Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
mqueue.c
Go to the documentation of this file.
1 /*
2  * POSIX message queues filesystem for Linux.
3  *
4  * Copyright (C) 2003,2004 Krzysztof Benedyczak ([email protected])
5  * Michal Wronski ([email protected])
6  *
7  * Spinlocks: Mohamed Abbas ([email protected])
8  * Lockless receive & send, fd based notify:
9  * Manfred Spraul ([email protected])
10  *
11  * Audit: George Wilson ([email protected])
12  *
13  * This file is released under the GPL.
14  */
15 
16 #include <linux/capability.h>
17 #include <linux/init.h>
18 #include <linux/pagemap.h>
19 #include <linux/file.h>
20 #include <linux/mount.h>
21 #include <linux/namei.h>
22 #include <linux/sysctl.h>
23 #include <linux/poll.h>
24 #include <linux/mqueue.h>
25 #include <linux/msg.h>
26 #include <linux/skbuff.h>
27 #include <linux/vmalloc.h>
28 #include <linux/netlink.h>
29 #include <linux/syscalls.h>
30 #include <linux/audit.h>
31 #include <linux/signal.h>
32 #include <linux/mutex.h>
33 #include <linux/nsproxy.h>
34 #include <linux/pid.h>
35 #include <linux/ipc_namespace.h>
36 #include <linux/user_namespace.h>
37 #include <linux/slab.h>
38 
39 #include <net/sock.h>
40 #include "util.h"
41 
42 #define MQUEUE_MAGIC 0x19800202
43 #define DIRENT_SIZE 20
44 #define FILENT_SIZE 80
45 
46 #define SEND 0
47 #define RECV 1
48 
49 #define STATE_NONE 0
50 #define STATE_PENDING 1
51 #define STATE_READY 2
52 
54  struct rb_node rb_node;
56  int priority;
57 };
58 
59 struct ext_wait_queue { /* queue of sleeping tasks */
60  struct task_struct *task;
61  struct list_head list;
62  struct msg_msg *msg; /* ptr of loaded message */
63  int state; /* one of STATE_* values */
64 };
65 
68  struct inode vfs_inode;
70 
71  struct rb_root msg_tree;
73  struct mq_attr attr;
74 
75  struct sigevent notify;
76  struct pid* notify_owner;
78  struct user_struct *user; /* user who created, for accounting */
79  struct sock *notify_sock;
81 
82  /* for tasks waiting for free space and messages, respectively */
84 
85  unsigned long qsize; /* size of queue in memory (sum of all msgs) */
86 };
87 
88 static const struct inode_operations mqueue_dir_inode_operations;
89 static const struct file_operations mqueue_file_operations;
90 static const struct super_operations mqueue_super_ops;
91 static void remove_notification(struct mqueue_inode_info *info);
92 
93 static struct kmem_cache *mqueue_inode_cachep;
94 
95 static struct ctl_table_header * mq_sysctl_table;
96 
97 static inline struct mqueue_inode_info *MQUEUE_I(struct inode *inode)
98 {
99  return container_of(inode, struct mqueue_inode_info, vfs_inode);
100 }
101 
102 /*
103  * This routine should be called with the mq_lock held.
104  */
105 static inline struct ipc_namespace *__get_ns_from_inode(struct inode *inode)
106 {
107  return get_ipc_ns(inode->i_sb->s_fs_info);
108 }
109 
110 static struct ipc_namespace *get_ns_from_inode(struct inode *inode)
111 {
112  struct ipc_namespace *ns;
113 
114  spin_lock(&mq_lock);
115  ns = __get_ns_from_inode(inode);
116  spin_unlock(&mq_lock);
117  return ns;
118 }
119 
120 /* Auxiliary functions to manipulate messages' list */
121 static int msg_insert(struct msg_msg *msg, struct mqueue_inode_info *info)
122 {
123  struct rb_node **p, *parent = NULL;
124  struct posix_msg_tree_node *leaf;
125 
126  p = &info->msg_tree.rb_node;
127  while (*p) {
128  parent = *p;
129  leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
130 
131  if (likely(leaf->priority == msg->m_type))
132  goto insert_msg;
133  else if (msg->m_type < leaf->priority)
134  p = &(*p)->rb_left;
135  else
136  p = &(*p)->rb_right;
137  }
138  if (info->node_cache) {
139  leaf = info->node_cache;
140  info->node_cache = NULL;
141  } else {
142  leaf = kmalloc(sizeof(*leaf), GFP_ATOMIC);
143  if (!leaf)
144  return -ENOMEM;
145  INIT_LIST_HEAD(&leaf->msg_list);
146  info->qsize += sizeof(*leaf);
147  }
148  leaf->priority = msg->m_type;
149  rb_link_node(&leaf->rb_node, parent, p);
150  rb_insert_color(&leaf->rb_node, &info->msg_tree);
151 insert_msg:
152  info->attr.mq_curmsgs++;
153  info->qsize += msg->m_ts;
154  list_add_tail(&msg->m_list, &leaf->msg_list);
155  return 0;
156 }
157 
158 static inline struct msg_msg *msg_get(struct mqueue_inode_info *info)
159 {
160  struct rb_node **p, *parent = NULL;
161  struct posix_msg_tree_node *leaf;
162  struct msg_msg *msg;
163 
164 try_again:
165  p = &info->msg_tree.rb_node;
166  while (*p) {
167  parent = *p;
168  /*
169  * During insert, low priorities go to the left and high to the
170  * right. On receive, we want the highest priorities first, so
171  * walk all the way to the right.
172  */
173  p = &(*p)->rb_right;
174  }
175  if (!parent) {
176  if (info->attr.mq_curmsgs) {
177  pr_warn_once("Inconsistency in POSIX message queue, "
178  "no tree element, but supposedly messages "
179  "should exist!\n");
180  info->attr.mq_curmsgs = 0;
181  }
182  return NULL;
183  }
184  leaf = rb_entry(parent, struct posix_msg_tree_node, rb_node);
185  if (unlikely(list_empty(&leaf->msg_list))) {
186  pr_warn_once("Inconsistency in POSIX message queue, "
187  "empty leaf node but we haven't implemented "
188  "lazy leaf delete!\n");
189  rb_erase(&leaf->rb_node, &info->msg_tree);
190  if (info->node_cache) {
191  info->qsize -= sizeof(*leaf);
192  kfree(leaf);
193  } else {
194  info->node_cache = leaf;
195  }
196  goto try_again;
197  } else {
198  msg = list_first_entry(&leaf->msg_list,
199  struct msg_msg, m_list);
200  list_del(&msg->m_list);
201  if (list_empty(&leaf->msg_list)) {
202  rb_erase(&leaf->rb_node, &info->msg_tree);
203  if (info->node_cache) {
204  info->qsize -= sizeof(*leaf);
205  kfree(leaf);
206  } else {
207  info->node_cache = leaf;
208  }
209  }
210  }
211  info->attr.mq_curmsgs--;
212  info->qsize -= msg->m_ts;
213  return msg;
214 }
215 
216 static struct inode *mqueue_get_inode(struct super_block *sb,
217  struct ipc_namespace *ipc_ns, umode_t mode,
218  struct mq_attr *attr)
219 {
220  struct user_struct *u = current_user();
221  struct inode *inode;
222  int ret = -ENOMEM;
223 
224  inode = new_inode(sb);
225  if (!inode)
226  goto err;
227 
228  inode->i_ino = get_next_ino();
229  inode->i_mode = mode;
230  inode->i_uid = current_fsuid();
231  inode->i_gid = current_fsgid();
232  inode->i_mtime = inode->i_ctime = inode->i_atime = CURRENT_TIME;
233 
234  if (S_ISREG(mode)) {
235  struct mqueue_inode_info *info;
236  unsigned long mq_bytes, mq_treesize;
237 
238  inode->i_fop = &mqueue_file_operations;
239  inode->i_size = FILENT_SIZE;
240  /* mqueue specific info */
241  info = MQUEUE_I(inode);
242  spin_lock_init(&info->lock);
243  init_waitqueue_head(&info->wait_q);
244  INIT_LIST_HEAD(&info->e_wait_q[0].list);
245  INIT_LIST_HEAD(&info->e_wait_q[1].list);
246  info->notify_owner = NULL;
247  info->notify_user_ns = NULL;
248  info->qsize = 0;
249  info->user = NULL; /* set when all is ok */
250  info->msg_tree = RB_ROOT;
251  info->node_cache = NULL;
252  memset(&info->attr, 0, sizeof(info->attr));
253  info->attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
254  ipc_ns->mq_msg_default);
255  info->attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
256  ipc_ns->mq_msgsize_default);
257  if (attr) {
258  info->attr.mq_maxmsg = attr->mq_maxmsg;
259  info->attr.mq_msgsize = attr->mq_msgsize;
260  }
261  /*
262  * We used to allocate a static array of pointers and account
263  * the size of that array as well as one msg_msg struct per
264  * possible message into the queue size. That's no longer
265  * accurate as the queue is now an rbtree and will grow and
266  * shrink depending on usage patterns. We can, however, still
267  * account one msg_msg struct per message, but the nodes are
268  * allocated depending on priority usage, and most programs
269  * only use one, or a handful, of priorities. However, since
270  * this is pinned memory, we need to assume worst case, so
271  * that means the min(mq_maxmsg, max_priorities) * struct
272  * posix_msg_tree_node.
273  */
274  mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
275  min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
276  sizeof(struct posix_msg_tree_node);
277 
278  mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
279  info->attr.mq_msgsize);
280 
281  spin_lock(&mq_lock);
282  if (u->mq_bytes + mq_bytes < u->mq_bytes ||
283  u->mq_bytes + mq_bytes > rlimit(RLIMIT_MSGQUEUE)) {
284  spin_unlock(&mq_lock);
285  /* mqueue_evict_inode() releases info->messages */
286  ret = -EMFILE;
287  goto out_inode;
288  }
289  u->mq_bytes += mq_bytes;
290  spin_unlock(&mq_lock);
291 
292  /* all is ok */
293  info->user = get_uid(u);
294  } else if (S_ISDIR(mode)) {
295  inc_nlink(inode);
296  /* Some things misbehave if size == 0 on a directory */
297  inode->i_size = 2 * DIRENT_SIZE;
298  inode->i_op = &mqueue_dir_inode_operations;
299  inode->i_fop = &simple_dir_operations;
300  }
301 
302  return inode;
303 out_inode:
304  iput(inode);
305 err:
306  return ERR_PTR(ret);
307 }
308 
309 static int mqueue_fill_super(struct super_block *sb, void *data, int silent)
310 {
311  struct inode *inode;
312  struct ipc_namespace *ns = data;
313 
316  sb->s_magic = MQUEUE_MAGIC;
317  sb->s_op = &mqueue_super_ops;
318 
319  inode = mqueue_get_inode(sb, ns, S_IFDIR | S_ISVTX | S_IRWXUGO, NULL);
320  if (IS_ERR(inode))
321  return PTR_ERR(inode);
322 
323  sb->s_root = d_make_root(inode);
324  if (!sb->s_root)
325  return -ENOMEM;
326  return 0;
327 }
328 
329 static struct dentry *mqueue_mount(struct file_system_type *fs_type,
330  int flags, const char *dev_name,
331  void *data)
332 {
333  if (!(flags & MS_KERNMOUNT))
334  data = current->nsproxy->ipc_ns;
335  return mount_ns(fs_type, flags, data, mqueue_fill_super);
336 }
337 
338 static void init_once(void *foo)
339 {
340  struct mqueue_inode_info *p = (struct mqueue_inode_info *) foo;
341 
343 }
344 
345 static struct inode *mqueue_alloc_inode(struct super_block *sb)
346 {
347  struct mqueue_inode_info *ei;
348 
349  ei = kmem_cache_alloc(mqueue_inode_cachep, GFP_KERNEL);
350  if (!ei)
351  return NULL;
352  return &ei->vfs_inode;
353 }
354 
355 static void mqueue_i_callback(struct rcu_head *head)
356 {
357  struct inode *inode = container_of(head, struct inode, i_rcu);
358  kmem_cache_free(mqueue_inode_cachep, MQUEUE_I(inode));
359 }
360 
361 static void mqueue_destroy_inode(struct inode *inode)
362 {
363  call_rcu(&inode->i_rcu, mqueue_i_callback);
364 }
365 
366 static void mqueue_evict_inode(struct inode *inode)
367 {
368  struct mqueue_inode_info *info;
369  struct user_struct *user;
370  unsigned long mq_bytes, mq_treesize;
371  struct ipc_namespace *ipc_ns;
372  struct msg_msg *msg;
373 
374  clear_inode(inode);
375 
376  if (S_ISDIR(inode->i_mode))
377  return;
378 
379  ipc_ns = get_ns_from_inode(inode);
380  info = MQUEUE_I(inode);
381  spin_lock(&info->lock);
382  while ((msg = msg_get(info)) != NULL)
383  free_msg(msg);
384  kfree(info->node_cache);
385  spin_unlock(&info->lock);
386 
387  /* Total amount of bytes accounted for the mqueue */
388  mq_treesize = info->attr.mq_maxmsg * sizeof(struct msg_msg) +
389  min_t(unsigned int, info->attr.mq_maxmsg, MQ_PRIO_MAX) *
390  sizeof(struct posix_msg_tree_node);
391 
392  mq_bytes = mq_treesize + (info->attr.mq_maxmsg *
393  info->attr.mq_msgsize);
394 
395  user = info->user;
396  if (user) {
397  spin_lock(&mq_lock);
398  user->mq_bytes -= mq_bytes;
399  /*
400  * get_ns_from_inode() ensures that the
401  * (ipc_ns = sb->s_fs_info) is either a valid ipc_ns
402  * to which we now hold a reference, or it is NULL.
403  * We can't put it here under mq_lock, though.
404  */
405  if (ipc_ns)
406  ipc_ns->mq_queues_count--;
407  spin_unlock(&mq_lock);
408  free_uid(user);
409  }
410  if (ipc_ns)
411  put_ipc_ns(ipc_ns);
412 }
413 
414 static int mqueue_create(struct inode *dir, struct dentry *dentry,
415  umode_t mode, bool excl)
416 {
417  struct inode *inode;
418  struct mq_attr *attr = dentry->d_fsdata;
419  int error;
420  struct ipc_namespace *ipc_ns;
421 
422  spin_lock(&mq_lock);
423  ipc_ns = __get_ns_from_inode(dir);
424  if (!ipc_ns) {
425  error = -EACCES;
426  goto out_unlock;
427  }
428  if (ipc_ns->mq_queues_count >= HARD_QUEUESMAX ||
429  (ipc_ns->mq_queues_count >= ipc_ns->mq_queues_max &&
431  error = -ENOSPC;
432  goto out_unlock;
433  }
434  ipc_ns->mq_queues_count++;
435  spin_unlock(&mq_lock);
436 
437  inode = mqueue_get_inode(dir->i_sb, ipc_ns, mode, attr);
438  if (IS_ERR(inode)) {
439  error = PTR_ERR(inode);
440  spin_lock(&mq_lock);
441  ipc_ns->mq_queues_count--;
442  goto out_unlock;
443  }
444 
445  put_ipc_ns(ipc_ns);
446  dir->i_size += DIRENT_SIZE;
447  dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
448 
449  d_instantiate(dentry, inode);
450  dget(dentry);
451  return 0;
452 out_unlock:
453  spin_unlock(&mq_lock);
454  if (ipc_ns)
455  put_ipc_ns(ipc_ns);
456  return error;
457 }
458 
459 static int mqueue_unlink(struct inode *dir, struct dentry *dentry)
460 {
461  struct inode *inode = dentry->d_inode;
462 
463  dir->i_ctime = dir->i_mtime = dir->i_atime = CURRENT_TIME;
464  dir->i_size -= DIRENT_SIZE;
465  drop_nlink(inode);
466  dput(dentry);
467  return 0;
468 }
469 
470 /*
471 * This is routine for system read from queue file.
472 * To avoid mess with doing here some sort of mq_receive we allow
473 * to read only queue size & notification info (the only values
474 * that are interesting from user point of view and aren't accessible
475 * through std routines)
476 */
477 static ssize_t mqueue_read_file(struct file *filp, char __user *u_data,
478  size_t count, loff_t *off)
479 {
480  struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
481  char buffer[FILENT_SIZE];
482  ssize_t ret;
483 
484  spin_lock(&info->lock);
485  snprintf(buffer, sizeof(buffer),
486  "QSIZE:%-10lu NOTIFY:%-5d SIGNO:%-5d NOTIFY_PID:%-6d\n",
487  info->qsize,
488  info->notify_owner ? info->notify.sigev_notify : 0,
489  (info->notify_owner &&
490  info->notify.sigev_notify == SIGEV_SIGNAL) ?
491  info->notify.sigev_signo : 0,
492  pid_vnr(info->notify_owner));
493  spin_unlock(&info->lock);
494  buffer[sizeof(buffer)-1] = '\0';
495 
496  ret = simple_read_from_buffer(u_data, count, off, buffer,
497  strlen(buffer));
498  if (ret <= 0)
499  return ret;
500 
501  filp->f_path.dentry->d_inode->i_atime = filp->f_path.dentry->d_inode->i_ctime = CURRENT_TIME;
502  return ret;
503 }
504 
505 static int mqueue_flush_file(struct file *filp, fl_owner_t id)
506 {
507  struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
508 
509  spin_lock(&info->lock);
510  if (task_tgid(current) == info->notify_owner)
511  remove_notification(info);
512 
513  spin_unlock(&info->lock);
514  return 0;
515 }
516 
517 static unsigned int mqueue_poll_file(struct file *filp, struct poll_table_struct *poll_tab)
518 {
519  struct mqueue_inode_info *info = MQUEUE_I(filp->f_path.dentry->d_inode);
520  int retval = 0;
521 
522  poll_wait(filp, &info->wait_q, poll_tab);
523 
524  spin_lock(&info->lock);
525  if (info->attr.mq_curmsgs)
526  retval = POLLIN | POLLRDNORM;
527 
528  if (info->attr.mq_curmsgs < info->attr.mq_maxmsg)
529  retval |= POLLOUT | POLLWRNORM;
530  spin_unlock(&info->lock);
531 
532  return retval;
533 }
534 
535 /* Adds current to info->e_wait_q[sr] before element with smaller prio */
536 static void wq_add(struct mqueue_inode_info *info, int sr,
537  struct ext_wait_queue *ewp)
538 {
539  struct ext_wait_queue *walk;
540 
541  ewp->task = current;
542 
543  list_for_each_entry(walk, &info->e_wait_q[sr].list, list) {
544  if (walk->task->static_prio <= current->static_prio) {
545  list_add_tail(&ewp->list, &walk->list);
546  return;
547  }
548  }
549  list_add_tail(&ewp->list, &info->e_wait_q[sr].list);
550 }
551 
552 /*
553  * Puts current task to sleep. Caller must hold queue lock. After return
554  * lock isn't held.
555  * sr: SEND or RECV
556  */
557 static int wq_sleep(struct mqueue_inode_info *info, int sr,
558  ktime_t *timeout, struct ext_wait_queue *ewp)
559 {
560  int retval;
561  signed long time;
562 
563  wq_add(info, sr, ewp);
564 
565  for (;;) {
567 
568  spin_unlock(&info->lock);
569  time = schedule_hrtimeout_range_clock(timeout, 0,
571 
572  while (ewp->state == STATE_PENDING)
573  cpu_relax();
574 
575  if (ewp->state == STATE_READY) {
576  retval = 0;
577  goto out;
578  }
579  spin_lock(&info->lock);
580  if (ewp->state == STATE_READY) {
581  retval = 0;
582  goto out_unlock;
583  }
584  if (signal_pending(current)) {
585  retval = -ERESTARTSYS;
586  break;
587  }
588  if (time == 0) {
589  retval = -ETIMEDOUT;
590  break;
591  }
592  }
593  list_del(&ewp->list);
594 out_unlock:
595  spin_unlock(&info->lock);
596 out:
597  return retval;
598 }
599 
600 /*
601  * Returns waiting task that should be serviced first or NULL if none exists
602  */
603 static struct ext_wait_queue *wq_get_first_waiter(
604  struct mqueue_inode_info *info, int sr)
605 {
606  struct list_head *ptr;
607 
608  ptr = info->e_wait_q[sr].list.prev;
609  if (ptr == &info->e_wait_q[sr].list)
610  return NULL;
611  return list_entry(ptr, struct ext_wait_queue, list);
612 }
613 
614 
615 static inline void set_cookie(struct sk_buff *skb, char code)
616 {
617  ((char*)skb->data)[NOTIFY_COOKIE_LEN-1] = code;
618 }
619 
620 /*
621  * The next function is only to split too long sys_mq_timedsend
622  */
623 static void __do_notify(struct mqueue_inode_info *info)
624 {
625  /* notification
626  * invoked when there is registered process and there isn't process
627  * waiting synchronously for message AND state of queue changed from
628  * empty to not empty. Here we are sure that no one is waiting
629  * synchronously. */
630  if (info->notify_owner &&
631  info->attr.mq_curmsgs == 1) {
632  struct siginfo sig_i;
633  switch (info->notify.sigev_notify) {
634  case SIGEV_NONE:
635  break;
636  case SIGEV_SIGNAL:
637  /* sends signal */
638 
639  sig_i.si_signo = info->notify.sigev_signo;
640  sig_i.si_errno = 0;
641  sig_i.si_code = SI_MESGQ;
642  sig_i.si_value = info->notify.sigev_value;
643  /* map current pid/uid into info->owner's namespaces */
644  rcu_read_lock();
645  sig_i.si_pid = task_tgid_nr_ns(current,
646  ns_of_pid(info->notify_owner));
647  sig_i.si_uid = from_kuid_munged(info->notify_user_ns, current_uid());
648  rcu_read_unlock();
649 
650  kill_pid_info(info->notify.sigev_signo,
651  &sig_i, info->notify_owner);
652  break;
653  case SIGEV_THREAD:
654  set_cookie(info->notify_cookie, NOTIFY_WOKENUP);
656  break;
657  }
658  /* after notification unregisters process */
659  put_pid(info->notify_owner);
660  put_user_ns(info->notify_user_ns);
661  info->notify_owner = NULL;
662  info->notify_user_ns = NULL;
663  }
664  wake_up(&info->wait_q);
665 }
666 
667 static int prepare_timeout(const struct timespec __user *u_abs_timeout,
668  ktime_t *expires, struct timespec *ts)
669 {
670  if (copy_from_user(ts, u_abs_timeout, sizeof(struct timespec)))
671  return -EFAULT;
672  if (!timespec_valid(ts))
673  return -EINVAL;
674 
675  *expires = timespec_to_ktime(*ts);
676  return 0;
677 }
678 
679 static void remove_notification(struct mqueue_inode_info *info)
680 {
681  if (info->notify_owner != NULL &&
682  info->notify.sigev_notify == SIGEV_THREAD) {
683  set_cookie(info->notify_cookie, NOTIFY_REMOVED);
685  }
686  put_pid(info->notify_owner);
687  put_user_ns(info->notify_user_ns);
688  info->notify_owner = NULL;
689  info->notify_user_ns = NULL;
690 }
691 
692 static int mq_attr_ok(struct ipc_namespace *ipc_ns, struct mq_attr *attr)
693 {
694  int mq_treesize;
695  unsigned long total_size;
696 
697  if (attr->mq_maxmsg <= 0 || attr->mq_msgsize <= 0)
698  return -EINVAL;
699  if (capable(CAP_SYS_RESOURCE)) {
700  if (attr->mq_maxmsg > HARD_MSGMAX ||
701  attr->mq_msgsize > HARD_MSGSIZEMAX)
702  return -EINVAL;
703  } else {
704  if (attr->mq_maxmsg > ipc_ns->mq_msg_max ||
705  attr->mq_msgsize > ipc_ns->mq_msgsize_max)
706  return -EINVAL;
707  }
708  /* check for overflow */
709  if (attr->mq_msgsize > ULONG_MAX/attr->mq_maxmsg)
710  return -EOVERFLOW;
711  mq_treesize = attr->mq_maxmsg * sizeof(struct msg_msg) +
712  min_t(unsigned int, attr->mq_maxmsg, MQ_PRIO_MAX) *
713  sizeof(struct posix_msg_tree_node);
714  total_size = attr->mq_maxmsg * attr->mq_msgsize;
715  if (total_size + mq_treesize < total_size)
716  return -EOVERFLOW;
717  return 0;
718 }
719 
720 /*
721  * Invoked when creating a new queue via sys_mq_open
722  */
723 static struct file *do_create(struct ipc_namespace *ipc_ns, struct inode *dir,
724  struct path *path, int oflag, umode_t mode,
725  struct mq_attr *attr)
726 {
727  const struct cred *cred = current_cred();
728  int ret;
729 
730  if (attr) {
731  ret = mq_attr_ok(ipc_ns, attr);
732  if (ret)
733  return ERR_PTR(ret);
734  /* store for use during create */
735  path->dentry->d_fsdata = attr;
736  } else {
737  struct mq_attr def_attr;
738 
739  def_attr.mq_maxmsg = min(ipc_ns->mq_msg_max,
740  ipc_ns->mq_msg_default);
741  def_attr.mq_msgsize = min(ipc_ns->mq_msgsize_max,
742  ipc_ns->mq_msgsize_default);
743  ret = mq_attr_ok(ipc_ns, &def_attr);
744  if (ret)
745  return ERR_PTR(ret);
746  }
747 
748  mode &= ~current_umask();
749  ret = vfs_create(dir, path->dentry, mode, true);
750  path->dentry->d_fsdata = NULL;
751  if (ret)
752  return ERR_PTR(ret);
753  return dentry_open(path, oflag, cred);
754 }
755 
756 /* Opens existing queue */
757 static struct file *do_open(struct path *path, int oflag)
758 {
759  static const int oflag2acc[O_ACCMODE] = { MAY_READ, MAY_WRITE,
760  MAY_READ | MAY_WRITE };
761  int acc;
762  if ((oflag & O_ACCMODE) == (O_RDWR | O_WRONLY))
763  return ERR_PTR(-EINVAL);
764  acc = oflag2acc[oflag & O_ACCMODE];
765  if (inode_permission(path->dentry->d_inode, acc))
766  return ERR_PTR(-EACCES);
767  return dentry_open(path, oflag, current_cred());
768 }
769 
770 SYSCALL_DEFINE4(mq_open, const char __user *, u_name, int, oflag, umode_t, mode,
771  struct mq_attr __user *, u_attr)
772 {
773  struct path path;
774  struct file *filp;
775  struct filename *name;
776  struct mq_attr attr;
777  int fd, error;
778  struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
779  struct vfsmount *mnt = ipc_ns->mq_mnt;
780  struct dentry *root = mnt->mnt_root;
781  int ro;
782 
783  if (u_attr && copy_from_user(&attr, u_attr, sizeof(struct mq_attr)))
784  return -EFAULT;
785 
786  audit_mq_open(oflag, mode, u_attr ? &attr : NULL);
787 
788  if (IS_ERR(name = getname(u_name)))
789  return PTR_ERR(name);
790 
792  if (fd < 0)
793  goto out_putname;
794 
795  ro = mnt_want_write(mnt); /* we'll drop it in any case */
796  error = 0;
797  mutex_lock(&root->d_inode->i_mutex);
798  path.dentry = lookup_one_len(name->name, root, strlen(name->name));
799  if (IS_ERR(path.dentry)) {
800  error = PTR_ERR(path.dentry);
801  goto out_putfd;
802  }
803  path.mnt = mntget(mnt);
804 
805  if (oflag & O_CREAT) {
806  if (path.dentry->d_inode) { /* entry already exists */
807  audit_inode(name, path.dentry, 0);
808  if (oflag & O_EXCL) {
809  error = -EEXIST;
810  goto out;
811  }
812  filp = do_open(&path, oflag);
813  } else {
814  if (ro) {
815  error = ro;
816  goto out;
817  }
818  filp = do_create(ipc_ns, root->d_inode,
819  &path, oflag, mode,
820  u_attr ? &attr : NULL);
821  }
822  } else {
823  if (!path.dentry->d_inode) {
824  error = -ENOENT;
825  goto out;
826  }
827  audit_inode(name, path.dentry, 0);
828  filp = do_open(&path, oflag);
829  }
830 
831  if (!IS_ERR(filp))
832  fd_install(fd, filp);
833  else
834  error = PTR_ERR(filp);
835 out:
836  path_put(&path);
837 out_putfd:
838  if (error) {
839  put_unused_fd(fd);
840  fd = error;
841  }
842  mutex_unlock(&root->d_inode->i_mutex);
843  mnt_drop_write(mnt);
844 out_putname:
845  putname(name);
846  return fd;
847 }
848 
849 SYSCALL_DEFINE1(mq_unlink, const char __user *, u_name)
850 {
851  int err;
852  struct filename *name;
853  struct dentry *dentry;
854  struct inode *inode = NULL;
855  struct ipc_namespace *ipc_ns = current->nsproxy->ipc_ns;
856  struct vfsmount *mnt = ipc_ns->mq_mnt;
857 
858  name = getname(u_name);
859  if (IS_ERR(name))
860  return PTR_ERR(name);
861 
862  err = mnt_want_write(mnt);
863  if (err)
864  goto out_name;
865  mutex_lock_nested(&mnt->mnt_root->d_inode->i_mutex, I_MUTEX_PARENT);
866  dentry = lookup_one_len(name->name, mnt->mnt_root,
867  strlen(name->name));
868  if (IS_ERR(dentry)) {
869  err = PTR_ERR(dentry);
870  goto out_unlock;
871  }
872 
873  inode = dentry->d_inode;
874  if (!inode) {
875  err = -ENOENT;
876  } else {
877  ihold(inode);
878  err = vfs_unlink(dentry->d_parent->d_inode, dentry);
879  }
880  dput(dentry);
881 
882 out_unlock:
883  mutex_unlock(&mnt->mnt_root->d_inode->i_mutex);
884  if (inode)
885  iput(inode);
886  mnt_drop_write(mnt);
887 out_name:
888  putname(name);
889 
890  return err;
891 }
892 
893 /* Pipelined send and receive functions.
894  *
895  * If a receiver finds no waiting message, then it registers itself in the
896  * list of waiting receivers. A sender checks that list before adding the new
897  * message into the message array. If there is a waiting receiver, then it
898  * bypasses the message array and directly hands the message over to the
899  * receiver.
900  * The receiver accepts the message and returns without grabbing the queue
901  * spinlock. Therefore an intermediate STATE_PENDING state and memory barriers
902  * are necessary. The same algorithm is used for sysv semaphores, see
903  * ipc/sem.c for more details.
904  *
905  * The same algorithm is used for senders.
906  */
907 
908 /* pipelined_send() - send a message directly to the task waiting in
909  * sys_mq_timedreceive() (without inserting message into a queue).
910  */
911 static inline void pipelined_send(struct mqueue_inode_info *info,
912  struct msg_msg *message,
913  struct ext_wait_queue *receiver)
914 {
915  receiver->msg = message;
916  list_del(&receiver->list);
917  receiver->state = STATE_PENDING;
918  wake_up_process(receiver->task);
919  smp_wmb();
920  receiver->state = STATE_READY;
921 }
922 
923 /* pipelined_receive() - if there is task waiting in sys_mq_timedsend()
924  * gets its message and put to the queue (we have one free place for sure). */
925 static inline void pipelined_receive(struct mqueue_inode_info *info)
926 {
927  struct ext_wait_queue *sender = wq_get_first_waiter(info, SEND);
928 
929  if (!sender) {
930  /* for poll */
932  return;
933  }
934  if (msg_insert(sender->msg, info))
935  return;
936  list_del(&sender->list);
937  sender->state = STATE_PENDING;
938  wake_up_process(sender->task);
939  smp_wmb();
940  sender->state = STATE_READY;
941 }
942 
943 SYSCALL_DEFINE5(mq_timedsend, mqd_t, mqdes, const char __user *, u_msg_ptr,
944  size_t, msg_len, unsigned int, msg_prio,
945  const struct timespec __user *, u_abs_timeout)
946 {
947  struct fd f;
948  struct inode *inode;
949  struct ext_wait_queue wait;
950  struct ext_wait_queue *receiver;
951  struct msg_msg *msg_ptr;
952  struct mqueue_inode_info *info;
953  ktime_t expires, *timeout = NULL;
954  struct timespec ts;
955  struct posix_msg_tree_node *new_leaf = NULL;
956  int ret = 0;
957 
958  if (u_abs_timeout) {
959  int res = prepare_timeout(u_abs_timeout, &expires, &ts);
960  if (res)
961  return res;
962  timeout = &expires;
963  }
964 
965  if (unlikely(msg_prio >= (unsigned long) MQ_PRIO_MAX))
966  return -EINVAL;
967 
968  audit_mq_sendrecv(mqdes, msg_len, msg_prio, timeout ? &ts : NULL);
969 
970  f = fdget(mqdes);
971  if (unlikely(!f.file)) {
972  ret = -EBADF;
973  goto out;
974  }
975 
976  inode = f.file->f_path.dentry->d_inode;
977  if (unlikely(f.file->f_op != &mqueue_file_operations)) {
978  ret = -EBADF;
979  goto out_fput;
980  }
981  info = MQUEUE_I(inode);
982  audit_inode(NULL, f.file->f_path.dentry, 0);
983 
984  if (unlikely(!(f.file->f_mode & FMODE_WRITE))) {
985  ret = -EBADF;
986  goto out_fput;
987  }
988 
989  if (unlikely(msg_len > info->attr.mq_msgsize)) {
990  ret = -EMSGSIZE;
991  goto out_fput;
992  }
993 
994  /* First try to allocate memory, before doing anything with
995  * existing queues. */
996  msg_ptr = load_msg(u_msg_ptr, msg_len);
997  if (IS_ERR(msg_ptr)) {
998  ret = PTR_ERR(msg_ptr);
999  goto out_fput;
1000  }
1001  msg_ptr->m_ts = msg_len;
1002  msg_ptr->m_type = msg_prio;
1003 
1004  /*
1005  * msg_insert really wants us to have a valid, spare node struct so
1006  * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1007  * fall back to that if necessary.
1008  */
1009  if (!info->node_cache)
1010  new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1011 
1012  spin_lock(&info->lock);
1013 
1014  if (!info->node_cache && new_leaf) {
1015  /* Save our speculative allocation into the cache */
1016  INIT_LIST_HEAD(&new_leaf->msg_list);
1017  info->node_cache = new_leaf;
1018  info->qsize += sizeof(*new_leaf);
1019  new_leaf = NULL;
1020  } else {
1021  kfree(new_leaf);
1022  }
1023 
1024  if (info->attr.mq_curmsgs == info->attr.mq_maxmsg) {
1025  if (f.file->f_flags & O_NONBLOCK) {
1026  ret = -EAGAIN;
1027  } else {
1028  wait.task = current;
1029  wait.msg = (void *) msg_ptr;
1030  wait.state = STATE_NONE;
1031  ret = wq_sleep(info, SEND, timeout, &wait);
1032  /*
1033  * wq_sleep must be called with info->lock held, and
1034  * returns with the lock released
1035  */
1036  goto out_free;
1037  }
1038  } else {
1039  receiver = wq_get_first_waiter(info, RECV);
1040  if (receiver) {
1041  pipelined_send(info, msg_ptr, receiver);
1042  } else {
1043  /* adds message to the queue */
1044  ret = msg_insert(msg_ptr, info);
1045  if (ret)
1046  goto out_unlock;
1047  __do_notify(info);
1048  }
1049  inode->i_atime = inode->i_mtime = inode->i_ctime =
1050  CURRENT_TIME;
1051  }
1052 out_unlock:
1053  spin_unlock(&info->lock);
1054 out_free:
1055  if (ret)
1056  free_msg(msg_ptr);
1057 out_fput:
1058  fdput(f);
1059 out:
1060  return ret;
1061 }
1062 
1063 SYSCALL_DEFINE5(mq_timedreceive, mqd_t, mqdes, char __user *, u_msg_ptr,
1064  size_t, msg_len, unsigned int __user *, u_msg_prio,
1065  const struct timespec __user *, u_abs_timeout)
1066 {
1067  ssize_t ret;
1068  struct msg_msg *msg_ptr;
1069  struct fd f;
1070  struct inode *inode;
1071  struct mqueue_inode_info *info;
1072  struct ext_wait_queue wait;
1073  ktime_t expires, *timeout = NULL;
1074  struct timespec ts;
1075  struct posix_msg_tree_node *new_leaf = NULL;
1076 
1077  if (u_abs_timeout) {
1078  int res = prepare_timeout(u_abs_timeout, &expires, &ts);
1079  if (res)
1080  return res;
1081  timeout = &expires;
1082  }
1083 
1084  audit_mq_sendrecv(mqdes, msg_len, 0, timeout ? &ts : NULL);
1085 
1086  f = fdget(mqdes);
1087  if (unlikely(!f.file)) {
1088  ret = -EBADF;
1089  goto out;
1090  }
1091 
1092  inode = f.file->f_path.dentry->d_inode;
1093  if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1094  ret = -EBADF;
1095  goto out_fput;
1096  }
1097  info = MQUEUE_I(inode);
1098  audit_inode(NULL, f.file->f_path.dentry, 0);
1099 
1100  if (unlikely(!(f.file->f_mode & FMODE_READ))) {
1101  ret = -EBADF;
1102  goto out_fput;
1103  }
1104 
1105  /* checks if buffer is big enough */
1106  if (unlikely(msg_len < info->attr.mq_msgsize)) {
1107  ret = -EMSGSIZE;
1108  goto out_fput;
1109  }
1110 
1111  /*
1112  * msg_insert really wants us to have a valid, spare node struct so
1113  * it doesn't have to kmalloc a GFP_ATOMIC allocation, but it will
1114  * fall back to that if necessary.
1115  */
1116  if (!info->node_cache)
1117  new_leaf = kmalloc(sizeof(*new_leaf), GFP_KERNEL);
1118 
1119  spin_lock(&info->lock);
1120 
1121  if (!info->node_cache && new_leaf) {
1122  /* Save our speculative allocation into the cache */
1123  INIT_LIST_HEAD(&new_leaf->msg_list);
1124  info->node_cache = new_leaf;
1125  info->qsize += sizeof(*new_leaf);
1126  } else {
1127  kfree(new_leaf);
1128  }
1129 
1130  if (info->attr.mq_curmsgs == 0) {
1131  if (f.file->f_flags & O_NONBLOCK) {
1132  spin_unlock(&info->lock);
1133  ret = -EAGAIN;
1134  } else {
1135  wait.task = current;
1136  wait.state = STATE_NONE;
1137  ret = wq_sleep(info, RECV, timeout, &wait);
1138  msg_ptr = wait.msg;
1139  }
1140  } else {
1141  msg_ptr = msg_get(info);
1142 
1143  inode->i_atime = inode->i_mtime = inode->i_ctime =
1144  CURRENT_TIME;
1145 
1146  /* There is now free space in queue. */
1147  pipelined_receive(info);
1148  spin_unlock(&info->lock);
1149  ret = 0;
1150  }
1151  if (ret == 0) {
1152  ret = msg_ptr->m_ts;
1153 
1154  if ((u_msg_prio && put_user(msg_ptr->m_type, u_msg_prio)) ||
1155  store_msg(u_msg_ptr, msg_ptr, msg_ptr->m_ts)) {
1156  ret = -EFAULT;
1157  }
1158  free_msg(msg_ptr);
1159  }
1160 out_fput:
1161  fdput(f);
1162 out:
1163  return ret;
1164 }
1165 
1166 /*
1167  * Notes: the case when user wants us to deregister (with NULL as pointer)
1168  * and he isn't currently owner of notification, will be silently discarded.
1169  * It isn't explicitly defined in the POSIX.
1170  */
1171 SYSCALL_DEFINE2(mq_notify, mqd_t, mqdes,
1172  const struct sigevent __user *, u_notification)
1173 {
1174  int ret;
1175  struct fd f;
1176  struct sock *sock;
1177  struct inode *inode;
1178  struct sigevent notification;
1179  struct mqueue_inode_info *info;
1180  struct sk_buff *nc;
1181 
1182  if (u_notification) {
1183  if (copy_from_user(&notification, u_notification,
1184  sizeof(struct sigevent)))
1185  return -EFAULT;
1186  }
1187 
1188  audit_mq_notify(mqdes, u_notification ? &notification : NULL);
1189 
1190  nc = NULL;
1191  sock = NULL;
1192  if (u_notification != NULL) {
1193  if (unlikely(notification.sigev_notify != SIGEV_NONE &&
1194  notification.sigev_notify != SIGEV_SIGNAL &&
1195  notification.sigev_notify != SIGEV_THREAD))
1196  return -EINVAL;
1197  if (notification.sigev_notify == SIGEV_SIGNAL &&
1198  !valid_signal(notification.sigev_signo)) {
1199  return -EINVAL;
1200  }
1201  if (notification.sigev_notify == SIGEV_THREAD) {
1202  long timeo;
1203 
1204  /* create the notify skb */
1205  nc = alloc_skb(NOTIFY_COOKIE_LEN, GFP_KERNEL);
1206  if (!nc) {
1207  ret = -ENOMEM;
1208  goto out;
1209  }
1210  if (copy_from_user(nc->data,
1211  notification.sigev_value.sival_ptr,
1212  NOTIFY_COOKIE_LEN)) {
1213  ret = -EFAULT;
1214  goto out;
1215  }
1216 
1217  /* TODO: add a header? */
1219  /* and attach it to the socket */
1220 retry:
1221  f = fdget(notification.sigev_signo);
1222  if (!f.file) {
1223  ret = -EBADF;
1224  goto out;
1225  }
1226  sock = netlink_getsockbyfilp(f.file);
1227  fdput(f);
1228  if (IS_ERR(sock)) {
1229  ret = PTR_ERR(sock);
1230  sock = NULL;
1231  goto out;
1232  }
1233 
1234  timeo = MAX_SCHEDULE_TIMEOUT;
1235  ret = netlink_attachskb(sock, nc, &timeo, NULL);
1236  if (ret == 1)
1237  goto retry;
1238  if (ret) {
1239  sock = NULL;
1240  nc = NULL;
1241  goto out;
1242  }
1243  }
1244  }
1245 
1246  f = fdget(mqdes);
1247  if (!f.file) {
1248  ret = -EBADF;
1249  goto out;
1250  }
1251 
1252  inode = f.file->f_path.dentry->d_inode;
1253  if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1254  ret = -EBADF;
1255  goto out_fput;
1256  }
1257  info = MQUEUE_I(inode);
1258 
1259  ret = 0;
1260  spin_lock(&info->lock);
1261  if (u_notification == NULL) {
1262  if (info->notify_owner == task_tgid(current)) {
1263  remove_notification(info);
1264  inode->i_atime = inode->i_ctime = CURRENT_TIME;
1265  }
1266  } else if (info->notify_owner != NULL) {
1267  ret = -EBUSY;
1268  } else {
1269  switch (notification.sigev_notify) {
1270  case SIGEV_NONE:
1271  info->notify.sigev_notify = SIGEV_NONE;
1272  break;
1273  case SIGEV_THREAD:
1274  info->notify_sock = sock;
1275  info->notify_cookie = nc;
1276  sock = NULL;
1277  nc = NULL;
1278  info->notify.sigev_notify = SIGEV_THREAD;
1279  break;
1280  case SIGEV_SIGNAL:
1281  info->notify.sigev_signo = notification.sigev_signo;
1282  info->notify.sigev_value = notification.sigev_value;
1283  info->notify.sigev_notify = SIGEV_SIGNAL;
1284  break;
1285  }
1286 
1287  info->notify_owner = get_pid(task_tgid(current));
1288  info->notify_user_ns = get_user_ns(current_user_ns());
1289  inode->i_atime = inode->i_ctime = CURRENT_TIME;
1290  }
1291  spin_unlock(&info->lock);
1292 out_fput:
1293  fdput(f);
1294 out:
1295  if (sock) {
1296  netlink_detachskb(sock, nc);
1297  } else if (nc) {
1298  dev_kfree_skb(nc);
1299  }
1300  return ret;
1301 }
1302 
1303 SYSCALL_DEFINE3(mq_getsetattr, mqd_t, mqdes,
1304  const struct mq_attr __user *, u_mqstat,
1305  struct mq_attr __user *, u_omqstat)
1306 {
1307  int ret;
1308  struct mq_attr mqstat, omqstat;
1309  struct fd f;
1310  struct inode *inode;
1311  struct mqueue_inode_info *info;
1312 
1313  if (u_mqstat != NULL) {
1314  if (copy_from_user(&mqstat, u_mqstat, sizeof(struct mq_attr)))
1315  return -EFAULT;
1316  if (mqstat.mq_flags & (~O_NONBLOCK))
1317  return -EINVAL;
1318  }
1319 
1320  f = fdget(mqdes);
1321  if (!f.file) {
1322  ret = -EBADF;
1323  goto out;
1324  }
1325 
1326  inode = f.file->f_path.dentry->d_inode;
1327  if (unlikely(f.file->f_op != &mqueue_file_operations)) {
1328  ret = -EBADF;
1329  goto out_fput;
1330  }
1331  info = MQUEUE_I(inode);
1332 
1333  spin_lock(&info->lock);
1334 
1335  omqstat = info->attr;
1336  omqstat.mq_flags = f.file->f_flags & O_NONBLOCK;
1337  if (u_mqstat) {
1338  audit_mq_getsetattr(mqdes, &mqstat);
1339  spin_lock(&f.file->f_lock);
1340  if (mqstat.mq_flags & O_NONBLOCK)
1341  f.file->f_flags |= O_NONBLOCK;
1342  else
1343  f.file->f_flags &= ~O_NONBLOCK;
1344  spin_unlock(&f.file->f_lock);
1345 
1346  inode->i_atime = inode->i_ctime = CURRENT_TIME;
1347  }
1348 
1349  spin_unlock(&info->lock);
1350 
1351  ret = 0;
1352  if (u_omqstat != NULL && copy_to_user(u_omqstat, &omqstat,
1353  sizeof(struct mq_attr)))
1354  ret = -EFAULT;
1355 
1356 out_fput:
1357  fdput(f);
1358 out:
1359  return ret;
1360 }
1361 
1362 static const struct inode_operations mqueue_dir_inode_operations = {
1363  .lookup = simple_lookup,
1364  .create = mqueue_create,
1365  .unlink = mqueue_unlink,
1366 };
1367 
1368 static const struct file_operations mqueue_file_operations = {
1369  .flush = mqueue_flush_file,
1370  .poll = mqueue_poll_file,
1371  .read = mqueue_read_file,
1372  .llseek = default_llseek,
1373 };
1374 
1375 static const struct super_operations mqueue_super_ops = {
1376  .alloc_inode = mqueue_alloc_inode,
1377  .destroy_inode = mqueue_destroy_inode,
1378  .evict_inode = mqueue_evict_inode,
1379  .statfs = simple_statfs,
1380 };
1381 
1382 static struct file_system_type mqueue_fs_type = {
1383  .name = "mqueue",
1384  .mount = mqueue_mount,
1385  .kill_sb = kill_litter_super,
1386 };
1387 
1388 int mq_init_ns(struct ipc_namespace *ns)
1389 {
1390  ns->mq_queues_count = 0;
1391  ns->mq_queues_max = DFLT_QUEUESMAX;
1392  ns->mq_msg_max = DFLT_MSGMAX;
1393  ns->mq_msgsize_max = DFLT_MSGSIZEMAX;
1394  ns->mq_msg_default = DFLT_MSG;
1395  ns->mq_msgsize_default = DFLT_MSGSIZE;
1396 
1397  ns->mq_mnt = kern_mount_data(&mqueue_fs_type, ns);
1398  if (IS_ERR(ns->mq_mnt)) {
1399  int err = PTR_ERR(ns->mq_mnt);
1400  ns->mq_mnt = NULL;
1401  return err;
1402  }
1403  return 0;
1404 }
1405 
1407 {
1408  ns->mq_mnt->mnt_sb->s_fs_info = NULL;
1409 }
1410 
1411 void mq_put_mnt(struct ipc_namespace *ns)
1412 {
1413  kern_unmount(ns->mq_mnt);
1414 }
1415 
1416 static int __init init_mqueue_fs(void)
1417 {
1418  int error;
1419 
1420  mqueue_inode_cachep = kmem_cache_create("mqueue_inode_cache",
1421  sizeof(struct mqueue_inode_info), 0,
1422  SLAB_HWCACHE_ALIGN, init_once);
1423  if (mqueue_inode_cachep == NULL)
1424  return -ENOMEM;
1425 
1426  /* ignore failures - they are not fatal */
1427  mq_sysctl_table = mq_register_sysctl_table();
1428 
1429  error = register_filesystem(&mqueue_fs_type);
1430  if (error)
1431  goto out_sysctl;
1432 
1433  spin_lock_init(&mq_lock);
1434 
1435  error = mq_init_ns(&init_ipc_ns);
1436  if (error)
1437  goto out_filesystem;
1438 
1439  return 0;
1440 
1441 out_filesystem:
1442  unregister_filesystem(&mqueue_fs_type);
1443 out_sysctl:
1444  if (mq_sysctl_table)
1445  unregister_sysctl_table(mq_sysctl_table);
1446  kmem_cache_destroy(mqueue_inode_cachep);
1447  return error;
1448 }
1449 
1450 __initcall(init_mqueue_fs);