
398 
399  __rb_parent = *__rb_link;
400  vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
401 
402  if (vma_tmp->vm_end > addr) {
403  /* Fail if an existing vma overlaps the area */
404  if (vma_tmp->vm_start < end)
405  return -ENOMEM;
406  __rb_link = &__rb_parent->rb_left;
407  } else {
408  rb_prev = __rb_parent;
409  __rb_link = &__rb_parent->rb_right;
410  }
411  }
412 
413  *pprev = NULL;
414  if (rb_prev)
415  *pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
416  *rb_link = __rb_link;
417  *rb_parent = __rb_parent;
418  return 0;
419 }
420 
421 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
422  struct rb_node **rb_link, struct rb_node *rb_parent)
423 {
424  rb_link_node(&vma->vm_rb, rb_parent, rb_link);
425  rb_insert_color(&vma->vm_rb, &mm->mm_rb);
426 }
427 
428 static void __vma_link_file(struct vm_area_struct *vma)
429 {
430  struct file *file;
431 
432  file = vma->vm_file;
433  if (file) {
434  struct address_space *mapping = file->f_mapping;
435 
436  if (vma->vm_flags & VM_DENYWRITE)
437  atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
438  if (vma->vm_flags & VM_SHARED)
439  mapping->i_mmap_writable++;
440 
441  flush_dcache_mmap_lock(mapping);
442  if (unlikely(vma->vm_flags & VM_NONLINEAR))
443  vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
444  else
445  vma_interval_tree_insert(vma, &mapping->i_mmap);
446  flush_dcache_mmap_unlock(mapping);
447  }
448 }
449 
450 static void
451 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
452  struct vm_area_struct *prev, struct rb_node **rb_link,
453  struct rb_node *rb_parent)
454 {
455  __vma_link_list(mm, vma, prev, rb_parent);
456  __vma_link_rb(mm, vma, rb_link, rb_parent);
457 }
458 
459 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
460  struct vm_area_struct *prev, struct rb_node **rb_link,
461  struct rb_node *rb_parent)
462 {
463  struct address_space *mapping = NULL;
464 
465  if (vma->vm_file)
466  mapping = vma->vm_file->f_mapping;
467 
468  if (mapping)
469  mutex_lock(&mapping->i_mmap_mutex);
470 
471  __vma_link(mm, vma, prev, rb_link, rb_parent);
472  __vma_link_file(vma);
473 
474  if (mapping)
475  mutex_unlock(&mapping->i_mmap_mutex);
476 
477  mm->map_count++;
478  validate_mm(mm);
479 }
480 
481 /*
482  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
483  * mm's list and rbtree. It has already been inserted into the interval tree.
484  */
485 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
486 {
487  struct vm_area_struct *prev;
488  struct rb_node **rb_link, *rb_parent;
489 
490  if (find_vma_links(mm, vma->vm_start, vma->vm_end,
491  &prev, &rb_link, &rb_parent))
492  BUG();
493  __vma_link(mm, vma, prev, rb_link, rb_parent);
494  mm->map_count++;
495 }
496 
497 static inline void
498 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
499  struct vm_area_struct *prev)
500 {
501  struct vm_area_struct *next = vma->vm_next;
502 
503  prev->vm_next = next;
504  if (next)
505  next->vm_prev = prev;
506  rb_erase(&vma->vm_rb, &mm->mm_rb);
507  if (mm->mmap_cache == vma)
508  mm->mmap_cache = prev;
509 }
510 
511 /*
512  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
513  * is already present in an i_mmap tree without adjusting the tree.
514  * The following helper function should be used when such adjustments
515  * are necessary. The "insert" vma (if any) is to be inserted
516  * before we drop the necessary locks.
517  */
518 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
519  unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
520 {
521  struct mm_struct *mm = vma->vm_mm;
522  struct vm_area_struct *next = vma->vm_next;
523  struct vm_area_struct *importer = NULL;
524  struct address_space *mapping = NULL;
525  struct rb_root *root = NULL;
526  struct anon_vma *anon_vma = NULL;
527  struct file *file = vma->vm_file;
528  long adjust_next = 0;
529  int remove_next = 0;
530 
531  if (next && !insert) {
532  struct vm_area_struct *exporter = NULL;
533 
534  if (end >= next->vm_end) {
535  /*
536  * vma expands, overlapping all the next, and
537  * perhaps the one after too (mprotect case 6).
538  */
539 again: remove_next = 1 + (end > next->vm_end);
540  end = next->vm_end;
541  exporter = next;
542  importer = vma;
543  } else if (end > next->vm_start) {
544  /*
545  * vma expands, overlapping part of the next:
546  * mprotect case 5 shifting the boundary up.
547  */
548  adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
549  exporter = next;
550  importer = vma;
551  } else if (end < vma->vm_end) {
552  /*
553  * vma shrinks, and !insert tells it's not
554  * split_vma inserting another: so it must be
555  * mprotect case 4 shifting the boundary down.
556  */
557  adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
558  exporter = vma;
559  importer = next;
560  }
561 
562  /*
563  * Easily overlooked: when mprotect shifts the boundary,
564  * make sure the expanding vma has anon_vma set if the
565  * shrinking vma had, to cover any anon pages imported.
566  */
567  if (exporter && exporter->anon_vma && !importer->anon_vma) {
568  if (anon_vma_clone(importer, exporter))
569  return -ENOMEM;
570  importer->anon_vma = exporter->anon_vma;
571  }
572  }
573 
574  if (file) {
575  mapping = file->f_mapping;
576  if (!(vma->vm_flags & VM_NONLINEAR)) {
577  root = &mapping->i_mmap;
578  uprobe_munmap(vma, vma->vm_start, vma->vm_end);
579 
580  if (adjust_next)
581  uprobe_munmap(next, next->vm_start,
582  next->vm_end);
583  }
584 
585  mutex_lock(&mapping->i_mmap_mutex);
586  if (insert) {
587  /*
588  * Put into interval tree now, so instantiated pages
589  * are visible to arm/parisc __flush_dcache_page
590  * throughout; but we cannot insert into address
591  * space until vma start or end is updated.
592  */
593  __vma_link_file(insert);
594  }
595  }
596 
597  vma_adjust_trans_huge(vma, start, end, adjust_next);
598 
599  anon_vma = vma->anon_vma;
600  if (!anon_vma && adjust_next)
601  anon_vma = next->anon_vma;
602  if (anon_vma) {
603  VM_BUG_ON(adjust_next && next->anon_vma &&
604  anon_vma != next->anon_vma);
605  anon_vma_lock(anon_vma);
606  anon_vma_interval_tree_pre_update_vma(vma);
607  if (adjust_next)
608  anon_vma_interval_tree_pre_update_vma(next);
609  }
610 
611  if (root) {
612  flush_dcache_mmap_lock(mapping);
613  vma_interval_tree_remove(vma, root);
614  if (adjust_next)
615  vma_interval_tree_remove(next, root);
616  }
617 
618  vma->vm_start = start;
619  vma->vm_end = end;
620  vma->vm_pgoff = pgoff;
621  if (adjust_next) {
622  next->vm_start += adjust_next << PAGE_SHIFT;
623  next->vm_pgoff += adjust_next;
624  }
625 
626  if (root) {
627  if (adjust_next)
628  vma_interval_tree_insert(next, root);
629  vma_interval_tree_insert(vma, root);
630  flush_dcache_mmap_unlock(mapping);
631  }
632 
633  if (remove_next) {
634  /*
635  * vma_merge has merged next into vma, and needs
636  * us to remove next before dropping the locks.
637  */
638  __vma_unlink(mm, next, vma);
639  if (file)
640  __remove_shared_vm_struct(next, file, mapping);
641  } else if (insert) {
642  /*
643  * split_vma has split insert from vma, and needs
644  * us to insert it before dropping the locks
645  * (it may either follow vma or precede it).
646  */
647  __insert_vm_struct(mm, insert);
648  }
649 
650  if (anon_vma) {
651  anon_vma_interval_tree_post_update_vma(vma);
652  if (adjust_next)
653  anon_vma_interval_tree_post_update_vma(next);
654  anon_vma_unlock(anon_vma);
655  }
656  if (mapping)
657  mutex_unlock(&mapping->i_mmap_mutex);
658 
659  if (root) {
660  uprobe_mmap(vma);
661 
662  if (adjust_next)
663  uprobe_mmap(next);
664  }
665 
666  if (remove_next) {
667  if (file) {
668  uprobe_munmap(next, next->vm_start, next->vm_end);
669  fput(file);
670  }
671  if (next->anon_vma)
672  anon_vma_merge(vma, next);
673  mm->map_count--;
674  mpol_put(vma_policy(next));
676  /*
677  * In mprotect's case 6 (see comments on vma_merge),
678  * we must remove another next too. It would clutter
679  * up the code too much to do both in one go.
680  */
681  if (remove_next == 2) {
682  next = vma->vm_next;
683  goto again;
684  }
685  }
686  if (insert && file)
687  uprobe_mmap(insert);
688 
689  validate_mm(mm);
690 
691  return 0;
692 }
693 
694 /*
695  * If the vma has a ->close operation then the driver probably needs to release
696  * per-vma resources, so we don't attempt to merge those.
697  */
698 static inline int is_mergeable_vma(struct vm_area_struct *vma,
699  struct file *file, unsigned long vm_flags)
700 {
701  if (vma->vm_flags ^ vm_flags)
702  return 0;
703  if (vma->vm_file != file)
704  return 0;
705  if (vma->vm_ops && vma->vm_ops->close)
706  return 0;
707  return 1;
708 }
709 
710 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
711  struct anon_vma *anon_vma2,
712  struct vm_area_struct *vma)
713 {
714  /*
715  * The list_is_singular() test is to avoid merging VMA cloned from
716  * parents. This can improve scalability caused by anon_vma lock.
717  */
718  if ((!anon_vma1 || !anon_vma2) && (!vma ||
719  list_is_singular(&vma->anon_vma_chain)))
720  return 1;
721  return anon_vma1 == anon_vma2;
722 }
723 
724 /*
725  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
726  * in front of (at a lower virtual address and file offset than) the vma.
727  *
728  * We cannot merge two vmas if they have differently assigned (non-NULL)
729  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
730  *
731  * We don't check here for the merged mmap wrapping around the end of pagecache
732  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
733  * wrap, nor mmaps which cover the final page at index -1UL.
734  */
735 static int
736 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
737  struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
738 {
739  if (is_mergeable_vma(vma, file, vm_flags) &&
740  is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
741  if (vma->vm_pgoff == vm_pgoff)
742  return 1;
743  }
744  return 0;
745 }
746 
747 /*
748  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
749  * beyond (at a higher virtual address and file offset than) the vma.
750  *
751  * We cannot merge two vmas if they have differently assigned (non-NULL)
752  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
753  */
754 static int
755 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
756  struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
757 {
758  if (is_mergeable_vma(vma, file, vm_flags) &&
759  is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
760  pgoff_t vm_pglen;
761  vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
762  if (vma->vm_pgoff + vm_pglen == vm_pgoff)
763  return 1;
764  }
765  return 0;
766 }
767 
768 /*
769  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
770  * whether that can be merged with its predecessor or its successor.
771  * Or both (it neatly fills a hole).
772  *
773  * In most cases - when called for mmap, brk or mremap - [addr,end) is
774  * certain not to be mapped by the time vma_merge is called; but when
775  * called for mprotect, it is certain to be already mapped (either at
776  * an offset within prev, or at the start of next), and the flags of
777  * this area are about to be changed to vm_flags - and the no-change
778  * case has already been eliminated.
779  *
780  * The following mprotect cases have to be considered, where AAAA is
781  * the area passed down from mprotect_fixup, never extending beyond one
782  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
783  *
784  * AAAA AAAA AAAA AAAA
785  * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
786  * cannot merge might become might become might become
787  * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
788  * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
789  * mremap move: PPPPNNNNNNNN 8
790  * AAAA
791  * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
792  * might become case 1 below case 2 below case 3 below
793  *
794  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
795  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
796  */
797 struct vm_area_struct *vma_merge(struct mm_struct *mm,
798  struct vm_area_struct *prev, unsigned long addr,
799  unsigned long end, unsigned long vm_flags,
800  struct anon_vma *anon_vma, struct file *file,
801  pgoff_t pgoff, struct mempolicy *policy)
802 {
803  pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
804  struct vm_area_struct *area, *next;
805  int err;
806 
807  /*
808  * We later require that vma->vm_flags == vm_flags,
809  * so this tests vma->vm_flags & VM_SPECIAL, too.
810  */
811  if (vm_flags & VM_SPECIAL)
812  return NULL;
813 
814  if (prev)
815  next = prev->vm_next;
816  else
817  next = mm->mmap;
818  area = next;
819  if (next && next->vm_end == end) /* cases 6, 7, 8 */
820  next = next->vm_next;
821 
822  /*
823  * Can it merge with the predecessor?
824  */
825  if (prev && prev->vm_end == addr &&
826  mpol_equal(vma_policy(prev), policy) &&
827  can_vma_merge_after(prev, vm_flags,
828  anon_vma, file, pgoff)) {
829  /*
830  * OK, it can. Can we now merge in the successor as well?
831  */
832  if (next && end == next->vm_start &&
833  mpol_equal(policy, vma_policy(next)) &&
834  can_vma_merge_before(next, vm_flags,
835  anon_vma, file, pgoff+pglen) &&
836  is_mergeable_anon_vma(prev->anon_vma,
837  next->anon_vma, NULL)) {
838  /* cases 1, 6 */
839  err = vma_adjust(prev, prev->vm_start,
840  next->vm_end, prev->vm_pgoff, NULL);
841  } else /* cases 2, 5, 7 */
842  err = vma_adjust(prev, prev->vm_start,
843  end, prev->vm_pgoff, NULL);
844  if (err)
845  return NULL;
847  return prev;
848  }
849 
850  /*
851  * Can this new request be merged in front of next?
852  */
853  if (next && end == next->vm_start &&
854  mpol_equal(policy, vma_policy(next)) &&
855  can_vma_merge_before(next, vm_flags,
856  anon_vma, file, pgoff+pglen)) {
857  if (prev && addr < prev->vm_end) /* case 4 */
858  err = vma_adjust(prev, prev->vm_start,
859  addr, prev->vm_pgoff, NULL);
860  else /* cases 3, 8 */
861  err = vma_adjust(area, addr, next->vm_end,
862  next->vm_pgoff - pglen, NULL);
863  if (err)
864  return NULL;
866  return area;
867  }
868 
869  return NULL;
870 }
871 
872 /*
873  * Rough compatbility check to quickly see if it's even worth looking
874  * at sharing an anon_vma.
875  *
876  * They need to have the same vm_file, and the flags can only differ
877  * in things that mprotect may change.
878  *
879  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
880  * we can merge the two vma's. For example, we refuse to merge a vma if
881  * there is a vm_ops->close() function, because that indicates that the
882  * driver is doing some kind of reference counting. But that doesn't
883  * really matter for the anon_vma sharing case.
884  */
885 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
886 {
887  return a->vm_end == b->vm_start &&
888  mpol_equal(vma_policy(a), vma_policy(b)) &&
889  a->vm_file == b->vm_file &&
890  !((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
891  b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
892 }
893 
894 /*
895  * Do some basic sanity checking to see if we can re-use the anon_vma
896  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
897  * the same as 'old', the other will be the new one that is trying
898  * to share the anon_vma.
899  *
900  * NOTE! This runs with mm_sem held for reading, so it is possible that
901  * the anon_vma of 'old' is concurrently in the process of being set up
902  * by another page fault trying to merge _that_. But that's ok: if it
903  * is being set up, that automatically means that it will be a singleton
904  * acceptable for merging, so we can do all of this optimistically. But
905  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
906  *
907  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
908  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
909  * is to return an anon_vma that is "complex" due to having gone through
910  * a fork).
911  *
912  * We also make sure that the two vma's are compatible (adjacent,
913  * and with the same memory policies). That's all stable, even with just
914  * a read lock on the mm_sem.
915  */
916 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
917 {
918  if (anon_vma_compatible(a, b)) {
919  struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
920 
921  if (anon_vma && list_is_singular(&old->anon_vma_chain))
922  return anon_vma;
923  }
924  return NULL;
925 }
926 
927 /*
928  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
929  * neighbouring vmas for a suitable anon_vma, before it goes off
930  * to allocate a new anon_vma. It checks because a repetitive
931  * sequence of mprotects and faults may otherwise lead to distinct
932  * anon_vmas being allocated, preventing vma merge in subsequent
933  * mprotect.
934  */
935 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
936 {
937  struct anon_vma *anon_vma;
938  struct vm_area_struct *near;
939 
940  near = vma->vm_next;
941  if (!near)
942  goto try_prev;
943 
944  anon_vma = reusable_anon_vma(near, vma, near);
945  if (anon_vma)
946  return anon_vma;
947 try_prev:
948  near = vma->vm_prev;
949  if (!near)
950  goto none;
951 
952  anon_vma = reusable_anon_vma(near, near, vma);
953  if (anon_vma)
954  return anon_vma;
955 none:
956  /*
957  * There's no absolute need to look only at touching neighbours:
958  * we could search further afield for "compatible" anon_vmas.
959  * But it would probably just be a waste of time searching,
960  * or lead to too many vmas hanging off the same anon_vma.
961  * We're trying to allow mprotect remerging later on,
962  * not trying to minimize memory used for anon_vmas.
963  */
964  return NULL;
965 }
966 
967 #ifdef CONFIG_PROC_FS
968 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
969  struct file *file, long pages)
970 {
971  const unsigned long stack_flags
972  = VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
973 
974  mm->total_vm += pages;
975 
976  if (file) {
977  mm->shared_vm += pages;
978  if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
979  mm->exec_vm += pages;
980  } else if (flags & stack_flags)
981  mm->stack_vm += pages;
982 }
983 #endif /* CONFIG_PROC_FS */
984 
985 /*
986  * If a hint addr is less than mmap_min_addr change hint to be as
987  * low as possible but still greater than mmap_min_addr
988  */
989 static inline unsigned long round_hint_to_min(unsigned long hint)
990 {
991  hint &= PAGE_MASK;
992  if (((void *)hint != NULL) &&
993  (hint < mmap_min_addr))
994  return PAGE_ALIGN(mmap_min_addr);
995  return hint;
996 }
997 
998 /*
999  * The caller must hold down_write(&current->mm->mmap_sem).
1000  */
1001 
1002 unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1003  unsigned long len, unsigned long prot,
1004  unsigned long flags, unsigned long pgoff)
1005 {
1006  struct mm_struct * mm = current->mm;
1007  struct inode *inode;
1009 
1010  /*
1011  * Does the application expect PROT_READ to imply PROT_EXEC?
1012  *
1013  * (the exception is when the underlying filesystem is noexec
1014  * mounted, in which case we dont add PROT_EXEC.)
1015  */
1016  if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1017  if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1018  prot |= PROT_EXEC;
1019 
1020  if (!len)
1021  return -EINVAL;
1022 
1023  if (!(flags & MAP_FIXED))
1024  addr = round_hint_to_min(addr);
1025 
1026  /* Careful about overflows.. */
1027  len = PAGE_ALIGN(len);
1028  if (!len)
1029  return -ENOMEM;
1030 
1031  /* offset overflow? */
1032  if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1033  return -EOVERFLOW;
1034 
1035  /* Too many mappings? */
1036  if (mm->map_count > sysctl_max_map_count)
1037  return -ENOMEM;
1038 
1039  /* Obtain the address to map to. we verify (or select) it and ensure
1040  * that it represents a valid section of the address space.
1041  */
1042  addr = get_unmapped_area(file, addr, len, pgoff, flags);
1043  if (addr & ~PAGE_MASK)
1044  return addr;
1045 
1046  /* Do simple checking here so the lower-level routines won't have
1047  * to. we assume access permissions have been handled by the open
1048  * of the memory object, so we don't do any here.
1049  */
1050  vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1051  mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1052 
1053  if (flags & MAP_LOCKED)
1054  if (!can_do_mlock())
1055  return -EPERM;
1056 
1057  /* mlock MCL_FUTURE? */
1058  if (vm_flags & VM_LOCKED) {
1059  unsigned long locked, lock_limit;
1060  locked = len >> PAGE_SHIFT;
1061  locked += mm->locked_vm;
1062  lock_limit = rlimit(RLIMIT_MEMLOCK);
1063  lock_limit >>= PAGE_SHIFT;
1064  if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1065  return -EAGAIN;
1066  }
1067 
1068  inode = file ? file->f_path.dentry->d_inode : NULL;
1069 
1070  if (file) {
1071  switch (flags & MAP_TYPE) {
1072  case MAP_SHARED:
1073  if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1074  return -EACCES;
1075 
1076  /*
1077  * Make sure we don't allow writing to an append-only
1078  * file..
1079  */
1080  if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1081  return -EACCES;
1082 
1083  /*
1084  * Make sure there are no mandatory locks on the file.
1085  */
1086  if (locks_verify_locked(inode))
1087  return -EAGAIN;
1088 
1089  vm_flags |= VM_SHARED | VM_MAYSHARE;
1090  if (!(file->f_mode & FMODE_WRITE))
1091  vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1092 
1093  /* fall through */
1094  case MAP_PRIVATE:
1095  if (!(file->f_mode & FMODE_READ))
1096  return -EACCES;
1097  if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1098  if (vm_flags & VM_EXEC)
1099  return -EPERM;
1100  vm_flags &= ~VM_MAYEXEC;
1101  }
1102 
1103  if (!file->f_op || !file->f_op->mmap)
1104  return -ENODEV;
1105  break;
1106 
1107  default:
1108  return -EINVAL;
1109  }
1110  } else {
1111  switch (flags & MAP_TYPE) {
1112  case MAP_SHARED:
1113  /*
1114  * Ignore pgoff.
1115  */
1116  pgoff = 0;
1117  vm_flags |= VM_SHARED | VM_MAYSHARE;
1118  break;
1119  case MAP_PRIVATE:
1120  /*
1121  * Set pgoff according to addr for anon_vma.
1122  */
1123  pgoff = addr >> PAGE_SHIFT;
1124  break;
1125  default:
1126  return -EINVAL;
1127  }
1128  }
1129 
1130  return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1131 }
1132 
1133 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1134  unsigned long, prot, unsigned long, flags,
1135  unsigned long, fd, unsigned long, pgoff)
1136 {
1137  struct file *file = NULL;
1138  unsigned long retval = -EBADF;
1139 
1140  if (!(flags & MAP_ANONYMOUS)) {
1141  audit_mmap_fd(fd, flags);
1142  if (unlikely(flags & MAP_HUGETLB))
1143  return -EINVAL;
1144  file = fget(fd);
1145  if (!file)
1146  goto out;
1147  } else if (flags & MAP_HUGETLB) {
1148  struct user_struct *user = NULL;
1149  /*
1150  * VM_NORESERVE is used because the reservations will be
1151  * taken when vm_ops->mmap() is called
1152  * A dummy user value is used because we are not locking
1153  * memory so no accounting is necessary
1154  */
1156  VM_NORESERVE, &user,
1158  if (IS_ERR(file))
1159  return PTR_ERR(file);
1160  }
1161 
1162  flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1163 
1164  retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1165  if (file)
1166  fput(file);
1167 out:
1168  return retval;
1169 }
1170 
1171 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1172 struct mmap_arg_struct {
1173  unsigned long addr;
1174  unsigned long len;
1175  unsigned long prot;
1176  unsigned long flags;
1177  unsigned long fd;
1178  unsigned long offset;
1179 };
1180 
1181 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1182 {
1183  struct mmap_arg_struct a;
1184 
1185  if (copy_from_user(&a, arg, sizeof(a)))
1186  return -EFAULT;
1187  if (a.offset & ~PAGE_MASK)
1188  return -EINVAL;
1189 
1190  return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1191  a.offset >> PAGE_SHIFT);
1192 }
1193 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1194 
1195 /*
1196  * Some shared mappigns will want the pages marked read-only
1197  * to track write events. If so, we'll downgrade vm_page_prot
1198  * to the private version (using protection_map[] without the
1199  * VM_SHARED bit).
1200  */
1202 {
1203  vm_flags_t vm_flags = vma->vm_flags;
1204 
1205  /* If it was private or non-writable, the write bit is already clear */
1206  if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1207  return 0;
1208 
1209  /* The backer wishes to know when pages are first written to? */
1210  if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1211  return 1;
1212 
1213  /* The open routine did something to the protections already? */
1214  if (pgprot_val(vma->vm_page_prot) !=
1215  pgprot_val(vm_get_page_prot(vm_flags)))
1216  return 0;
1217 
1218  /* Specialty mapping? */
1219  if (vm_flags & VM_PFNMAP)
1220  return 0;
1221 
1222  /* Can the mapping track the dirty pages? */
1223  return vma->vm_file && vma->vm_file->f_mapping &&
1224  mapping_cap_account_dirty(vma->vm_file->f_mapping);
1225 }
1226 
1227 /*
1228  * We account for memory if it's a private writeable mapping,
1229  * not hugepages and VM_NORESERVE wasn't set.
1230  */
1231 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1232 {
1233  /*
1234  * hugetlb has its own accounting separate from the core VM
1235  * VM_HUGETLB may not be set yet so we cannot check for that flag.
1236  */
1237  if (file && is_file_hugepages(file))
1238  return 0;
1239 
1240  return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1241 }
1242 
1243 unsigned long mmap_region(struct file *file, unsigned long addr,
1244  unsigned long len, unsigned long flags,
1245  vm_flags_t vm_flags, unsigned long pgoff)
1246 {
1247  struct mm_struct *mm = current->mm;
1248  struct vm_area_struct *vma, *prev;
1249  int correct_wcount = 0;
1250  int error;
1251  struct rb_node **rb_link, *rb_parent;
1252  unsigned long charged = 0;
1253  struct inode *inode = file ? file->f_path.dentry->d_inode : NULL;
1254 
1255  /* Clear old maps */
1256  error = -ENOMEM;
1257 munmap_back:
1258  if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
1259  if (do_munmap(mm, addr, len))
1260  return -ENOMEM;
1261  goto munmap_back;
1262  }
1263 
1264  /* Check against address space limit. */
1265  if (!may_expand_vm(mm, len >> PAGE_SHIFT))
1266  return -ENOMEM;
1267 
1268  /*
1269  * Set 'VM_NORESERVE' if we should not account for the
1270  * memory use of this mapping.
1271  */
1272  if ((flags & MAP_NORESERVE)) {
1273  /* We honor MAP_NORESERVE if allowed to overcommit */
1275  vm_flags |= VM_NORESERVE;
1276 
1277  /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1278  if (file && is_file_hugepages(file))
1279  vm_flags |= VM_NORESERVE;
1280  }
1281 
1282  /*
1283  * Private writable mapping: check memory availability
1284  */
1285  if (accountable_mapping(file, vm_flags)) {
1286  charged = len >> PAGE_SHIFT;
1287  if (security_vm_enough_memory_mm(mm, charged))
1288  return -ENOMEM;
1289  vm_flags |= VM_ACCOUNT;
1290  }
1291 
1292  /*
1293  * Can we just expand an old mapping?
1294  */
1295  vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1296  if (vma)
1297  goto out;
1298 
1299  /*
1300  * Determine the object being mapped and call the appropriate
1301  * specific mapper. the address has already been validated, but
1302  * not unmapped, but the maps are removed from the list.
1303  */
1304  vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1305  if (!vma) {
1306  error = -ENOMEM;
1307  goto unacct_error;
1308  }
1309 
1310  vma->vm_mm = mm;
1311  vma->vm_start = addr;
1312  vma->vm_end = addr + len;
1313  vma->vm_flags = vm_flags;
1314  vma->vm_page_prot = vm_get_page_prot(vm_flags);
1315  vma->vm_pgoff = pgoff;
1316  INIT_LIST_HEAD(&vma->anon_vma_chain);
1317 
1318  error = -EINVAL; /* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1319 
1320  if (file) {
1321  if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1322  goto free_vma;
1323  if (vm_flags & VM_DENYWRITE) {
1324  error = deny_write_access(file);
1325  if (error)
1326  goto free_vma;
1327  correct_wcount = 1;
1328  }
1329  vma->vm_file = get_file(file);
1330  error = file->f_op->mmap(file, vma);
1331  if (error)
1332  goto unmap_and_free_vma;
1333 
1334  /* Can addr have changed??
1335  *
1336  * Answer: Yes, several device drivers can do it in their
1337  * f_op->mmap method. -DaveM
1338  */
1339  addr = vma->vm_start;
1340  pgoff = vma->vm_pgoff;
1341  vm_flags = vma->vm_flags;
1342  } else if (vm_flags & VM_SHARED) {
1343  if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1344  goto free_vma;
1345  error = shmem_zero_setup(vma);
1346  if (error)
1347  goto free_vma;
1348  }
1349 
1350  if (vma_wants_writenotify(vma)) {
1351  pgprot_t pprot = vma->vm_page_prot;
1352 
1353  /* Can vma->vm_page_prot have changed??
1354  *
1355  * Answer: Yes, drivers may have changed it in their
1356  * f_op->mmap method.
1357  *
1358  * Ensures that vmas marked as uncached stay that way.
1359  */
1360  vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1361  if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1363  }
1364 
1365  vma_link(mm, vma, prev, rb_link, rb_parent);
1366  file = vma->vm_file;
1367 
1368  /* Once vma denies write, undo our temporary denial count */
1369  if (correct_wcount)
1370  atomic_inc(&inode->i_writecount);
1371 out:
1372  perf_event_mmap(vma);
1373 
1374  vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1375  if (vm_flags & VM_LOCKED) {
1376  if (!mlock_vma_pages_range(vma, addr, addr + len))
1377  mm->locked_vm += (len >> PAGE_SHIFT);
1378  } else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1379  make_pages_present(addr, addr + len);
1380 
1381  if (file)
1382  uprobe_mmap(vma);
1383 
1384  return addr;
1385 
1386 unmap_and_free_vma:
1387  if (correct_wcount)
1388  atomic_inc(&inode->i_writecount);
1389  vma->vm_file = NULL;
1390  fput(file);
1391 
1392  /* Undo any partial mapping done by a device driver. */
1393  unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1394  charged = 0;
1395 free_vma:
1397 unacct_error:
1398  if (charged)
1399  vm_unacct_memory(charged);
1400  return error;
1401 }
1402 
1403 /* Get an address range which is currently unmapped.
1404  * For shmat() with addr=0.
1405  *
1406  * Ugly calling convention alert:
1407  * Return value with the low bits set means error value,
1408  * ie
1409  * if (ret & ~PAGE_MASK)
1410  * error = ret;
1411  *
1412  * This function "knows" that -ENOMEM has the bits set.
1413  */
1414 #ifndef HAVE_ARCH_UNMAPPED_AREA
1415 unsigned long
1416 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1417  unsigned long len, unsigned long pgoff, unsigned long flags)
1418 {
1419  struct mm_struct *mm = current->mm;
1420  struct vm_area_struct *vma;
1421  unsigned long start_addr;
1422 
1423  if (len > TASK_SIZE)
1424  return -ENOMEM;
1425 
1426  if (flags & MAP_FIXED)
1427  return addr;
1428 
1429  if (addr) {
1430  addr = PAGE_ALIGN(addr);
1431  vma = find_vma(mm, addr);
1432  if (TASK_SIZE - len >= addr &&
1433  (!vma || addr + len <= vma->vm_start))
1434  return addr;
1435  }
1436  if (len > mm->cached_hole_size) {
1437  start_addr = addr = mm->free_area_cache;
1438  } else {
1439  start_addr = addr = TASK_UNMAPPED_BASE;
1440  mm->cached_hole_size = 0;
1441  }
1442 
1443 full_search:
1444  for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1445  /* At this point: (!vma || addr < vma->vm_end). */
1446  if (TASK_SIZE - len < addr) {
1447  /*
1448  * Start a new search - just in case we missed
1449  * some holes.
1450  */
1451  if (start_addr != TASK_UNMAPPED_BASE) {
1452  addr = TASK_UNMAPPED_BASE;
1453  start_addr = addr;
1454  mm->cached_hole_size = 0;
1455  goto full_search;
1456  }
1457  return -ENOMEM;
1458  }
1459  if (!vma || addr + len <= vma->vm_start) {
1460  /*
1461  * Remember the place where we stopped the search:
1462  */
1463  mm->free_area_cache = addr + len;
1464  return addr;
1465  }
1466  if (addr + mm->cached_hole_size < vma->vm_start)
1467  mm->cached_hole_size = vma->vm_start - addr;
1468  addr = vma->vm_end;
1469  }
1470 }
1471 #endif
1472 
1473 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1474 {
1475  /*
1476  * Is this a new hole at the lowest possible address?
1477  */
1478  if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1479  mm->free_area_cache = addr;
1480 }
1481 
1482 /*
1483  * This mmap-allocator allocates new areas top-down from below the
1484  * stack's low limit (the base):
1485  */
1486 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1487 unsigned long
1488 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1489  const unsigned long len, const unsigned long pgoff,
1490  const unsigned long flags)
1491 {
1492  struct vm_area_struct *vma;
1493  struct mm_struct *mm = current->mm;
1494  unsigned long addr = addr0, start_addr;
1495 
1496  /* requested length too big for entire address space */
1497  if (len > TASK_SIZE)
1498  return -ENOMEM;
1499 
1500  if (flags & MAP_FIXED)
1501  return addr;
1502 
1503  /* requesting a specific address */
1504  if (addr) {
1505  addr = PAGE_ALIGN(addr);
1506  vma = find_vma(mm, addr);
1507  if (TASK_SIZE - len >= addr &&
1508  (!vma || addr + len <= vma->vm_start))
1509  return addr;
1510  }
1511 
1512  /* check if free_area_cache is useful for us */
1513  if (len <= mm->cached_hole_size) {
1514  mm->cached_hole_size = 0;
1515  mm->free_area_cache = mm->mmap_base;
1516  }
1517 
1518 try_again:
1519  /* either no address requested or can't fit in requested address hole */
1520  start_addr = addr = mm->free_area_cache;
1521 
1522  if (addr < len)
1523  goto fail;
1524 
1525  addr -= len;
1526  do {
1527  /*
1528  * Lookup failure means no vma is above this address,
1529  * else if new region fits below vma->vm_start,
1530  * return with success:
1531  */
1532  vma = find_vma(mm, addr);
1533  if (!vma || addr+len <= vma->vm_start)
1534  /* remember the address as a hint for next time */
1535  return (mm->free_area_cache = addr);
1536 
1537  /* remember the largest hole we saw so far */
1538  if (addr + mm->cached_hole_size < vma->vm_start)
1539  mm->cached_hole_size = vma->vm_start - addr;
1540 
1541  /* try just below the current vma->vm_start */
1542  addr = vma->vm_start-len;
1543  } while (len < vma->vm_start);
1544 
1545 fail:
1546  /*
1547  * if hint left us with no space for the requested
1548  * mapping then try again:
1549  *
1550  * Note: this is different with the case of bottomup
1551  * which does the fully line-search, but we use find_vma
1552  * here that causes some holes skipped.
1553  */
1554  if (start_addr != mm->mmap_base) {
1555  mm->free_area_cache = mm->mmap_base;
1556  mm->cached_hole_size = 0;
1557  goto try_again;
1558  }
1559 
1560  /*
1561  * A failed mmap() very likely causes application failure,
1562  * so fall back to the bottom-up function here. This scenario
1563  * can happen with large stack limits and large mmap()
1564  * allocations.
1565  */
1566  mm->cached_hole_size = ~0UL;
1568  addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1569  /*
1570  * Restore the topdown base:
1571  */
1572  mm->free_area_cache = mm->mmap_base;
1573  mm->cached_hole_size = ~0UL;
1574 
1575  return addr;
1576 }
1577 #endif
1578 
1579 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1580 {
1581  /*
1582  * Is this a new hole at the highest possible address?
1583  */
1584  if (addr > mm->free_area_cache)
1585  mm->free_area_cache = addr;
1586 
1587  /* dont allow allocations above current base */
1588  if (mm->free_area_cache > mm->mmap_base)
1589  mm->free_area_cache = mm->mmap_base;
1590 }
1591 
1592 unsigned long
1593 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1594  unsigned long pgoff, unsigned long flags)
1595 {
1596  unsigned long (*get_area)(struct file *, unsigned long,
1597  unsigned long, unsigned long, unsigned long);
1598 
1599  unsigned long error = arch_mmap_check(addr, len, flags);
1600  if (error)
1601  return error;
1602 
1603  /* Careful about overflows.. */
1604  if (len > TASK_SIZE)
1605  return -ENOMEM;
1606 
1607  get_area = current->mm->get_unmapped_area;
1608  if (file && file->f_op && file->f_op->get_unmapped_area)
1609  get_area = file->f_op->get_unmapped_area;
1610  addr = get_area(file, addr, len, pgoff, flags);
1611  if (IS_ERR_VALUE(addr))
1612  return addr;
1613 
1614  if (addr > TASK_SIZE - len)
1615  return -ENOMEM;
1616  if (addr & ~PAGE_MASK)
1617  return -EINVAL;
1618 
1619  addr = arch_rebalance_pgtables(addr, len);
1620  error = security_mmap_addr(addr);
1621  return error ? error : addr;
1622 }
1623 
1625 
1626 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1627 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1628 {
1629  struct vm_area_struct *vma = NULL;
1630 
1631  if (WARN_ON_ONCE(!mm)) /* Remove this in linux-3.6 */
1632  return NULL;
1633 
1634  /* Check the cache first. */
1635  /* (Cache hit rate is typically around 35%.) */
1636  vma = mm->mmap_cache;
1637  if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1638  struct rb_node *rb_node;
1639 
1640  rb_node = mm->mm_rb.rb_node;
1641  vma = NULL;
1642 
1643  while (rb_node) {
1644  struct vm_area_struct *vma_tmp;
1645 
1646  vma_tmp = rb_entry(rb_node,
1647  struct vm_area_struct, vm_rb);
1648 
1649  if (vma_tmp->vm_end > addr) {
1650  vma = vma_tmp;
1651  if (vma_tmp->vm_start <= addr)
1652  break;
1653  rb_node = rb_node->rb_left;
1654  } else
1655  rb_node = rb_node->rb_right;
1656  }
1657  if (vma)
1658  mm->mmap_cache = vma;
1659  }
1660  return vma;
1661 }
1662 
1664 
1665 /*
1666  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1667  */
1668 struct vm_area_struct *
1669 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1670  struct vm_area_struct **pprev)
1671 {
1672  struct vm_area_struct *vma;
1673 
1674  vma = find_vma(mm, addr);
1675  if (vma) {
1676  *pprev = vma->vm_prev;
1677  } else {
1678  struct rb_node *rb_node = mm->mm_rb.rb_node;
1679  *pprev = NULL;
1680  while (rb_node) {
1681  *pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1682  rb_node = rb_node->rb_right;
1683  }
1684  }
1685  return vma;
1686 }
1687 
1688 /*
1689  * Verify that the stack growth is acceptable and
1690  * update accounting. This is shared with both the
1691  * grow-up and grow-down cases.
1692  */
1693 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1694 {
1695  struct mm_struct *mm = vma->vm_mm;
1696  struct rlimit *rlim = current->signal->rlim;
1697  unsigned long new_start;
1698 
1699  /* address space limit tests */
1700  if (!may_expand_vm(mm, grow))
1701  return -ENOMEM;
1702 
1703  /* Stack limit test */
1704  if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1705  return -ENOMEM;
1706 
1707  /* mlock limit tests */
1708  if (vma->vm_flags & VM_LOCKED) {
1709  unsigned long locked;
1710  unsigned long limit;
1711  locked = mm->locked_vm + grow;
1712  limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1713  limit >>= PAGE_SHIFT;
1714  if (locked > limit && !capable(CAP_IPC_LOCK))
1715  return -ENOMEM;
1716  }
1717 
1718  /* Check to ensure the stack will not grow into a hugetlb-only region */
1719  new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1720  vma->vm_end - size;
1721  if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1722  return -EFAULT;
1723 
1724  /*
1725  * Overcommit.. This must be the final test, as it will
1726  * update security statistics.
1727  */
1728  if (security_vm_enough_memory_mm(mm, grow))
1729  return -ENOMEM;
1730 
1731  /* Ok, everything looks good - let it rip */
1732  if (vma->vm_flags & VM_LOCKED)
1733  mm->locked_vm += grow;
1734  vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1735  return 0;
1736 }
1737 
1738 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1739 /*
1740  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1741  * vma is the last one with address > vma->vm_end. Have to extend vma.
1742  */
1743 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1744 {
1745  int error;
1746 
1747  if (!(vma->vm_flags & VM_GROWSUP))
1748  return -EFAULT;
1749 
1750  /*
1751  * We must make sure the anon_vma is allocated
1752  * so that the anon_vma locking is not a noop.
1753  */
1754  if (unlikely(anon_vma_prepare(vma)))
1755  return -ENOMEM;
1756  vma_lock_anon_vma(vma);
1757 
1758  /*
1759  * vma->vm_start/vm_end cannot change under us because the caller
1760  * is required to hold the mmap_sem in read mode. We need the
1761  * anon_vma lock to serialize against concurrent expand_stacks.
1762  * Also guard against wrapping around to address 0.
1763  */
1764  if (address < PAGE_ALIGN(address+4))
1765  address = PAGE_ALIGN(address+4);
1766  else {
1767  vma_unlock_anon_vma(vma);
1768  return -ENOMEM;
1769  }
1770  error = 0;
1771 
1772  /* Somebody else might have raced and expanded it already */
1773  if (address > vma->vm_end) {
1774  unsigned long size, grow;
1775 
1776  size = address - vma->vm_start;
1777  grow = (address - vma->vm_end) >> PAGE_SHIFT;
1778 
1779  error = -ENOMEM;
1780  if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1781  error = acct_stack_growth(vma, size, grow);
1782  if (!error) {
1783  anon_vma_interval_tree_pre_update_vma(vma);
1784  vma->vm_end = address;
1785  anon_vma_interval_tree_post_update_vma(vma);
1786  perf_event_mmap(vma);
1787  }
1788  }
1789  }
1790  vma_unlock_anon_vma(vma);
1792  validate_mm(vma->vm_mm);
1793  return error;
1794 }
1795 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1796 
1797 /*
1798  * vma is the first one with address < vma->vm_start. Have to extend vma.
1799  */
1801  unsigned long address)
1802 {
1803  int error;
1804 
1805  /*
1806  * We must make sure the anon_vma is allocated
1807  * so that the anon_vma locking is not a noop.
1808  */
1809  if (unlikely(anon_vma_prepare(vma)))
1810  return -ENOMEM;
1811 
1812  address &= PAGE_MASK;
1813  error = security_mmap_addr(address);
1814  if (error)
1815  return error;
1816 
1817  vma_lock_anon_vma(vma);
1818 
1819  /*
1820  * vma->vm_start/vm_end cannot change under us because the caller
1821  * is required to hold the mmap_sem in read mode. We need the
1822  * anon_vma lock to serialize against concurrent expand_stacks.
1823  */
1824 
1825  /* Somebody else might have raced and expanded it already */
1826  if (address < vma->vm_start) {
1827  unsigned long size, grow;
1828 
1829  size = vma->vm_end - address;
1830  grow = (vma->vm_start - address) >> PAGE_SHIFT;
1831 
1832  error = -ENOMEM;
1833  if (grow <= vma->vm_pgoff) {
1834  error = acct_stack_growth(vma, size, grow);
1835  if (!error) {
1836  anon_vma_interval_tree_pre_update_vma(vma);
1837  vma->vm_start = address;
1838  vma->vm_pgoff -= grow;
1839  anon_vma_interval_tree_post_update_vma(vma);
1840  perf_event_mmap(vma);
1841  }
1842  }
1843  }
1844  vma_unlock_anon_vma(vma);
1846  validate_mm(vma->vm_mm);
1847  return error;
1848 }
1849 
1850 #ifdef CONFIG_STACK_GROWSUP
1851 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1852 {
1853  return expand_upwards(vma, address);
1854 }
1855 
1856 struct vm_area_struct *
1857 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1858 {
1859  struct vm_area_struct *vma, *prev;
1860 
1861  addr &= PAGE_MASK;
1862  vma = find_vma_prev(mm, addr, &prev);
1863  if (vma && (vma->vm_start <= addr))
1864  return vma;
1865  if (!prev || expand_stack(prev, addr))
1866  return NULL;
1867  if (prev->vm_flags & VM_LOCKED) {
1868  mlock_vma_pages_range(prev, addr, prev->vm_end);
1869  }
1870  return prev;
1871 }
1872 #else
1873 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1874 {
1875  return expand_downwards(vma, address);
1876 }
1877 
1878 struct vm_area_struct *
1879 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1880 {
1881  struct vm_area_struct * vma;
1882  unsigned long start;
1883 
1884  addr &= PAGE_MASK;
1885  vma = find_vma(mm,addr);
1886  if (!vma)
1887  return NULL;
1888  if (vma->vm_start <= addr)
1889  return vma;
1890  if (!(vma->vm_flags & VM_GROWSDOWN))
1891  return NULL;
1892  start = vma->vm_start;
1893  if (expand_stack(vma, addr))
1894  return NULL;
1895  if (vma->vm_flags & VM_LOCKED) {
1896  mlock_vma_pages_range(vma, addr, start);
1897  }
1898  return vma;
1899 }
1900 #endif
1901 
1902 /*
1903  * Ok - we have the memory areas we should free on the vma list,
1904  * so release them, and do the vma updates.
1905  *
1906  * Called with the mm semaphore held.
1907  */
1908 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1909 {
1910  unsigned long nr_accounted = 0;
1911 
1912  /* Update high watermark before we lower total_vm */
1913  update_hiwater_vm(mm);
1914  do {
1915  long nrpages = vma_pages(vma);
1916 
1917  if (vma->vm_flags & VM_ACCOUNT)
1918  nr_accounted += nrpages;
1919  vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1920  vma = remove_vma(vma);
1921  } while (vma);
1922  vm_unacct_memory(nr_accounted);
1923  validate_mm(mm);
1924 }
1925 
1926 /*
1927  * Get rid of page table information in the indicated region.
1928  *
1929  * Called with the mm semaphore held.
1930  */
1931 static void unmap_region(struct mm_struct *mm,
1932  struct vm_area_struct *vma, struct vm_area_struct *prev,
1933  unsigned long start, unsigned long end)
1934 {
1935  struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1936  struct mmu_gather tlb;
1937 
1938  lru_add_drain();
1939  tlb_gather_mmu(&tlb, mm, 0);
1940  update_hiwater_rss(mm);
1941  unmap_vmas(&tlb, vma, start, end);
1942  free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1943  next ? next->vm_start : 0);
1944  tlb_finish_mmu(&tlb, start, end);
1945 }
1946 
1947 /*
1948  * Create a list of vma's touched by the unmap, removing them from the mm's
1949  * vma list as we go..
1950  */
1951 static void
1952 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
1953  struct vm_area_struct *prev, unsigned long end)
1954 {
1955  struct vm_area_struct **insertion_point;
1956  struct vm_area_struct *tail_vma = NULL;
1957  unsigned long addr;
1958 
1959  insertion_point = (prev ? &prev->vm_next : &mm->mmap);
1960  vma->vm_prev = NULL;
1961  do {
1962  rb_erase(&vma->vm_rb, &mm->mm_rb);
1963  mm->map_count--;
1964  tail_vma = vma;
1965  vma = vma->vm_next;
1966  } while (vma && vma->vm_start < end);
1967  *insertion_point = vma;
1968  if (vma)
1969  vma->vm_prev = prev;
1970  tail_vma->vm_next = NULL;
1971  if (mm->unmap_area == arch_unmap_area)
1972  addr = prev ? prev->vm_end : mm->mmap_base;
1973  else
1974  addr = vma ? vma->vm_start : mm->mmap_base;
1975  mm->unmap_area(mm, addr);
1976  mm->mmap_cache = NULL; /* Kill the cache. */
1977 }
1978 
1979 /*
1980  * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
1981  * munmap path where it doesn't make sense to fail.
1982  */
1983 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
1984  unsigned long addr, int new_below)
1985 {
1986  struct mempolicy *pol;
1987  struct vm_area_struct *new;
1988  int err = -ENOMEM;
1989 
1990  if (is_vm_hugetlb_page(vma) && (addr &
1991  ~(huge_page_mask(hstate_vma(vma)))))
1992  return -EINVAL;
1993 
1995  if (!new)
1996  goto out_err;
1997 
1998  /* most fields are the same, copy all, and then fixup */
1999  *new = *vma;
2000 
2001  INIT_LIST_HEAD(&new->anon_vma_chain);
2002 
2003  if (new_below)
2004  new->vm_end = addr;
2005  else {
2006  new->vm_start = addr;
2007  new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2008  }
2009 
2010  pol = mpol_dup(vma_policy(vma));
2011  if (IS_ERR(pol)) {
2012  err = PTR_ERR(pol);
2013  goto out_free_vma;
2014  }
2015  vma_set_policy(new, pol);
2016 
2017  if (anon_vma_clone(new, vma))
2018  goto out_free_mpol;
2019 
2020  if (new->vm_file)
2021  get_file(new->vm_file);
2022 
2023  if (new->vm_ops && new->vm_ops->open)
2024  new->vm_ops->open(new);
2025 
2026  if (new_below)
2027  err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2028  ((addr - new->vm_start) >> PAGE_SHIFT), new);
2029  else
2030  err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2031 
2032  /* Success. */
2033  if (!err)
2034  return 0;
2035 
2036  /* Clean everything up if vma_adjust failed. */
2037  if (new->vm_ops && new->vm_ops->close)
2038  new->vm_ops->close(new);
2039  if (new->vm_file)
2040  fput(new->vm_file);
2041  unlink_anon_vmas(new);
2042  out_free_mpol:
2043  mpol_put(pol);
2044  out_free_vma:
2046  out_err:
2047  return err;
2048 }
2049 
2050 /*
2051  * Split a vma into two pieces at address 'addr', a new vma is allocated
2052  * either for the first part or the tail.
2053  */
2054 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2055  unsigned long addr, int new_below)
2056 {
2057  if (mm->map_count >= sysctl_max_map_count)
2058  return -ENOMEM;
2059 
2060  return __split_vma(mm, vma, addr, new_below);
2061 }
2062 
2063 /* Munmap is split into 2 main parts -- this part which finds
2064  * what needs doing, and the areas themselves, which do the
2065  * work. This now handles partial unmappings.
2066  * Jeremy Fitzhardinge <[email protected]>
2067  */
2068 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2069 {
2070  unsigned long end;
2071  struct vm_area_struct *vma, *prev, *last;
2072 
2073  if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2074  return -EINVAL;
2075 
2076  if ((len = PAGE_ALIGN(len)) == 0)
2077  return -EINVAL;
2078 
2079  /* Find the first overlapping VMA */
2080  vma = find_vma(mm, start);
2081  if (!vma)
2082  return 0;
2083  prev = vma->vm_prev;
2084  /* we have start < vma->vm_end */
2085 
2086  /* if it doesn't overlap, we have nothing.. */
2087  end = start + len;
2088  if (vma->vm_start >= end)
2089  return 0;
2090 
2091  /*
2092  * If we need to split any vma, do it now to save pain later.
2093  *
2094  * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2095  * unmapped vm_area_struct will remain in use: so lower split_vma
2096  * places tmp vma above, and higher split_vma places tmp vma below.
2097  */
2098  if (start > vma->vm_start) {
2099  int error;
2100 
2101  /*
2102  * Make sure that map_count on return from munmap() will
2103  * not exceed its limit; but let map_count go just above
2104  * its limit temporarily, to help free resources as expected.
2105  */
2106  if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2107  return -ENOMEM;
2108 
2109  error = __split_vma(mm, vma, start, 0);
2110  if (error)
2111  return error;
2112  prev = vma;
2113  }
2114 
2115  /* Does it split the last one? */
2116  last = find_vma(mm, end);
2117  if (last && end > last->vm_start) {
2118  int error = __split_vma(mm, last, end, 1);
2119  if (error)
2120  return error;
2121  }
2122  vma = prev? prev->vm_next: mm->mmap;
2123 
2124  /*
2125  * unlock any mlock()ed ranges before detaching vmas
2126  */
2127  if (mm->locked_vm) {
2128  struct vm_area_struct *tmp = vma;
2129  while (tmp && tmp->vm_start < end) {
2130  if (tmp->vm_flags & VM_LOCKED) {
2131  mm->locked_vm -= vma_pages(tmp);
2132  munlock_vma_pages_all(tmp);
2133  }
2134  tmp = tmp->vm_next;
2135  }
2136  }
2137 
2138  /*
2139  * Remove the vma's, and unmap the actual pages
2140  */
2141  detach_vmas_to_be_unmapped(mm, vma, prev, end);
2142  unmap_region(mm, vma, prev, start, end);
2143 
2144  /* Fix up all other VM information */
2145  remove_vma_list(mm, vma);
2146 
2147  return 0;
2148 }
2149 
2150 int vm_munmap(unsigned long start, size_t len)
2151 {
2152  int ret;
2153  struct mm_struct *mm = current->mm;
2154 
2155  down_write(&mm->mmap_sem);
2156  ret = do_munmap(mm, start, len);
2157  up_write(&mm->mmap_sem);
2158  return ret;
2159 }
2161 
2162 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2163 {
2164  profile_munmap(addr);
2165  return vm_munmap(addr, len);
2166 }
2167 
2168 static inline void verify_mm_writelocked(struct mm_struct *mm)
2169 {
2170 #ifdef CONFIG_DEBUG_VM
2171  if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2172  WARN_ON(1);
2173  up_read(&mm->mmap_sem);
2174  }
2175 #endif
2176 }
2177 
2178 /*
2179  * this is really a simplified "do_mmap". it only handles
2180  * anonymous maps. eventually we may be able to do some
2181  * brk-specific accounting here.
2182  */
2183 static unsigned long do_brk(unsigned long addr, unsigned long len)
2184 {
2185  struct mm_struct * mm = current->mm;
2186  struct vm_area_struct * vma, * prev;
2187  unsigned long flags;
2188  struct rb_node ** rb_link, * rb_parent;
2189  pgoff_t pgoff = addr >> PAGE_SHIFT;
2190  int error;
2191 
2192  len = PAGE_ALIGN(len);
2193  if (!len)
2194  return addr;
2195 
2196  flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2197 
2198  error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2199  if (error & ~PAGE_MASK)
2200  return error;
2201 
2202  /*
2203  * mlock MCL_FUTURE?
2204  */
2205  if (mm->def_flags & VM_LOCKED) {
2206  unsigned long locked, lock_limit;
2207  locked = len >> PAGE_SHIFT;
2208  locked += mm->locked_vm;
2209  lock_limit = rlimit(RLIMIT_MEMLOCK);
2210  lock_limit >>= PAGE_SHIFT;
2211  if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2212  return -EAGAIN;
2213  }
2214 
2215  /*
2216  * mm->mmap_sem is required to protect against another thread
2217  * changing the mappings in case we sleep.
2218  */
2219  verify_mm_writelocked(mm);
2220 
2221  /*
2222  * Clear old maps. this also does some error checking for us
2223  */
2224  munmap_back:
2225  if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent)) {
2226  if (do_munmap(mm, addr, len))
2227  return -ENOMEM;
2228  goto munmap_back;
2229  }
2230 
2231  /* Check against address space limits *after* clearing old maps... */
2232  if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2233  return -ENOMEM;
2234 
2235  if (mm->map_count > sysctl_max_map_count)
2236  return -ENOMEM;
2237 
2238  if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2239  return -ENOMEM;
2240 
2241  /* Can we just expand an old private anonymous mapping? */
2242  vma = vma_merge(mm, prev, addr, addr + len, flags,
2243  NULL, NULL, pgoff, NULL);
2244  if (vma)
2245  goto out;
2246 
2247  /*
2248  * create a vma struct for an anonymous mapping
2249  */
2250  vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2251  if (!vma) {
2252  vm_unacct_memory(len >> PAGE_SHIFT);
2253  return -ENOMEM;
2254  }
2255 
2256  INIT_LIST_HEAD(&vma->anon_vma_chain);
2257  vma->vm_mm = mm;
2258  vma->vm_start = addr;
2259  vma->vm_end = addr + len;
2260  vma->vm_pgoff = pgoff;
2261  vma->vm_flags = flags;
2262  vma->vm_page_prot = vm_get_page_prot(flags);
2263  vma_link(mm, vma, prev, rb_link, rb_parent);
2264 out:
2265  perf_event_mmap(vma);
2266  mm->total_vm += len >> PAGE_SHIFT;
2267  if (flags & VM_LOCKED) {
2268  if (!mlock_vma_pages_range(vma, addr, addr + len))
2269  mm->locked_vm += (len >> PAGE_SHIFT);
2270  }
2271  return addr;
2272 }
2273 
2274 unsigned long vm_brk(unsigned long addr, unsigned long len)
2275 {
2276  struct mm_struct *mm = current->mm;
2277  unsigned long ret;
2278 
2279  down_write(&mm->mmap_sem);
2280  ret = do_brk(addr, len);
2281  up_write(&mm->mmap_sem);
2282  return ret;
2283 }
2285 
2286 /* Release all mmaps. */
2287 void exit_mmap(struct mm_struct *mm)
2288 {
2289  struct mmu_gather tlb;
2290  struct vm_area_struct *vma;
2291  unsigned long nr_accounted = 0;
2292 
2293  /* mm's last user has gone, and its about to be pulled down */
2294  mmu_notifier_release(mm);
2295 
2296  if (mm->locked_vm) {
2297  vma = mm->mmap;
2298  while (vma) {
2299  if (vma->vm_flags & VM_LOCKED)
2300  munlock_vma_pages_all(vma);
2301  vma = vma->vm_next;
2302  }
2303  }
2304 
2305  arch_exit_mmap(mm);
2306 
2307  vma = mm->mmap;
2308  if (!vma) /* Can happen if dup_mmap() received an OOM */
2309  return;
2310 
2311  lru_add_drain();
2312  flush_cache_mm(mm);
2313  tlb_gather_mmu(&tlb, mm, 1);
2314  /* update_hiwater_rss(mm) here? but nobody should be looking */
2315  /* Use -1 here to ensure all VMAs in the mm are unmapped */
2316  unmap_vmas(&tlb, vma, 0, -1);
2317 
2318  free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, 0);
2319  tlb_finish_mmu(&tlb, 0, -1);
2320 
2321  /*
2322  * Walk the list again, actually closing and freeing it,
2323  * with preemption enabled, without holding any MM locks.
2324  */
2325  while (vma) {
2326  if (vma->vm_flags & VM_ACCOUNT)
2327  nr_accounted += vma_pages(vma);
2328  vma = remove_vma(vma);
2329  }
2330  vm_unacct_memory(nr_accounted);
2331 
2333 }
2334 
2335 /* Insert vm structure into process list sorted by address
2336  * and into the inode's i_mmap tree. If vm_file is non-NULL
2337  * then i_mmap_mutex is taken here.
2338  */
2339 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
2340 {
2341  struct vm_area_struct *prev;
2342  struct rb_node **rb_link, *rb_parent;
2343 
2344  /*
2345  * The vm_pgoff of a purely anonymous vma should be irrelevant
2346  * until its first write fault, when page's anon_vma and index
2347  * are set. But now set the vm_pgoff it will almost certainly
2348  * end up with (unless mremap moves it elsewhere before that
2349  * first wfault), so /proc/pid/maps tells a consistent story.
2350  *
2351  * By setting it to reflect the virtual start address of the
2352  * vma, merges and splits can happen in a seamless way, just
2353  * using the existing file pgoff checks and manipulations.
2354  * Similarly in do_mmap_pgoff and in do_brk.
2355  */
2356  if (!vma->vm_file) {
2357  BUG_ON(vma->anon_vma);
2358  vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2359  }
2360  if (find_vma_links(mm, vma->vm_start, vma->vm_end,
2361  &prev, &rb_link, &rb_parent))
2362  return -ENOMEM;
2363  if ((vma->vm_flags & VM_ACCOUNT) &&
2364  security_vm_enough_memory_mm(mm, vma_pages(vma)))
2365  return -ENOMEM;
2366 
2367  vma_link(mm, vma, prev, rb_link, rb_parent);
2368  return 0;
2369 }
2370 
2371 /*
2372  * Copy the vma structure to a new location in the same mm,
2373  * prior to moving page table entries, to effect an mremap move.
2374  */
2376  unsigned long addr, unsigned long len, pgoff_t pgoff,
2377  bool *need_rmap_locks)
2378 {
2379  struct vm_area_struct *vma = *vmap;
2380  unsigned long vma_start = vma->vm_start;
2381  struct mm_struct *mm = vma->vm_mm;
2382  struct vm_area_struct *new_vma, *prev;
2383  struct rb_node **rb_link, *rb_parent;
2384  struct mempolicy *pol;
2385  bool faulted_in_anon_vma = true;
2386 
2387  /*
2388  * If anonymous vma has not yet been faulted, update new pgoff
2389  * to match new location, to increase its chance of merging.
2390  */
2391  if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2392  pgoff = addr >> PAGE_SHIFT;
2393  faulted_in_anon_vma = false;
2394  }
2395 
2396  if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
2397  return NULL; /* should never get here */
2398  new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2399  vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2400  if (new_vma) {
2401  /*
2402  * Source vma may have been merged into new_vma
2403  */
2404  if (unlikely(vma_start >= new_vma->vm_start &&
2405  vma_start < new_vma->vm_end)) {
2406  /*
2407  * The only way we can get a vma_merge with
2408  * self during an mremap is if the vma hasn't
2409  * been faulted in yet and we were allowed to
2410  * reset the dst vma->vm_pgoff to the
2411  * destination address of the mremap to allow
2412  * the merge to happen. mremap must change the
2413  * vm_pgoff linearity between src and dst vmas
2414  * (in turn preventing a vma_merge) to be
2415  * safe. It is only safe to keep the vm_pgoff
2416  * linear if there are no pages mapped yet.
2417  */
2418  VM_BUG_ON(faulted_in_anon_vma);
2419  *vmap = vma = new_vma;
2420  }
2421  *need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
2422  } else {
2424  if (new_vma) {
2425  *new_vma = *vma;
2426  new_vma->vm_start = addr;
2427  new_vma->vm_end = addr + len;
2428  new_vma->vm_pgoff = pgoff;
2429  pol = mpol_dup(vma_policy(vma));
2430  if (IS_ERR(pol))
2431  goto out_free_vma;
2432  vma_set_policy(new_vma, pol);
2433  INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2434  if (anon_vma_clone(new_vma, vma))
2435  goto out_free_mempol;
2436  if (new_vma->vm_file)
2437  get_file(new_vma->vm_file);
2438  if (new_vma->vm_ops && new_vma->vm_ops->open)
2439  new_vma->vm_ops->open(new_vma);
2440  vma_link(mm, new_vma, prev, rb_link, rb_parent);
2441  *need_rmap_locks = false;
2442  }
2443  }
2444  return new_vma;
2445 
2446  out_free_mempol:
2447  mpol_put(pol);
2448  out_free_vma:
2449  kmem_cache_free(vm_area_cachep, new_vma);
2450  return NULL;
2451 }
2452 
2453 /*
2454  * Return true if the calling process may expand its vm space by the passed
2455  * number of pages
2456  */
2457 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2458 {
2459  unsigned long cur = mm->total_vm; /* pages */
2460  unsigned long lim;
2461 
2462  lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2463 
2464  if (cur + npages > lim)
2465  return 0;
2466  return 1;
2467 }
2468 
2469 
2470 static int special_mapping_fault(struct vm_area_struct *vma,
2471  struct vm_fault *vmf)
2472 {
2473  pgoff_t pgoff;
2474  struct page **pages;
2475 
2476  /*
2477  * special mappings have no vm_file, and in that case, the mm
2478  * uses vm_pgoff internally. So we have to subtract it from here.
2479  * We are allowed to do this because we are the mm; do not copy
2480  * this code into drivers!
2481  */
2482  pgoff = vmf->pgoff - vma->vm_pgoff;
2483 
2484  for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2485  pgoff--;
2486 
2487  if (*pages) {
2488  struct page *page = *pages;
2489  get_page(page);
2490  vmf->page = page;
2491  return 0;
2492  }
2493 
2494  return VM_FAULT_SIGBUS;
2495 }
2496 
2497 /*
2498  * Having a close hook prevents vma merging regardless of flags.
2499  */
2500 static void special_mapping_close(struct vm_area_struct *vma)
2501 {
2502 }
2503 
2504 static const struct vm_operations_struct special_mapping_vmops = {
2505  .close = special_mapping_close,
2506  .fault = special_mapping_fault,
2507 };
2508 
2509 /*
2510  * Called with mm->mmap_sem held for writing.
2511  * Insert a new vma covering the given region, with the given flags.
2512  * Its pages are supplied by the given array of struct page *.
2513  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2514  * The region past the last page supplied will always produce SIGBUS.
2515  * The array pointer and the pages it points to are assumed to stay alive
2516  * for as long as this mapping might exist.
2517  */
2519  unsigned long addr, unsigned long len,
2520  unsigned long vm_flags, struct page **pages)
2521 {
2522  int ret;
2523  struct vm_area_struct *vma;
2524 
2525  vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2526  if (unlikely(vma == NULL))
2527  return -ENOMEM;
2528 
2529  INIT_LIST_HEAD(&vma->anon_vma_chain);
2530  vma->vm_mm = mm;
2531  vma->vm_start = addr;
2532  vma->vm_end = addr + len;
2533 
2534  vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2535  vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2536 
2537  vma->vm_ops = &special_mapping_vmops;
2538  vma->vm_private_data = pages;
2539 
2540  ret = insert_vm_struct(mm, vma);
2541  if (ret)
2542  goto out;
2543 
2544  mm->total_vm += len >> PAGE_SHIFT;
2545 
2546  perf_event_mmap(vma);
2547 
2548  return 0;
2549 
2550 out:
2552  return ret;
2553 }
2554 
2555 static DEFINE_MUTEX(mm_all_locks_mutex);
2556 
2557 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2558 {
2559  if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2560  /*
2561  * The LSB of head.next can't change from under us
2562  * because we hold the mm_all_locks_mutex.
2563  */
2564  mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2565  /*
2566  * We can safely modify head.next after taking the
2567  * anon_vma->root->mutex. If some other vma in this mm shares
2568  * the same anon_vma we won't take it again.
2569  *
2570  * No need of atomic instructions here, head.next
2571  * can't change from under us thanks to the
2572  * anon_vma->root->mutex.
2573  */
2574  if (__test_and_set_bit(0, (unsigned long *)
2575  &anon_vma->root->rb_root.rb_node))
2576  BUG();
2577  }
2578 }
2579 
2580 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2581 {
2582  if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2583  /*
2584  * AS_MM_ALL_LOCKS can't change from under us because
2585  * we hold the mm_all_locks_mutex.
2586  *
2587  * Operations on ->flags have to be atomic because
2588  * even if AS_MM_ALL_LOCKS is stable thanks to the
2589  * mm_all_locks_mutex, there may be other cpus
2590  * changing other bitflags in parallel to us.
2591  */
2592  if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2593  BUG();
2594  mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2595  }
2596 }
2597 
2598 /*
2599  * This operation locks against the VM for all pte/vma/mm related
2600  * operations that could ever happen on a certain mm. This includes
2601  * vmtruncate, try_to_unmap, and all page faults.
2602  *
2603  * The caller must take the mmap_sem in write mode before calling
2604  * mm_take_all_locks(). The caller isn't allowed to release the
2605  * mmap_sem until mm_drop_all_locks() returns.
2606  *
2607  * mmap_sem in write mode is required in order to block all operations
2608  * that could modify pagetables and free pages without need of
2609  * altering the vma layout (for example populate_range() with
2610  * nonlinear vmas). It's also needed in write mode to avoid new
2611  * anon_vmas to be associated with existing vmas.
2612  *
2613  * A single task can't take more than one mm_take_all_locks() in a row
2614  * or it would deadlock.
2615  *
2616  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2617  * mapping->flags avoid to take the same lock twice, if more than one
2618  * vma in this mm is backed by the same anon_vma or address_space.
2619  *
2620  * We can take all the locks in random order because the VM code
2621  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2622  * takes more than one of them in a row. Secondly we're protected
2623  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2624  *
2625  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2626  * that may have to take thousand of locks.
2627  *
2628  * mm_take_all_locks() can fail if it's interrupted by signals.
2629  */
2631 {
2632  struct vm_area_struct *vma;
2633  struct anon_vma_chain *avc;
2634 
2636 
2637  mutex_lock(&mm_all_locks_mutex);
2638 
2639  for (vma = mm->mmap; vma; vma = vma->vm_next) {
2640  if (signal_pending(current))
2641  goto out_unlock;
2642  if (vma->vm_file && vma->vm_file->f_mapping)
2643  vm_lock_mapping(mm, vma->vm_file->f_mapping);
2644  }
2645 
2646  for (vma = mm->mmap; vma; vma = vma->vm_next) {
2647  if (signal_pending(current))
2648  goto out_unlock;
2649  if (vma->anon_vma)
2651  vm_lock_anon_vma(mm, avc->anon_vma);
2652  }
2653 
2654  return 0;
2655 
2656 out_unlock:
2657  mm_drop_all_locks(mm);
2658  return -EINTR;
2659 }
2660 
2661 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2662 {
2663  if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_node)) {
2664  /*
2665  * The LSB of head.next can't change to 0 from under
2666  * us because we hold the mm_all_locks_mutex.
2667  *
2668  * We must however clear the bitflag before unlocking
2669  * the vma so the users using the anon_vma->rb_root will
2670  * never see our bitflag.
2671  *
2672  * No need of atomic instructions here, head.next
2673  * can't change from under us until we release the
2674  * anon_vma->root->mutex.
2675  */
2676  if (!__test_and_clear_bit(0, (unsigned long *)
2677  &anon_vma->root->rb_root.rb_node))
2678  BUG();
2679  anon_vma_unlock(anon_vma);
2680  }
2681 }
2682 
2683 static void vm_unlock_mapping(struct address_space *mapping)
2684 {
2685  if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2686  /*
2687  * AS_MM_ALL_LOCKS can't change to 0 from under us
2688  * because we hold the mm_all_locks_mutex.
2689  */
2690  mutex_unlock(&mapping->i_mmap_mutex);
2692  &mapping->flags))
2693  BUG();
2694  }
2695 }
2696 
2697 /*
2698  * The mmap_sem cannot be released by the caller until
2699  * mm_drop_all_locks() returns.
2700  */
2702 {
2703  struct vm_area_struct *vma;
2704  struct anon_vma_chain *avc;
2705 
2707  BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2708 
2709  for (vma = mm->mmap; vma; vma = vma->vm_next) {
2710  if (vma->anon_vma)
2712  vm_unlock_anon_vma(avc->anon_vma);
2713  if (vma->vm_file && vma->vm_file->f_mapping)
2714  vm_unlock_mapping(vma->vm_file->f_mapping);
2715  }
2716 
2717  mutex_unlock(&mm_all_locks_mutex);
2718 }
2719 
2720 /*
2721  * initialise the VMA slab
2722  */
2723 void __init mmap_init(void)
2724 {
2725  int ret;
2726 
2727  ret = percpu_counter_init(&vm_committed_as, 0);
2728  VM_BUG_ON(ret);
2729 }