Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
nand_base.c
Go to the documentation of this file.
1 /*
2  * drivers/mtd/nand.c
3  *
4  * Overview:
5  * This is the generic MTD driver for NAND flash devices. It should be
6  * capable of working with almost all NAND chips currently available.
7  * Basic support for AG-AND chips is provided.
8  *
9  * Additional technical information is available on
10  * http://www.linux-mtd.infradead.org/doc/nand.html
11  *
12  * Copyright (C) 2000 Steven J. Hill ([email protected])
13  * 2002-2006 Thomas Gleixner ([email protected])
14  *
15  * Credits:
16  * David Woodhouse for adding multichip support
17  *
18  * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  * rework for 2K page size chips
20  *
21  * TODO:
22  * Enable cached programming for 2k page size chips
23  * Check, if mtd->ecctype should be set to MTD_ECC_HW
24  * if we have HW ECC support.
25  * The AG-AND chips have nice features for speed improvement,
26  * which are not supported yet. Read / program 4 pages in one go.
27  * BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50 #include <linux/mtd/partitions.h>
51 
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
54  .eccbytes = 3,
55  .eccpos = {0, 1, 2},
56  .oobfree = {
57  {.offset = 3,
58  .length = 2},
59  {.offset = 6,
60  .length = 2} }
61 };
62 
63 static struct nand_ecclayout nand_oob_16 = {
64  .eccbytes = 6,
65  .eccpos = {0, 1, 2, 3, 6, 7},
66  .oobfree = {
67  {.offset = 8,
68  . length = 8} }
69 };
70 
71 static struct nand_ecclayout nand_oob_64 = {
72  .eccbytes = 24,
73  .eccpos = {
74  40, 41, 42, 43, 44, 45, 46, 47,
75  48, 49, 50, 51, 52, 53, 54, 55,
76  56, 57, 58, 59, 60, 61, 62, 63},
77  .oobfree = {
78  {.offset = 2,
79  .length = 38} }
80 };
81 
82 static struct nand_ecclayout nand_oob_128 = {
83  .eccbytes = 48,
84  .eccpos = {
85  80, 81, 82, 83, 84, 85, 86, 87,
86  88, 89, 90, 91, 92, 93, 94, 95,
87  96, 97, 98, 99, 100, 101, 102, 103,
88  104, 105, 106, 107, 108, 109, 110, 111,
89  112, 113, 114, 115, 116, 117, 118, 119,
90  120, 121, 122, 123, 124, 125, 126, 127},
91  .oobfree = {
92  {.offset = 2,
93  .length = 78} }
94 };
95 
96 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
97  int new_state);
98 
99 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
100  struct mtd_oob_ops *ops);
101 
102 /*
103  * For devices which display every fart in the system on a separate LED. Is
104  * compiled away when LED support is disabled.
105  */
106 DEFINE_LED_TRIGGER(nand_led_trigger);
107 
108 static int check_offs_len(struct mtd_info *mtd,
109  loff_t ofs, uint64_t len)
110 {
111  struct nand_chip *chip = mtd->priv;
112  int ret = 0;
113 
114  /* Start address must align on block boundary */
115  if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
116  pr_debug("%s: unaligned address\n", __func__);
117  ret = -EINVAL;
118  }
119 
120  /* Length must align on block boundary */
121  if (len & ((1 << chip->phys_erase_shift) - 1)) {
122  pr_debug("%s: length not block aligned\n", __func__);
123  ret = -EINVAL;
124  }
125 
126  return ret;
127 }
128 
135 static void nand_release_device(struct mtd_info *mtd)
136 {
137  struct nand_chip *chip = mtd->priv;
138 
139  /* De-select the NAND device */
140  chip->select_chip(mtd, -1);
141 
142  /* Release the controller and the chip */
143  spin_lock(&chip->controller->lock);
144  chip->controller->active = NULL;
145  chip->state = FL_READY;
146  wake_up(&chip->controller->wq);
147  spin_unlock(&chip->controller->lock);
148 }
149 
156 static uint8_t nand_read_byte(struct mtd_info *mtd)
157 {
158  struct nand_chip *chip = mtd->priv;
159  return readb(chip->IO_ADDR_R);
160 }
161 
170 static uint8_t nand_read_byte16(struct mtd_info *mtd)
171 {
172  struct nand_chip *chip = mtd->priv;
173  return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
174 }
175 
182 static u16 nand_read_word(struct mtd_info *mtd)
183 {
184  struct nand_chip *chip = mtd->priv;
185  return readw(chip->IO_ADDR_R);
186 }
187 
195 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
196 {
197  struct nand_chip *chip = mtd->priv;
198 
199  switch (chipnr) {
200  case -1:
201  chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
202  break;
203  case 0:
204  break;
205 
206  default:
207  BUG();
208  }
209 }
210 
219 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
220 {
221  int i;
222  struct nand_chip *chip = mtd->priv;
223 
224  for (i = 0; i < len; i++)
225  writeb(buf[i], chip->IO_ADDR_W);
226 }
227 
236 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
237 {
238  int i;
239  struct nand_chip *chip = mtd->priv;
240 
241  for (i = 0; i < len; i++)
242  buf[i] = readb(chip->IO_ADDR_R);
243 }
244 
253 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
254 {
255  int i;
256  struct nand_chip *chip = mtd->priv;
257  u16 *p = (u16 *) buf;
258  len >>= 1;
259 
260  for (i = 0; i < len; i++)
261  writew(p[i], chip->IO_ADDR_W);
262 
263 }
264 
273 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
274 {
275  int i;
276  struct nand_chip *chip = mtd->priv;
277  u16 *p = (u16 *) buf;
278  len >>= 1;
279 
280  for (i = 0; i < len; i++)
281  p[i] = readw(chip->IO_ADDR_R);
282 }
283 
292 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
293 {
294  int page, chipnr, res = 0, i = 0;
295  struct nand_chip *chip = mtd->priv;
296  u16 bad;
297 
299  ofs += mtd->erasesize - mtd->writesize;
300 
301  page = (int)(ofs >> chip->page_shift) & chip->pagemask;
302 
303  if (getchip) {
304  chipnr = (int)(ofs >> chip->chip_shift);
305 
306  nand_get_device(chip, mtd, FL_READING);
307 
308  /* Select the NAND device */
309  chip->select_chip(mtd, chipnr);
310  }
311 
312  do {
313  if (chip->options & NAND_BUSWIDTH_16) {
314  chip->cmdfunc(mtd, NAND_CMD_READOOB,
315  chip->badblockpos & 0xFE, page);
316  bad = cpu_to_le16(chip->read_word(mtd));
317  if (chip->badblockpos & 0x1)
318  bad >>= 8;
319  else
320  bad &= 0xFF;
321  } else {
322  chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
323  page);
324  bad = chip->read_byte(mtd);
325  }
326 
327  if (likely(chip->badblockbits == 8))
328  res = bad != 0xFF;
329  else
330  res = hweight8(bad) < chip->badblockbits;
331  ofs += mtd->writesize;
332  page = (int)(ofs >> chip->page_shift) & chip->pagemask;
333  i++;
334  } while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
335 
336  if (getchip)
337  nand_release_device(mtd);
338 
339  return res;
340 }
341 
357 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
358 {
359  struct nand_chip *chip = mtd->priv;
360  uint8_t buf[2] = { 0, 0 };
361  int block, res, ret = 0, i = 0;
362  int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
363 
364  if (write_oob) {
365  struct erase_info einfo;
366 
367  /* Attempt erase before marking OOB */
368  memset(&einfo, 0, sizeof(einfo));
369  einfo.mtd = mtd;
370  einfo.addr = ofs;
371  einfo.len = 1 << chip->phys_erase_shift;
372  nand_erase_nand(mtd, &einfo, 0);
373  }
374 
375  /* Get block number */
376  block = (int)(ofs >> chip->bbt_erase_shift);
377  /* Mark block bad in memory-based BBT */
378  if (chip->bbt)
379  chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
380 
381  /* Write bad block marker to OOB */
382  if (write_oob) {
383  struct mtd_oob_ops ops;
384  loff_t wr_ofs = ofs;
385 
386  nand_get_device(chip, mtd, FL_WRITING);
387 
388  ops.datbuf = NULL;
389  ops.oobbuf = buf;
390  ops.ooboffs = chip->badblockpos;
391  if (chip->options & NAND_BUSWIDTH_16) {
392  ops.ooboffs &= ~0x01;
393  ops.len = ops.ooblen = 2;
394  } else {
395  ops.len = ops.ooblen = 1;
396  }
397  ops.mode = MTD_OPS_PLACE_OOB;
398 
399  /* Write to first/last page(s) if necessary */
401  wr_ofs += mtd->erasesize - mtd->writesize;
402  do {
403  res = nand_do_write_oob(mtd, wr_ofs, &ops);
404  if (!ret)
405  ret = res;
406 
407  i++;
408  wr_ofs += mtd->writesize;
409  } while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
410 
411  nand_release_device(mtd);
412  }
413 
414  /* Update flash-based bad block table */
415  if (chip->bbt_options & NAND_BBT_USE_FLASH) {
416  res = nand_update_bbt(mtd, ofs);
417  if (!ret)
418  ret = res;
419  }
420 
421  if (!ret)
422  mtd->ecc_stats.badblocks++;
423 
424  return ret;
425 }
426 
434 static int nand_check_wp(struct mtd_info *mtd)
435 {
436  struct nand_chip *chip = mtd->priv;
437 
438  /* Broken xD cards report WP despite being writable */
439  if (chip->options & NAND_BROKEN_XD)
440  return 0;
441 
442  /* Check the WP bit */
443  chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
444  return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
445 }
446 
457 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
458  int allowbbt)
459 {
460  struct nand_chip *chip = mtd->priv;
461 
462  if (!chip->bbt)
463  return chip->block_bad(mtd, ofs, getchip);
464 
465  /* Return info from the table */
466  return nand_isbad_bbt(mtd, ofs, allowbbt);
467 }
468 
477 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
478 {
479  struct nand_chip *chip = mtd->priv;
480  int i;
481 
482  /* Wait for the device to get ready */
483  for (i = 0; i < timeo; i++) {
484  if (chip->dev_ready(mtd))
485  break;
487  mdelay(1);
488  }
489 }
490 
491 /* Wait for the ready pin, after a command. The timeout is caught later. */
492 void nand_wait_ready(struct mtd_info *mtd)
493 {
494  struct nand_chip *chip = mtd->priv;
495  unsigned long timeo = jiffies + 2;
496 
497  /* 400ms timeout */
499  return panic_nand_wait_ready(mtd, 400);
500 
501  led_trigger_event(nand_led_trigger, LED_FULL);
502  /* Wait until command is processed or timeout occurs */
503  do {
504  if (chip->dev_ready(mtd))
505  break;
507  } while (time_before(jiffies, timeo));
508  led_trigger_event(nand_led_trigger, LED_OFF);
509 }
511 
522 static void nand_command(struct mtd_info *mtd, unsigned int command,
523  int column, int page_addr)
524 {
525  register struct nand_chip *chip = mtd->priv;
527 
528  /* Write out the command to the device */
529  if (command == NAND_CMD_SEQIN) {
530  int readcmd;
531 
532  if (column >= mtd->writesize) {
533  /* OOB area */
534  column -= mtd->writesize;
535  readcmd = NAND_CMD_READOOB;
536  } else if (column < 256) {
537  /* First 256 bytes --> READ0 */
538  readcmd = NAND_CMD_READ0;
539  } else {
540  column -= 256;
541  readcmd = NAND_CMD_READ1;
542  }
543  chip->cmd_ctrl(mtd, readcmd, ctrl);
544  ctrl &= ~NAND_CTRL_CHANGE;
545  }
546  chip->cmd_ctrl(mtd, command, ctrl);
547 
548  /* Address cycle, when necessary */
550  /* Serially input address */
551  if (column != -1) {
552  /* Adjust columns for 16 bit buswidth */
553  if (chip->options & NAND_BUSWIDTH_16)
554  column >>= 1;
555  chip->cmd_ctrl(mtd, column, ctrl);
556  ctrl &= ~NAND_CTRL_CHANGE;
557  }
558  if (page_addr != -1) {
559  chip->cmd_ctrl(mtd, page_addr, ctrl);
560  ctrl &= ~NAND_CTRL_CHANGE;
561  chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
562  /* One more address cycle for devices > 32MiB */
563  if (chip->chipsize > (32 << 20))
564  chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
565  }
567 
568  /*
569  * Program and erase have their own busy handlers status and sequential
570  * in needs no delay
571  */
572  switch (command) {
573 
574  case NAND_CMD_PAGEPROG:
575  case NAND_CMD_ERASE1:
576  case NAND_CMD_ERASE2:
577  case NAND_CMD_SEQIN:
578  case NAND_CMD_STATUS:
579  return;
580 
581  case NAND_CMD_RESET:
582  if (chip->dev_ready)
583  break;
584  udelay(chip->chip_delay);
585  chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
587  chip->cmd_ctrl(mtd,
589  while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
590  ;
591  return;
592 
593  /* This applies to read commands */
594  default:
595  /*
596  * If we don't have access to the busy pin, we apply the given
597  * command delay
598  */
599  if (!chip->dev_ready) {
600  udelay(chip->chip_delay);
601  return;
602  }
603  }
604  /*
605  * Apply this short delay always to ensure that we do wait tWB in
606  * any case on any machine.
607  */
608  ndelay(100);
609 
610  nand_wait_ready(mtd);
611 }
612 
624 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
625  int column, int page_addr)
626 {
627  register struct nand_chip *chip = mtd->priv;
628 
629  /* Emulate NAND_CMD_READOOB */
630  if (command == NAND_CMD_READOOB) {
631  column += mtd->writesize;
632  command = NAND_CMD_READ0;
633  }
634 
635  /* Command latch cycle */
636  chip->cmd_ctrl(mtd, command & 0xff,
638 
639  if (column != -1 || page_addr != -1) {
640  int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
641 
642  /* Serially input address */
643  if (column != -1) {
644  /* Adjust columns for 16 bit buswidth */
645  if (chip->options & NAND_BUSWIDTH_16)
646  column >>= 1;
647  chip->cmd_ctrl(mtd, column, ctrl);
648  ctrl &= ~NAND_CTRL_CHANGE;
649  chip->cmd_ctrl(mtd, column >> 8, ctrl);
650  }
651  if (page_addr != -1) {
652  chip->cmd_ctrl(mtd, page_addr, ctrl);
653  chip->cmd_ctrl(mtd, page_addr >> 8,
654  NAND_NCE | NAND_ALE);
655  /* One more address cycle for devices > 128MiB */
656  if (chip->chipsize > (128 << 20))
657  chip->cmd_ctrl(mtd, page_addr >> 16,
658  NAND_NCE | NAND_ALE);
659  }
660  }
662 
663  /*
664  * Program and erase have their own busy handlers status, sequential
665  * in, and deplete1 need no delay.
666  */
667  switch (command) {
668 
669  case NAND_CMD_CACHEDPROG:
670  case NAND_CMD_PAGEPROG:
671  case NAND_CMD_ERASE1:
672  case NAND_CMD_ERASE2:
673  case NAND_CMD_SEQIN:
674  case NAND_CMD_RNDIN:
675  case NAND_CMD_STATUS:
676  case NAND_CMD_DEPLETE1:
677  return;
678 
684  /* Read error status commands require only a short delay */
685  udelay(chip->chip_delay);
686  return;
687 
688  case NAND_CMD_RESET:
689  if (chip->dev_ready)
690  break;
691  udelay(chip->chip_delay);
692  chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
694  chip->cmd_ctrl(mtd, NAND_CMD_NONE,
696  while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
697  ;
698  return;
699 
700  case NAND_CMD_RNDOUT:
701  /* No ready / busy check necessary */
702  chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
704  chip->cmd_ctrl(mtd, NAND_CMD_NONE,
706  return;
707 
708  case NAND_CMD_READ0:
709  chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
711  chip->cmd_ctrl(mtd, NAND_CMD_NONE,
713 
714  /* This applies to read commands */
715  default:
716  /*
717  * If we don't have access to the busy pin, we apply the given
718  * command delay.
719  */
720  if (!chip->dev_ready) {
721  udelay(chip->chip_delay);
722  return;
723  }
724  }
725 
726  /*
727  * Apply this short delay always to ensure that we do wait tWB in
728  * any case on any machine.
729  */
730  ndelay(100);
731 
732  nand_wait_ready(mtd);
733 }
734 
743 static void panic_nand_get_device(struct nand_chip *chip,
744  struct mtd_info *mtd, int new_state)
745 {
746  /* Hardware controller shared among independent devices */
747  chip->controller->active = chip;
748  chip->state = new_state;
749 }
750 
759 static int
760 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
761 {
762  spinlock_t *lock = &chip->controller->lock;
763  wait_queue_head_t *wq = &chip->controller->wq;
765 retry:
766  spin_lock(lock);
767 
768  /* Hardware controller shared among independent devices */
769  if (!chip->controller->active)
770  chip->controller->active = chip;
771 
772  if (chip->controller->active == chip && chip->state == FL_READY) {
773  chip->state = new_state;
774  spin_unlock(lock);
775  return 0;
776  }
777  if (new_state == FL_PM_SUSPENDED) {
778  if (chip->controller->active->state == FL_PM_SUSPENDED) {
779  chip->state = FL_PM_SUSPENDED;
780  spin_unlock(lock);
781  return 0;
782  }
783  }
785  add_wait_queue(wq, &wait);
786  spin_unlock(lock);
787  schedule();
788  remove_wait_queue(wq, &wait);
789  goto retry;
790 }
791 
802 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
803  unsigned long timeo)
804 {
805  int i;
806  for (i = 0; i < timeo; i++) {
807  if (chip->dev_ready) {
808  if (chip->dev_ready(mtd))
809  break;
810  } else {
811  if (chip->read_byte(mtd) & NAND_STATUS_READY)
812  break;
813  }
814  mdelay(1);
815  }
816 }
817 
827 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
828 {
829 
830  unsigned long timeo = jiffies;
831  int status, state = chip->state;
832 
833  if (state == FL_ERASING)
834  timeo += (HZ * 400) / 1000;
835  else
836  timeo += (HZ * 20) / 1000;
837 
838  led_trigger_event(nand_led_trigger, LED_FULL);
839 
840  /*
841  * Apply this short delay always to ensure that we do wait tWB in any
842  * case on any machine.
843  */
844  ndelay(100);
845 
846  if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
847  chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
848  else
849  chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
850 
852  panic_nand_wait(mtd, chip, timeo);
853  else {
854  while (time_before(jiffies, timeo)) {
855  if (chip->dev_ready) {
856  if (chip->dev_ready(mtd))
857  break;
858  } else {
859  if (chip->read_byte(mtd) & NAND_STATUS_READY)
860  break;
861  }
862  cond_resched();
863  }
864  }
865  led_trigger_event(nand_led_trigger, LED_OFF);
866 
867  status = (int)chip->read_byte(mtd);
868  return status;
869 }
870 
883 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
884  uint64_t len, int invert)
885 {
886  int ret = 0;
887  int status, page;
888  struct nand_chip *chip = mtd->priv;
889 
890  /* Submit address of first page to unlock */
891  page = ofs >> chip->page_shift;
892  chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
893 
894  /* Submit address of last page to unlock */
895  page = (ofs + len) >> chip->page_shift;
896  chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
897  (page | invert) & chip->pagemask);
898 
899  /* Call wait ready function */
900  status = chip->waitfunc(mtd, chip);
901  /* See if device thinks it succeeded */
902  if (status & 0x01) {
903  pr_debug("%s: error status = 0x%08x\n",
904  __func__, status);
905  ret = -EIO;
906  }
907 
908  return ret;
909 }
910 
919 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
920 {
921  int ret = 0;
922  int chipnr;
923  struct nand_chip *chip = mtd->priv;
924 
925  pr_debug("%s: start = 0x%012llx, len = %llu\n",
926  __func__, (unsigned long long)ofs, len);
927 
928  if (check_offs_len(mtd, ofs, len))
929  ret = -EINVAL;
930 
931  /* Align to last block address if size addresses end of the device */
932  if (ofs + len == mtd->size)
933  len -= mtd->erasesize;
934 
935  nand_get_device(chip, mtd, FL_UNLOCKING);
936 
937  /* Shift to get chip number */
938  chipnr = ofs >> chip->chip_shift;
939 
940  chip->select_chip(mtd, chipnr);
941 
942  /* Check, if it is write protected */
943  if (nand_check_wp(mtd)) {
944  pr_debug("%s: device is write protected!\n",
945  __func__);
946  ret = -EIO;
947  goto out;
948  }
949 
950  ret = __nand_unlock(mtd, ofs, len, 0);
951 
952 out:
953  nand_release_device(mtd);
954 
955  return ret;
956 }
958 
972 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
973 {
974  int ret = 0;
975  int chipnr, status, page;
976  struct nand_chip *chip = mtd->priv;
977 
978  pr_debug("%s: start = 0x%012llx, len = %llu\n",
979  __func__, (unsigned long long)ofs, len);
980 
981  if (check_offs_len(mtd, ofs, len))
982  ret = -EINVAL;
983 
984  nand_get_device(chip, mtd, FL_LOCKING);
985 
986  /* Shift to get chip number */
987  chipnr = ofs >> chip->chip_shift;
988 
989  chip->select_chip(mtd, chipnr);
990 
991  /* Check, if it is write protected */
992  if (nand_check_wp(mtd)) {
993  pr_debug("%s: device is write protected!\n",
994  __func__);
995  status = MTD_ERASE_FAILED;
996  ret = -EIO;
997  goto out;
998  }
999 
1000  /* Submit address of first page to lock */
1001  page = ofs >> chip->page_shift;
1002  chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1003 
1004  /* Call wait ready function */
1005  status = chip->waitfunc(mtd, chip);
1006  /* See if device thinks it succeeded */
1007  if (status & 0x01) {
1008  pr_debug("%s: error status = 0x%08x\n",
1009  __func__, status);
1010  ret = -EIO;
1011  goto out;
1012  }
1013 
1014  ret = __nand_unlock(mtd, ofs, len, 0x1);
1015 
1016 out:
1017  nand_release_device(mtd);
1018 
1019  return ret;
1020 }
1022 
1033 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1034  uint8_t *buf, int oob_required, int page)
1035 {
1036  chip->read_buf(mtd, buf, mtd->writesize);
1037  if (oob_required)
1038  chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1039  return 0;
1040 }
1041 
1052 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1053  struct nand_chip *chip, uint8_t *buf,
1054  int oob_required, int page)
1055 {
1056  int eccsize = chip->ecc.size;
1057  int eccbytes = chip->ecc.bytes;
1058  uint8_t *oob = chip->oob_poi;
1059  int steps, size;
1060 
1061  for (steps = chip->ecc.steps; steps > 0; steps--) {
1062  chip->read_buf(mtd, buf, eccsize);
1063  buf += eccsize;
1064 
1065  if (chip->ecc.prepad) {
1066  chip->read_buf(mtd, oob, chip->ecc.prepad);
1067  oob += chip->ecc.prepad;
1068  }
1069 
1070  chip->read_buf(mtd, oob, eccbytes);
1071  oob += eccbytes;
1072 
1073  if (chip->ecc.postpad) {
1074  chip->read_buf(mtd, oob, chip->ecc.postpad);
1075  oob += chip->ecc.postpad;
1076  }
1077  }
1078 
1079  size = mtd->oobsize - (oob - chip->oob_poi);
1080  if (size)
1081  chip->read_buf(mtd, oob, size);
1082 
1083  return 0;
1084 }
1085 
1094 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1095  uint8_t *buf, int oob_required, int page)
1096 {
1097  int i, eccsize = chip->ecc.size;
1098  int eccbytes = chip->ecc.bytes;
1099  int eccsteps = chip->ecc.steps;
1100  uint8_t *p = buf;
1101  uint8_t *ecc_calc = chip->buffers->ecccalc;
1102  uint8_t *ecc_code = chip->buffers->ecccode;
1103  uint32_t *eccpos = chip->ecc.layout->eccpos;
1104  unsigned int max_bitflips = 0;
1105 
1106  chip->ecc.read_page_raw(mtd, chip, buf, 1, page);
1107 
1108  for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1109  chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1110 
1111  for (i = 0; i < chip->ecc.total; i++)
1112  ecc_code[i] = chip->oob_poi[eccpos[i]];
1113 
1114  eccsteps = chip->ecc.steps;
1115  p = buf;
1116 
1117  for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1118  int stat;
1119 
1120  stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1121  if (stat < 0) {
1122  mtd->ecc_stats.failed++;
1123  } else {
1124  mtd->ecc_stats.corrected += stat;
1125  max_bitflips = max_t(unsigned int, max_bitflips, stat);
1126  }
1127  }
1128  return max_bitflips;
1129 }
1130 
1139 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1140  uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1141 {
1142  int start_step, end_step, num_steps;
1143  uint32_t *eccpos = chip->ecc.layout->eccpos;
1144  uint8_t *p;
1145  int data_col_addr, i, gaps = 0;
1146  int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1147  int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1148  int index = 0;
1149  unsigned int max_bitflips = 0;
1150 
1151  /* Column address within the page aligned to ECC size (256bytes) */
1152  start_step = data_offs / chip->ecc.size;
1153  end_step = (data_offs + readlen - 1) / chip->ecc.size;
1154  num_steps = end_step - start_step + 1;
1155 
1156  /* Data size aligned to ECC ecc.size */
1157  datafrag_len = num_steps * chip->ecc.size;
1158  eccfrag_len = num_steps * chip->ecc.bytes;
1159 
1160  data_col_addr = start_step * chip->ecc.size;
1161  /* If we read not a page aligned data */
1162  if (data_col_addr != 0)
1163  chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1164 
1165  p = bufpoi + data_col_addr;
1166  chip->read_buf(mtd, p, datafrag_len);
1167 
1168  /* Calculate ECC */
1169  for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1170  chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1171 
1172  /*
1173  * The performance is faster if we position offsets according to
1174  * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1175  */
1176  for (i = 0; i < eccfrag_len - 1; i++) {
1177  if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1178  eccpos[i + start_step * chip->ecc.bytes + 1]) {
1179  gaps = 1;
1180  break;
1181  }
1182  }
1183  if (gaps) {
1184  chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1185  chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1186  } else {
1187  /*
1188  * Send the command to read the particular ECC bytes take care
1189  * about buswidth alignment in read_buf.
1190  */
1191  index = start_step * chip->ecc.bytes;
1192 
1193  aligned_pos = eccpos[index] & ~(busw - 1);
1194  aligned_len = eccfrag_len;
1195  if (eccpos[index] & (busw - 1))
1196  aligned_len++;
1197  if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1198  aligned_len++;
1199 
1200  chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1201  mtd->writesize + aligned_pos, -1);
1202  chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1203  }
1204 
1205  for (i = 0; i < eccfrag_len; i++)
1206  chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1207 
1208  p = bufpoi + data_col_addr;
1209  for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1210  int stat;
1211 
1212  stat = chip->ecc.correct(mtd, p,
1213  &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1214  if (stat < 0) {
1215  mtd->ecc_stats.failed++;
1216  } else {
1217  mtd->ecc_stats.corrected += stat;
1218  max_bitflips = max_t(unsigned int, max_bitflips, stat);
1219  }
1220  }
1221  return max_bitflips;
1222 }
1223 
1234 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1235  uint8_t *buf, int oob_required, int page)
1236 {
1237  int i, eccsize = chip->ecc.size;
1238  int eccbytes = chip->ecc.bytes;
1239  int eccsteps = chip->ecc.steps;
1240  uint8_t *p = buf;
1241  uint8_t *ecc_calc = chip->buffers->ecccalc;
1242  uint8_t *ecc_code = chip->buffers->ecccode;
1243  uint32_t *eccpos = chip->ecc.layout->eccpos;
1244  unsigned int max_bitflips = 0;
1245 
1246  for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1247  chip->ecc.hwctl(mtd, NAND_ECC_READ);
1248  chip->read_buf(mtd, p, eccsize);
1249  chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1250  }
1251  chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1252 
1253  for (i = 0; i < chip->ecc.total; i++)
1254  ecc_code[i] = chip->oob_poi[eccpos[i]];
1255 
1256  eccsteps = chip->ecc.steps;
1257  p = buf;
1258 
1259  for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1260  int stat;
1261 
1262  stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1263  if (stat < 0) {
1264  mtd->ecc_stats.failed++;
1265  } else {
1266  mtd->ecc_stats.corrected += stat;
1267  max_bitflips = max_t(unsigned int, max_bitflips, stat);
1268  }
1269  }
1270  return max_bitflips;
1271 }
1272 
1287 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1288  struct nand_chip *chip, uint8_t *buf, int oob_required, int page)
1289 {
1290  int i, eccsize = chip->ecc.size;
1291  int eccbytes = chip->ecc.bytes;
1292  int eccsteps = chip->ecc.steps;
1293  uint8_t *p = buf;
1294  uint8_t *ecc_code = chip->buffers->ecccode;
1295  uint32_t *eccpos = chip->ecc.layout->eccpos;
1296  uint8_t *ecc_calc = chip->buffers->ecccalc;
1297  unsigned int max_bitflips = 0;
1298 
1299  /* Read the OOB area first */
1300  chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1301  chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1302  chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1303 
1304  for (i = 0; i < chip->ecc.total; i++)
1305  ecc_code[i] = chip->oob_poi[eccpos[i]];
1306 
1307  for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1308  int stat;
1309 
1310  chip->ecc.hwctl(mtd, NAND_ECC_READ);
1311  chip->read_buf(mtd, p, eccsize);
1312  chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1313 
1314  stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1315  if (stat < 0) {
1316  mtd->ecc_stats.failed++;
1317  } else {
1318  mtd->ecc_stats.corrected += stat;
1319  max_bitflips = max_t(unsigned int, max_bitflips, stat);
1320  }
1321  }
1322  return max_bitflips;
1323 }
1324 
1336 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1337  uint8_t *buf, int oob_required, int page)
1338 {
1339  int i, eccsize = chip->ecc.size;
1340  int eccbytes = chip->ecc.bytes;
1341  int eccsteps = chip->ecc.steps;
1342  uint8_t *p = buf;
1343  uint8_t *oob = chip->oob_poi;
1344  unsigned int max_bitflips = 0;
1345 
1346  for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1347  int stat;
1348 
1349  chip->ecc.hwctl(mtd, NAND_ECC_READ);
1350  chip->read_buf(mtd, p, eccsize);
1351 
1352  if (chip->ecc.prepad) {
1353  chip->read_buf(mtd, oob, chip->ecc.prepad);
1354  oob += chip->ecc.prepad;
1355  }
1356 
1357  chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1358  chip->read_buf(mtd, oob, eccbytes);
1359  stat = chip->ecc.correct(mtd, p, oob, NULL);
1360 
1361  if (stat < 0) {
1362  mtd->ecc_stats.failed++;
1363  } else {
1364  mtd->ecc_stats.corrected += stat;
1365  max_bitflips = max_t(unsigned int, max_bitflips, stat);
1366  }
1367 
1368  oob += eccbytes;
1369 
1370  if (chip->ecc.postpad) {
1371  chip->read_buf(mtd, oob, chip->ecc.postpad);
1372  oob += chip->ecc.postpad;
1373  }
1374  }
1375 
1376  /* Calculate remaining oob bytes */
1377  i = mtd->oobsize - (oob - chip->oob_poi);
1378  if (i)
1379  chip->read_buf(mtd, oob, i);
1380 
1381  return max_bitflips;
1382 }
1383 
1391 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1392  struct mtd_oob_ops *ops, size_t len)
1393 {
1394  switch (ops->mode) {
1395 
1396  case MTD_OPS_PLACE_OOB:
1397  case MTD_OPS_RAW:
1398  memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1399  return oob + len;
1400 
1401  case MTD_OPS_AUTO_OOB: {
1402  struct nand_oobfree *free = chip->ecc.layout->oobfree;
1403  uint32_t boffs = 0, roffs = ops->ooboffs;
1404  size_t bytes = 0;
1405 
1406  for (; free->length && len; free++, len -= bytes) {
1407  /* Read request not from offset 0? */
1408  if (unlikely(roffs)) {
1409  if (roffs >= free->length) {
1410  roffs -= free->length;
1411  continue;
1412  }
1413  boffs = free->offset + roffs;
1414  bytes = min_t(size_t, len,
1415  (free->length - roffs));
1416  roffs = 0;
1417  } else {
1418  bytes = min_t(size_t, len, free->length);
1419  boffs = free->offset;
1420  }
1421  memcpy(oob, chip->oob_poi + boffs, bytes);
1422  oob += bytes;
1423  }
1424  return oob;
1425  }
1426  default:
1427  BUG();
1428  }
1429  return NULL;
1430 }
1431 
1440 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1441  struct mtd_oob_ops *ops)
1442 {
1443  int chipnr, page, realpage, col, bytes, aligned, oob_required;
1444  struct nand_chip *chip = mtd->priv;
1445  struct mtd_ecc_stats stats;
1446  int ret = 0;
1447  uint32_t readlen = ops->len;
1448  uint32_t oobreadlen = ops->ooblen;
1449  uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1450  mtd->oobavail : mtd->oobsize;
1451 
1452  uint8_t *bufpoi, *oob, *buf;
1453  unsigned int max_bitflips = 0;
1454 
1455  stats = mtd->ecc_stats;
1456 
1457  chipnr = (int)(from >> chip->chip_shift);
1458  chip->select_chip(mtd, chipnr);
1459 
1460  realpage = (int)(from >> chip->page_shift);
1461  page = realpage & chip->pagemask;
1462 
1463  col = (int)(from & (mtd->writesize - 1));
1464 
1465  buf = ops->datbuf;
1466  oob = ops->oobbuf;
1467  oob_required = oob ? 1 : 0;
1468 
1469  while (1) {
1470  bytes = min(mtd->writesize - col, readlen);
1471  aligned = (bytes == mtd->writesize);
1472 
1473  /* Is the current page in the buffer? */
1474  if (realpage != chip->pagebuf || oob) {
1475  bufpoi = aligned ? buf : chip->buffers->databuf;
1476 
1477  chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1478 
1479  /*
1480  * Now read the page into the buffer. Absent an error,
1481  * the read methods return max bitflips per ecc step.
1482  */
1483  if (unlikely(ops->mode == MTD_OPS_RAW))
1484  ret = chip->ecc.read_page_raw(mtd, chip, bufpoi,
1485  oob_required,
1486  page);
1487  else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
1488  !oob)
1489  ret = chip->ecc.read_subpage(mtd, chip,
1490  col, bytes, bufpoi);
1491  else
1492  ret = chip->ecc.read_page(mtd, chip, bufpoi,
1493  oob_required, page);
1494  if (ret < 0) {
1495  if (!aligned)
1496  /* Invalidate page cache */
1497  chip->pagebuf = -1;
1498  break;
1499  }
1500 
1501  max_bitflips = max_t(unsigned int, max_bitflips, ret);
1502 
1503  /* Transfer not aligned data */
1504  if (!aligned) {
1505  if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
1506  !(mtd->ecc_stats.failed - stats.failed) &&
1507  (ops->mode != MTD_OPS_RAW)) {
1508  chip->pagebuf = realpage;
1509  chip->pagebuf_bitflips = ret;
1510  } else {
1511  /* Invalidate page cache */
1512  chip->pagebuf = -1;
1513  }
1514  memcpy(buf, chip->buffers->databuf + col, bytes);
1515  }
1516 
1517  buf += bytes;
1518 
1519  if (unlikely(oob)) {
1520  int toread = min(oobreadlen, max_oobsize);
1521 
1522  if (toread) {
1523  oob = nand_transfer_oob(chip,
1524  oob, ops, toread);
1525  oobreadlen -= toread;
1526  }
1527  }
1528  } else {
1529  memcpy(buf, chip->buffers->databuf + col, bytes);
1530  buf += bytes;
1531  max_bitflips = max_t(unsigned int, max_bitflips,
1532  chip->pagebuf_bitflips);
1533  }
1534 
1535  readlen -= bytes;
1536 
1537  if (!readlen)
1538  break;
1539 
1540  /* For subsequent reads align to page boundary */
1541  col = 0;
1542  /* Increment page address */
1543  realpage++;
1544 
1545  page = realpage & chip->pagemask;
1546  /* Check, if we cross a chip boundary */
1547  if (!page) {
1548  chipnr++;
1549  chip->select_chip(mtd, -1);
1550  chip->select_chip(mtd, chipnr);
1551  }
1552  }
1553 
1554  ops->retlen = ops->len - (size_t) readlen;
1555  if (oob)
1556  ops->oobretlen = ops->ooblen - oobreadlen;
1557 
1558  if (ret < 0)
1559  return ret;
1560 
1561  if (mtd->ecc_stats.failed - stats.failed)
1562  return -EBADMSG;
1563 
1564  return max_bitflips;
1565 }
1566 
1577 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1578  size_t *retlen, uint8_t *buf)
1579 {
1580  struct nand_chip *chip = mtd->priv;
1581  struct mtd_oob_ops ops;
1582  int ret;
1583 
1584  nand_get_device(chip, mtd, FL_READING);
1585  ops.len = len;
1586  ops.datbuf = buf;
1587  ops.oobbuf = NULL;
1588  ops.mode = MTD_OPS_PLACE_OOB;
1589  ret = nand_do_read_ops(mtd, from, &ops);
1590  *retlen = ops.retlen;
1591  nand_release_device(mtd);
1592  return ret;
1593 }
1594 
1601 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1602  int page)
1603 {
1604  chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1605  chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1606  return 0;
1607 }
1608 
1616 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1617  int page)
1618 {
1619  uint8_t *buf = chip->oob_poi;
1620  int length = mtd->oobsize;
1621  int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1622  int eccsize = chip->ecc.size;
1623  uint8_t *bufpoi = buf;
1624  int i, toread, sndrnd = 0, pos;
1625 
1626  chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1627  for (i = 0; i < chip->ecc.steps; i++) {
1628  if (sndrnd) {
1629  pos = eccsize + i * (eccsize + chunk);
1630  if (mtd->writesize > 512)
1631  chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1632  else
1633  chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1634  } else
1635  sndrnd = 1;
1636  toread = min_t(int, length, chunk);
1637  chip->read_buf(mtd, bufpoi, toread);
1638  bufpoi += toread;
1639  length -= toread;
1640  }
1641  if (length > 0)
1642  chip->read_buf(mtd, bufpoi, length);
1643 
1644  return 0;
1645 }
1646 
1653 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1654  int page)
1655 {
1656  int status = 0;
1657  const uint8_t *buf = chip->oob_poi;
1658  int length = mtd->oobsize;
1659 
1660  chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1661  chip->write_buf(mtd, buf, length);
1662  /* Send command to program the OOB data */
1663  chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1664 
1665  status = chip->waitfunc(mtd, chip);
1666 
1667  return status & NAND_STATUS_FAIL ? -EIO : 0;
1668 }
1669 
1677 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1678  struct nand_chip *chip, int page)
1679 {
1680  int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1681  int eccsize = chip->ecc.size, length = mtd->oobsize;
1682  int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1683  const uint8_t *bufpoi = chip->oob_poi;
1684 
1685  /*
1686  * data-ecc-data-ecc ... ecc-oob
1687  * or
1688  * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1689  */
1690  if (!chip->ecc.prepad && !chip->ecc.postpad) {
1691  pos = steps * (eccsize + chunk);
1692  steps = 0;
1693  } else
1694  pos = eccsize;
1695 
1696  chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1697  for (i = 0; i < steps; i++) {
1698  if (sndcmd) {
1699  if (mtd->writesize <= 512) {
1700  uint32_t fill = 0xFFFFFFFF;
1701 
1702  len = eccsize;
1703  while (len > 0) {
1704  int num = min_t(int, len, 4);
1705  chip->write_buf(mtd, (uint8_t *)&fill,
1706  num);
1707  len -= num;
1708  }
1709  } else {
1710  pos = eccsize + i * (eccsize + chunk);
1711  chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1712  }
1713  } else
1714  sndcmd = 1;
1715  len = min_t(int, length, chunk);
1716  chip->write_buf(mtd, bufpoi, len);
1717  bufpoi += len;
1718  length -= len;
1719  }
1720  if (length > 0)
1721  chip->write_buf(mtd, bufpoi, length);
1722 
1723  chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1724  status = chip->waitfunc(mtd, chip);
1725 
1726  return status & NAND_STATUS_FAIL ? -EIO : 0;
1727 }
1728 
1737 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1738  struct mtd_oob_ops *ops)
1739 {
1740  int page, realpage, chipnr;
1741  struct nand_chip *chip = mtd->priv;
1742  struct mtd_ecc_stats stats;
1743  int readlen = ops->ooblen;
1744  int len;
1745  uint8_t *buf = ops->oobbuf;
1746  int ret = 0;
1747 
1748  pr_debug("%s: from = 0x%08Lx, len = %i\n",
1749  __func__, (unsigned long long)from, readlen);
1750 
1751  stats = mtd->ecc_stats;
1752 
1753  if (ops->mode == MTD_OPS_AUTO_OOB)
1754  len = chip->ecc.layout->oobavail;
1755  else
1756  len = mtd->oobsize;
1757 
1758  if (unlikely(ops->ooboffs >= len)) {
1759  pr_debug("%s: attempt to start read outside oob\n",
1760  __func__);
1761  return -EINVAL;
1762  }
1763 
1764  /* Do not allow reads past end of device */
1765  if (unlikely(from >= mtd->size ||
1766  ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1767  (from >> chip->page_shift)) * len)) {
1768  pr_debug("%s: attempt to read beyond end of device\n",
1769  __func__);
1770  return -EINVAL;
1771  }
1772 
1773  chipnr = (int)(from >> chip->chip_shift);
1774  chip->select_chip(mtd, chipnr);
1775 
1776  /* Shift to get page */
1777  realpage = (int)(from >> chip->page_shift);
1778  page = realpage & chip->pagemask;
1779 
1780  while (1) {
1781  if (ops->mode == MTD_OPS_RAW)
1782  ret = chip->ecc.read_oob_raw(mtd, chip, page);
1783  else
1784  ret = chip->ecc.read_oob(mtd, chip, page);
1785 
1786  if (ret < 0)
1787  break;
1788 
1789  len = min(len, readlen);
1790  buf = nand_transfer_oob(chip, buf, ops, len);
1791 
1792  readlen -= len;
1793  if (!readlen)
1794  break;
1795 
1796  /* Increment page address */
1797  realpage++;
1798 
1799  page = realpage & chip->pagemask;
1800  /* Check, if we cross a chip boundary */
1801  if (!page) {
1802  chipnr++;
1803  chip->select_chip(mtd, -1);
1804  chip->select_chip(mtd, chipnr);
1805  }
1806  }
1807 
1808  ops->oobretlen = ops->ooblen - readlen;
1809 
1810  if (ret < 0)
1811  return ret;
1812 
1813  if (mtd->ecc_stats.failed - stats.failed)
1814  return -EBADMSG;
1815 
1816  return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1817 }
1818 
1827 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1828  struct mtd_oob_ops *ops)
1829 {
1830  struct nand_chip *chip = mtd->priv;
1831  int ret = -ENOTSUPP;
1832 
1833  ops->retlen = 0;
1834 
1835  /* Do not allow reads past end of device */
1836  if (ops->datbuf && (from + ops->len) > mtd->size) {
1837  pr_debug("%s: attempt to read beyond end of device\n",
1838  __func__);
1839  return -EINVAL;
1840  }
1841 
1842  nand_get_device(chip, mtd, FL_READING);
1843 
1844  switch (ops->mode) {
1845  case MTD_OPS_PLACE_OOB:
1846  case MTD_OPS_AUTO_OOB:
1847  case MTD_OPS_RAW:
1848  break;
1849 
1850  default:
1851  goto out;
1852  }
1853 
1854  if (!ops->datbuf)
1855  ret = nand_do_read_oob(mtd, from, ops);
1856  else
1857  ret = nand_do_read_ops(mtd, from, ops);
1858 
1859 out:
1860  nand_release_device(mtd);
1861  return ret;
1862 }
1863 
1864 
1874 static int nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1875  const uint8_t *buf, int oob_required)
1876 {
1877  chip->write_buf(mtd, buf, mtd->writesize);
1878  if (oob_required)
1879  chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1880 
1881  return 0;
1882 }
1883 
1893 static int nand_write_page_raw_syndrome(struct mtd_info *mtd,
1894  struct nand_chip *chip,
1895  const uint8_t *buf, int oob_required)
1896 {
1897  int eccsize = chip->ecc.size;
1898  int eccbytes = chip->ecc.bytes;
1899  uint8_t *oob = chip->oob_poi;
1900  int steps, size;
1901 
1902  for (steps = chip->ecc.steps; steps > 0; steps--) {
1903  chip->write_buf(mtd, buf, eccsize);
1904  buf += eccsize;
1905 
1906  if (chip->ecc.prepad) {
1907  chip->write_buf(mtd, oob, chip->ecc.prepad);
1908  oob += chip->ecc.prepad;
1909  }
1910 
1911  chip->read_buf(mtd, oob, eccbytes);
1912  oob += eccbytes;
1913 
1914  if (chip->ecc.postpad) {
1915  chip->write_buf(mtd, oob, chip->ecc.postpad);
1916  oob += chip->ecc.postpad;
1917  }
1918  }
1919 
1920  size = mtd->oobsize - (oob - chip->oob_poi);
1921  if (size)
1922  chip->write_buf(mtd, oob, size);
1923 
1924  return 0;
1925 }
1933 static int nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1934  const uint8_t *buf, int oob_required)
1935 {
1936  int i, eccsize = chip->ecc.size;
1937  int eccbytes = chip->ecc.bytes;
1938  int eccsteps = chip->ecc.steps;
1939  uint8_t *ecc_calc = chip->buffers->ecccalc;
1940  const uint8_t *p = buf;
1941  uint32_t *eccpos = chip->ecc.layout->eccpos;
1942 
1943  /* Software ECC calculation */
1944  for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1945  chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1946 
1947  for (i = 0; i < chip->ecc.total; i++)
1948  chip->oob_poi[eccpos[i]] = ecc_calc[i];
1949 
1950  return chip->ecc.write_page_raw(mtd, chip, buf, 1);
1951 }
1952 
1960 static int nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1961  const uint8_t *buf, int oob_required)
1962 {
1963  int i, eccsize = chip->ecc.size;
1964  int eccbytes = chip->ecc.bytes;
1965  int eccsteps = chip->ecc.steps;
1966  uint8_t *ecc_calc = chip->buffers->ecccalc;
1967  const uint8_t *p = buf;
1968  uint32_t *eccpos = chip->ecc.layout->eccpos;
1969 
1970  for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1971  chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1972  chip->write_buf(mtd, p, eccsize);
1973  chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1974  }
1975 
1976  for (i = 0; i < chip->ecc.total; i++)
1977  chip->oob_poi[eccpos[i]] = ecc_calc[i];
1978 
1979  chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1980 
1981  return 0;
1982 }
1983 
1994 static int nand_write_page_syndrome(struct mtd_info *mtd,
1995  struct nand_chip *chip,
1996  const uint8_t *buf, int oob_required)
1997 {
1998  int i, eccsize = chip->ecc.size;
1999  int eccbytes = chip->ecc.bytes;
2000  int eccsteps = chip->ecc.steps;
2001  const uint8_t *p = buf;
2002  uint8_t *oob = chip->oob_poi;
2003 
2004  for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2005 
2006  chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2007  chip->write_buf(mtd, p, eccsize);
2008 
2009  if (chip->ecc.prepad) {
2010  chip->write_buf(mtd, oob, chip->ecc.prepad);
2011  oob += chip->ecc.prepad;
2012  }
2013 
2014  chip->ecc.calculate(mtd, p, oob);
2015  chip->write_buf(mtd, oob, eccbytes);
2016  oob += eccbytes;
2017 
2018  if (chip->ecc.postpad) {
2019  chip->write_buf(mtd, oob, chip->ecc.postpad);
2020  oob += chip->ecc.postpad;
2021  }
2022  }
2023 
2024  /* Calculate remaining oob bytes */
2025  i = mtd->oobsize - (oob - chip->oob_poi);
2026  if (i)
2027  chip->write_buf(mtd, oob, i);
2028 
2029  return 0;
2030 }
2031 
2042 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2043  const uint8_t *buf, int oob_required, int page,
2044  int cached, int raw)
2045 {
2046  int status;
2047 
2048  chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2049 
2050  if (unlikely(raw))
2051  status = chip->ecc.write_page_raw(mtd, chip, buf, oob_required);
2052  else
2053  status = chip->ecc.write_page(mtd, chip, buf, oob_required);
2054 
2055  if (status < 0)
2056  return status;
2057 
2058  /*
2059  * Cached progamming disabled for now. Not sure if it's worth the
2060  * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2061  */
2062  cached = 0;
2063 
2064  if (!cached || !(chip->options & NAND_CACHEPRG)) {
2065 
2066  chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2067  status = chip->waitfunc(mtd, chip);
2068  /*
2069  * See if operation failed and additional status checks are
2070  * available.
2071  */
2072  if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2073  status = chip->errstat(mtd, chip, FL_WRITING, status,
2074  page);
2075 
2076  if (status & NAND_STATUS_FAIL)
2077  return -EIO;
2078  } else {
2079  chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2080  status = chip->waitfunc(mtd, chip);
2081  }
2082 
2083  return 0;
2084 }
2085 
2093 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2094  struct mtd_oob_ops *ops)
2095 {
2096  struct nand_chip *chip = mtd->priv;
2097 
2098  /*
2099  * Initialise to all 0xFF, to avoid the possibility of left over OOB
2100  * data from a previous OOB read.
2101  */
2102  memset(chip->oob_poi, 0xff, mtd->oobsize);
2103 
2104  switch (ops->mode) {
2105 
2106  case MTD_OPS_PLACE_OOB:
2107  case MTD_OPS_RAW:
2108  memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2109  return oob + len;
2110 
2111  case MTD_OPS_AUTO_OOB: {
2112  struct nand_oobfree *free = chip->ecc.layout->oobfree;
2113  uint32_t boffs = 0, woffs = ops->ooboffs;
2114  size_t bytes = 0;
2115 
2116  for (; free->length && len; free++, len -= bytes) {
2117  /* Write request not from offset 0? */
2118  if (unlikely(woffs)) {
2119  if (woffs >= free->length) {
2120  woffs -= free->length;
2121  continue;
2122  }
2123  boffs = free->offset + woffs;
2124  bytes = min_t(size_t, len,
2125  (free->length - woffs));
2126  woffs = 0;
2127  } else {
2128  bytes = min_t(size_t, len, free->length);
2129  boffs = free->offset;
2130  }
2131  memcpy(chip->oob_poi + boffs, oob, bytes);
2132  oob += bytes;
2133  }
2134  return oob;
2135  }
2136  default:
2137  BUG();
2138  }
2139  return NULL;
2140 }
2141 
2142 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2143 
2152 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2153  struct mtd_oob_ops *ops)
2154 {
2155  int chipnr, realpage, page, blockmask, column;
2156  struct nand_chip *chip = mtd->priv;
2157  uint32_t writelen = ops->len;
2158 
2159  uint32_t oobwritelen = ops->ooblen;
2160  uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2161  mtd->oobavail : mtd->oobsize;
2162 
2163  uint8_t *oob = ops->oobbuf;
2164  uint8_t *buf = ops->datbuf;
2165  int ret, subpage;
2166  int oob_required = oob ? 1 : 0;
2167 
2168  ops->retlen = 0;
2169  if (!writelen)
2170  return 0;
2171 
2172  /* Reject writes, which are not page aligned */
2173  if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2174  pr_notice("%s: attempt to write non page aligned data\n",
2175  __func__);
2176  return -EINVAL;
2177  }
2178 
2179  column = to & (mtd->writesize - 1);
2180  subpage = column || (writelen & (mtd->writesize - 1));
2181 
2182  if (subpage && oob)
2183  return -EINVAL;
2184 
2185  chipnr = (int)(to >> chip->chip_shift);
2186  chip->select_chip(mtd, chipnr);
2187 
2188  /* Check, if it is write protected */
2189  if (nand_check_wp(mtd))
2190  return -EIO;
2191 
2192  realpage = (int)(to >> chip->page_shift);
2193  page = realpage & chip->pagemask;
2194  blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2195 
2196  /* Invalidate the page cache, when we write to the cached page */
2197  if (to <= (chip->pagebuf << chip->page_shift) &&
2198  (chip->pagebuf << chip->page_shift) < (to + ops->len))
2199  chip->pagebuf = -1;
2200 
2201  /* Don't allow multipage oob writes with offset */
2202  if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2203  return -EINVAL;
2204 
2205  while (1) {
2206  int bytes = mtd->writesize;
2207  int cached = writelen > bytes && page != blockmask;
2208  uint8_t *wbuf = buf;
2209 
2210  /* Partial page write? */
2211  if (unlikely(column || writelen < (mtd->writesize - 1))) {
2212  cached = 0;
2213  bytes = min_t(int, bytes - column, (int) writelen);
2214  chip->pagebuf = -1;
2215  memset(chip->buffers->databuf, 0xff, mtd->writesize);
2216  memcpy(&chip->buffers->databuf[column], buf, bytes);
2217  wbuf = chip->buffers->databuf;
2218  }
2219 
2220  if (unlikely(oob)) {
2221  size_t len = min(oobwritelen, oobmaxlen);
2222  oob = nand_fill_oob(mtd, oob, len, ops);
2223  oobwritelen -= len;
2224  } else {
2225  /* We still need to erase leftover OOB data */
2226  memset(chip->oob_poi, 0xff, mtd->oobsize);
2227  }
2228 
2229  ret = chip->write_page(mtd, chip, wbuf, oob_required, page,
2230  cached, (ops->mode == MTD_OPS_RAW));
2231  if (ret)
2232  break;
2233 
2234  writelen -= bytes;
2235  if (!writelen)
2236  break;
2237 
2238  column = 0;
2239  buf += bytes;
2240  realpage++;
2241 
2242  page = realpage & chip->pagemask;
2243  /* Check, if we cross a chip boundary */
2244  if (!page) {
2245  chipnr++;
2246  chip->select_chip(mtd, -1);
2247  chip->select_chip(mtd, chipnr);
2248  }
2249  }
2250 
2251  ops->retlen = ops->len - writelen;
2252  if (unlikely(oob))
2253  ops->oobretlen = ops->ooblen;
2254  return ret;
2255 }
2256 
2268 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2269  size_t *retlen, const uint8_t *buf)
2270 {
2271  struct nand_chip *chip = mtd->priv;
2272  struct mtd_oob_ops ops;
2273  int ret;
2274 
2275  /* Wait for the device to get ready */
2276  panic_nand_wait(mtd, chip, 400);
2277 
2278  /* Grab the device */
2279  panic_nand_get_device(chip, mtd, FL_WRITING);
2280 
2281  ops.len = len;
2282  ops.datbuf = (uint8_t *)buf;
2283  ops.oobbuf = NULL;
2284  ops.mode = MTD_OPS_PLACE_OOB;
2285 
2286  ret = nand_do_write_ops(mtd, to, &ops);
2287 
2288  *retlen = ops.retlen;
2289  return ret;
2290 }
2291 
2302 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2303  size_t *retlen, const uint8_t *buf)
2304 {
2305  struct nand_chip *chip = mtd->priv;
2306  struct mtd_oob_ops ops;
2307  int ret;
2308 
2309  nand_get_device(chip, mtd, FL_WRITING);
2310  ops.len = len;
2311  ops.datbuf = (uint8_t *)buf;
2312  ops.oobbuf = NULL;
2313  ops.mode = MTD_OPS_PLACE_OOB;
2314  ret = nand_do_write_ops(mtd, to, &ops);
2315  *retlen = ops.retlen;
2316  nand_release_device(mtd);
2317  return ret;
2318 }
2319 
2328 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2329  struct mtd_oob_ops *ops)
2330 {
2331  int chipnr, page, status, len;
2332  struct nand_chip *chip = mtd->priv;
2333 
2334  pr_debug("%s: to = 0x%08x, len = %i\n",
2335  __func__, (unsigned int)to, (int)ops->ooblen);
2336 
2337  if (ops->mode == MTD_OPS_AUTO_OOB)
2338  len = chip->ecc.layout->oobavail;
2339  else
2340  len = mtd->oobsize;
2341 
2342  /* Do not allow write past end of page */
2343  if ((ops->ooboffs + ops->ooblen) > len) {
2344  pr_debug("%s: attempt to write past end of page\n",
2345  __func__);
2346  return -EINVAL;
2347  }
2348 
2349  if (unlikely(ops->ooboffs >= len)) {
2350  pr_debug("%s: attempt to start write outside oob\n",
2351  __func__);
2352  return -EINVAL;
2353  }
2354 
2355  /* Do not allow write past end of device */
2356  if (unlikely(to >= mtd->size ||
2357  ops->ooboffs + ops->ooblen >
2358  ((mtd->size >> chip->page_shift) -
2359  (to >> chip->page_shift)) * len)) {
2360  pr_debug("%s: attempt to write beyond end of device\n",
2361  __func__);
2362  return -EINVAL;
2363  }
2364 
2365  chipnr = (int)(to >> chip->chip_shift);
2366  chip->select_chip(mtd, chipnr);
2367 
2368  /* Shift to get page */
2369  page = (int)(to >> chip->page_shift);
2370 
2371  /*
2372  * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2373  * of my DiskOnChip 2000 test units) will clear the whole data page too
2374  * if we don't do this. I have no clue why, but I seem to have 'fixed'
2375  * it in the doc2000 driver in August 1999. dwmw2.
2376  */
2377  chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2378 
2379  /* Check, if it is write protected */
2380  if (nand_check_wp(mtd))
2381  return -EROFS;
2382 
2383  /* Invalidate the page cache, if we write to the cached page */
2384  if (page == chip->pagebuf)
2385  chip->pagebuf = -1;
2386 
2387  nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2388 
2389  if (ops->mode == MTD_OPS_RAW)
2390  status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2391  else
2392  status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2393 
2394  if (status)
2395  return status;
2396 
2397  ops->oobretlen = ops->ooblen;
2398 
2399  return 0;
2400 }
2401 
2408 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2409  struct mtd_oob_ops *ops)
2410 {
2411  struct nand_chip *chip = mtd->priv;
2412  int ret = -ENOTSUPP;
2413 
2414  ops->retlen = 0;
2415 
2416  /* Do not allow writes past end of device */
2417  if (ops->datbuf && (to + ops->len) > mtd->size) {
2418  pr_debug("%s: attempt to write beyond end of device\n",
2419  __func__);
2420  return -EINVAL;
2421  }
2422 
2423  nand_get_device(chip, mtd, FL_WRITING);
2424 
2425  switch (ops->mode) {
2426  case MTD_OPS_PLACE_OOB:
2427  case MTD_OPS_AUTO_OOB:
2428  case MTD_OPS_RAW:
2429  break;
2430 
2431  default:
2432  goto out;
2433  }
2434 
2435  if (!ops->datbuf)
2436  ret = nand_do_write_oob(mtd, to, ops);
2437  else
2438  ret = nand_do_write_ops(mtd, to, ops);
2439 
2440 out:
2441  nand_release_device(mtd);
2442  return ret;
2443 }
2444 
2452 static void single_erase_cmd(struct mtd_info *mtd, int page)
2453 {
2454  struct nand_chip *chip = mtd->priv;
2455  /* Send commands to erase a block */
2456  chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2457  chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2458 }
2459 
2467 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2468 {
2469  struct nand_chip *chip = mtd->priv;
2470  /* Send commands to erase a block */
2471  chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2472  chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2473  chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2474  chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2475  chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2476 }
2477 
2485 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2486 {
2487  return nand_erase_nand(mtd, instr, 0);
2488 }
2489 
2490 #define BBT_PAGE_MASK 0xffffff3f
2491 
2499 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2500  int allowbbt)
2501 {
2502  int page, status, pages_per_block, ret, chipnr;
2503  struct nand_chip *chip = mtd->priv;
2504  loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2505  unsigned int bbt_masked_page = 0xffffffff;
2506  loff_t len;
2507 
2508  pr_debug("%s: start = 0x%012llx, len = %llu\n",
2509  __func__, (unsigned long long)instr->addr,
2510  (unsigned long long)instr->len);
2511 
2512  if (check_offs_len(mtd, instr->addr, instr->len))
2513  return -EINVAL;
2514 
2515  /* Grab the lock and see if the device is available */
2516  nand_get_device(chip, mtd, FL_ERASING);
2517 
2518  /* Shift to get first page */
2519  page = (int)(instr->addr >> chip->page_shift);
2520  chipnr = (int)(instr->addr >> chip->chip_shift);
2521 
2522  /* Calculate pages in each block */
2523  pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2524 
2525  /* Select the NAND device */
2526  chip->select_chip(mtd, chipnr);
2527 
2528  /* Check, if it is write protected */
2529  if (nand_check_wp(mtd)) {
2530  pr_debug("%s: device is write protected!\n",
2531  __func__);
2532  instr->state = MTD_ERASE_FAILED;
2533  goto erase_exit;
2534  }
2535 
2536  /*
2537  * If BBT requires refresh, set the BBT page mask to see if the BBT
2538  * should be rewritten. Otherwise the mask is set to 0xffffffff which
2539  * can not be matched. This is also done when the bbt is actually
2540  * erased to avoid recursive updates.
2541  */
2542  if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2543  bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2544 
2545  /* Loop through the pages */
2546  len = instr->len;
2547 
2548  instr->state = MTD_ERASING;
2549 
2550  while (len) {
2551  /* Check if we have a bad block, we do not erase bad blocks! */
2552  if (nand_block_checkbad(mtd, ((loff_t) page) <<
2553  chip->page_shift, 0, allowbbt)) {
2554  pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2555  __func__, page);
2556  instr->state = MTD_ERASE_FAILED;
2557  goto erase_exit;
2558  }
2559 
2560  /*
2561  * Invalidate the page cache, if we erase the block which
2562  * contains the current cached page.
2563  */
2564  if (page <= chip->pagebuf && chip->pagebuf <
2565  (page + pages_per_block))
2566  chip->pagebuf = -1;
2567 
2568  chip->erase_cmd(mtd, page & chip->pagemask);
2569 
2570  status = chip->waitfunc(mtd, chip);
2571 
2572  /*
2573  * See if operation failed and additional status checks are
2574  * available
2575  */
2576  if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2577  status = chip->errstat(mtd, chip, FL_ERASING,
2578  status, page);
2579 
2580  /* See if block erase succeeded */
2581  if (status & NAND_STATUS_FAIL) {
2582  pr_debug("%s: failed erase, page 0x%08x\n",
2583  __func__, page);
2584  instr->state = MTD_ERASE_FAILED;
2585  instr->fail_addr =
2586  ((loff_t)page << chip->page_shift);
2587  goto erase_exit;
2588  }
2589 
2590  /*
2591  * If BBT requires refresh, set the BBT rewrite flag to the
2592  * page being erased.
2593  */
2594  if (bbt_masked_page != 0xffffffff &&
2595  (page & BBT_PAGE_MASK) == bbt_masked_page)
2596  rewrite_bbt[chipnr] =
2597  ((loff_t)page << chip->page_shift);
2598 
2599  /* Increment page address and decrement length */
2600  len -= (1 << chip->phys_erase_shift);
2601  page += pages_per_block;
2602 
2603  /* Check, if we cross a chip boundary */
2604  if (len && !(page & chip->pagemask)) {
2605  chipnr++;
2606  chip->select_chip(mtd, -1);
2607  chip->select_chip(mtd, chipnr);
2608 
2609  /*
2610  * If BBT requires refresh and BBT-PERCHIP, set the BBT
2611  * page mask to see if this BBT should be rewritten.
2612  */
2613  if (bbt_masked_page != 0xffffffff &&
2614  (chip->bbt_td->options & NAND_BBT_PERCHIP))
2615  bbt_masked_page = chip->bbt_td->pages[chipnr] &
2616  BBT_PAGE_MASK;
2617  }
2618  }
2619  instr->state = MTD_ERASE_DONE;
2620 
2621 erase_exit:
2622 
2623  ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2624 
2625  /* Deselect and wake up anyone waiting on the device */
2626  nand_release_device(mtd);
2627 
2628  /* Do call back function */
2629  if (!ret)
2630  mtd_erase_callback(instr);
2631 
2632  /*
2633  * If BBT requires refresh and erase was successful, rewrite any
2634  * selected bad block tables.
2635  */
2636  if (bbt_masked_page == 0xffffffff || ret)
2637  return ret;
2638 
2639  for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2640  if (!rewrite_bbt[chipnr])
2641  continue;
2642  /* Update the BBT for chip */
2643  pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2644  __func__, chipnr, rewrite_bbt[chipnr],
2645  chip->bbt_td->pages[chipnr]);
2646  nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2647  }
2648 
2649  /* Return more or less happy */
2650  return ret;
2651 }
2652 
2659 static void nand_sync(struct mtd_info *mtd)
2660 {
2661  struct nand_chip *chip = mtd->priv;
2662 
2663  pr_debug("%s: called\n", __func__);
2664 
2665  /* Grab the lock and see if the device is available */
2666  nand_get_device(chip, mtd, FL_SYNCING);
2667  /* Release it and go back */
2668  nand_release_device(mtd);
2669 }
2670 
2676 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2677 {
2678  return nand_block_checkbad(mtd, offs, 1, 0);
2679 }
2680 
2686 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2687 {
2688  struct nand_chip *chip = mtd->priv;
2689  int ret;
2690 
2691  ret = nand_block_isbad(mtd, ofs);
2692  if (ret) {
2693  /* If it was bad already, return success and do nothing */
2694  if (ret > 0)
2695  return 0;
2696  return ret;
2697  }
2698 
2699  return chip->block_markbad(mtd, ofs);
2700 }
2701 
2709 static int nand_onfi_set_features(struct mtd_info *mtd, struct nand_chip *chip,
2710  int addr, uint8_t *subfeature_param)
2711 {
2712  int status;
2713 
2714  if (!chip->onfi_version)
2715  return -EINVAL;
2716 
2717  chip->cmdfunc(mtd, NAND_CMD_SET_FEATURES, addr, -1);
2718  chip->write_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2719  status = chip->waitfunc(mtd, chip);
2720  if (status & NAND_STATUS_FAIL)
2721  return -EIO;
2722  return 0;
2723 }
2724 
2732 static int nand_onfi_get_features(struct mtd_info *mtd, struct nand_chip *chip,
2733  int addr, uint8_t *subfeature_param)
2734 {
2735  if (!chip->onfi_version)
2736  return -EINVAL;
2737 
2738  /* clear the sub feature parameters */
2739  memset(subfeature_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
2740 
2741  chip->cmdfunc(mtd, NAND_CMD_GET_FEATURES, addr, -1);
2742  chip->read_buf(mtd, subfeature_param, ONFI_SUBFEATURE_PARAM_LEN);
2743  return 0;
2744 }
2745 
2750 static int nand_suspend(struct mtd_info *mtd)
2751 {
2752  struct nand_chip *chip = mtd->priv;
2753 
2754  return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2755 }
2756 
2761 static void nand_resume(struct mtd_info *mtd)
2762 {
2763  struct nand_chip *chip = mtd->priv;
2764 
2765  if (chip->state == FL_PM_SUSPENDED)
2766  nand_release_device(mtd);
2767  else
2768  pr_err("%s called for a chip which is not in suspended state\n",
2769  __func__);
2770 }
2771 
2772 /* Set default functions */
2773 static void nand_set_defaults(struct nand_chip *chip, int busw)
2774 {
2775  /* check for proper chip_delay setup, set 20us if not */
2776  if (!chip->chip_delay)
2777  chip->chip_delay = 20;
2778 
2779  /* check, if a user supplied command function given */
2780  if (chip->cmdfunc == NULL)
2781  chip->cmdfunc = nand_command;
2782 
2783  /* check, if a user supplied wait function given */
2784  if (chip->waitfunc == NULL)
2785  chip->waitfunc = nand_wait;
2786 
2787  if (!chip->select_chip)
2788  chip->select_chip = nand_select_chip;
2789  if (!chip->read_byte)
2790  chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2791  if (!chip->read_word)
2792  chip->read_word = nand_read_word;
2793  if (!chip->block_bad)
2794  chip->block_bad = nand_block_bad;
2795  if (!chip->block_markbad)
2796  chip->block_markbad = nand_default_block_markbad;
2797  if (!chip->write_buf)
2798  chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2799  if (!chip->read_buf)
2800  chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2801  if (!chip->scan_bbt)
2802  chip->scan_bbt = nand_default_bbt;
2803 
2804  if (!chip->controller) {
2805  chip->controller = &chip->hwcontrol;
2806  spin_lock_init(&chip->controller->lock);
2807  init_waitqueue_head(&chip->controller->wq);
2808  }
2809 
2810 }
2811 
2812 /* Sanitize ONFI strings so we can safely print them */
2813 static void sanitize_string(uint8_t *s, size_t len)
2814 {
2815  ssize_t i;
2816 
2817  /* Null terminate */
2818  s[len - 1] = 0;
2819 
2820  /* Remove non printable chars */
2821  for (i = 0; i < len - 1; i++) {
2822  if (s[i] < ' ' || s[i] > 127)
2823  s[i] = '?';
2824  }
2825 
2826  /* Remove trailing spaces */
2827  strim(s);
2828 }
2829 
2830 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2831 {
2832  int i;
2833  while (len--) {
2834  crc ^= *p++ << 8;
2835  for (i = 0; i < 8; i++)
2836  crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2837  }
2838 
2839  return crc;
2840 }
2841 
2842 /*
2843  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2844  */
2845 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2846  int *busw)
2847 {
2848  struct nand_onfi_params *p = &chip->onfi_params;
2849  int i;
2850  int val;
2851 
2852  /* Try ONFI for unknown chip or LP */
2853  chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2854  if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2855  chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2856  return 0;
2857 
2858  chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2859  for (i = 0; i < 3; i++) {
2860  chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2861  if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2862  le16_to_cpu(p->crc)) {
2863  pr_info("ONFI param page %d valid\n", i);
2864  break;
2865  }
2866  }
2867 
2868  if (i == 3)
2869  return 0;
2870 
2871  /* Check version */
2872  val = le16_to_cpu(p->revision);
2873  if (val & (1 << 5))
2874  chip->onfi_version = 23;
2875  else if (val & (1 << 4))
2876  chip->onfi_version = 22;
2877  else if (val & (1 << 3))
2878  chip->onfi_version = 21;
2879  else if (val & (1 << 2))
2880  chip->onfi_version = 20;
2881  else if (val & (1 << 1))
2882  chip->onfi_version = 10;
2883  else
2884  chip->onfi_version = 0;
2885 
2886  if (!chip->onfi_version) {
2887  pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2888  return 0;
2889  }
2890 
2891  sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2892  sanitize_string(p->model, sizeof(p->model));
2893  if (!mtd->name)
2894  mtd->name = p->model;
2895  mtd->writesize = le32_to_cpu(p->byte_per_page);
2896  mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2898  chip->chipsize = le32_to_cpu(p->blocks_per_lun);
2899  chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
2900  *busw = 0;
2901  if (le16_to_cpu(p->features) & 1)
2902  *busw = NAND_BUSWIDTH_16;
2903 
2904  pr_info("ONFI flash detected\n");
2905  return 1;
2906 }
2907 
2908 /*
2909  * nand_id_has_period - Check if an ID string has a given wraparound period
2910  * @id_data: the ID string
2911  * @arrlen: the length of the @id_data array
2912  * @period: the period of repitition
2913  *
2914  * Check if an ID string is repeated within a given sequence of bytes at
2915  * specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
2916  * period of 2). This is a helper function for nand_id_len(). Returns non-zero
2917  * if the repetition has a period of @period; otherwise, returns zero.
2918  */
2919 static int nand_id_has_period(u8 *id_data, int arrlen, int period)
2920 {
2921  int i, j;
2922  for (i = 0; i < period; i++)
2923  for (j = i + period; j < arrlen; j += period)
2924  if (id_data[i] != id_data[j])
2925  return 0;
2926  return 1;
2927 }
2928 
2929 /*
2930  * nand_id_len - Get the length of an ID string returned by CMD_READID
2931  * @id_data: the ID string
2932  * @arrlen: the length of the @id_data array
2933 
2934  * Returns the length of the ID string, according to known wraparound/trailing
2935  * zero patterns. If no pattern exists, returns the length of the array.
2936  */
2937 static int nand_id_len(u8 *id_data, int arrlen)
2938 {
2939  int last_nonzero, period;
2940 
2941  /* Find last non-zero byte */
2942  for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
2943  if (id_data[last_nonzero])
2944  break;
2945 
2946  /* All zeros */
2947  if (last_nonzero < 0)
2948  return 0;
2949 
2950  /* Calculate wraparound period */
2951  for (period = 1; period < arrlen; period++)
2952  if (nand_id_has_period(id_data, arrlen, period))
2953  break;
2954 
2955  /* There's a repeated pattern */
2956  if (period < arrlen)
2957  return period;
2958 
2959  /* There are trailing zeros */
2960  if (last_nonzero < arrlen - 1)
2961  return last_nonzero + 1;
2962 
2963  /* No pattern detected */
2964  return arrlen;
2965 }
2966 
2967 /*
2968  * Many new NAND share similar device ID codes, which represent the size of the
2969  * chip. The rest of the parameters must be decoded according to generic or
2970  * manufacturer-specific "extended ID" decoding patterns.
2971  */
2972 static void nand_decode_ext_id(struct mtd_info *mtd, struct nand_chip *chip,
2973  u8 id_data[8], int *busw)
2974 {
2975  int extid, id_len;
2976  /* The 3rd id byte holds MLC / multichip data */
2977  chip->cellinfo = id_data[2];
2978  /* The 4th id byte is the important one */
2979  extid = id_data[3];
2980 
2981  id_len = nand_id_len(id_data, 8);
2982 
2983  /*
2984  * Field definitions are in the following datasheets:
2985  * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2986  * New Samsung (6 byte ID): Samsung K9GAG08U0F (p.44)
2987  * Hynix MLC (6 byte ID): Hynix H27UBG8T2B (p.22)
2988  *
2989  * Check for ID length, non-zero 6th byte, cell type, and Hynix/Samsung
2990  * ID to decide what to do.
2991  */
2992  if (id_len == 6 && id_data[0] == NAND_MFR_SAMSUNG &&
2993  (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2994  id_data[5] != 0x00) {
2995  /* Calc pagesize */
2996  mtd->writesize = 2048 << (extid & 0x03);
2997  extid >>= 2;
2998  /* Calc oobsize */
2999  switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3000  case 1:
3001  mtd->oobsize = 128;
3002  break;
3003  case 2:
3004  mtd->oobsize = 218;
3005  break;
3006  case 3:
3007  mtd->oobsize = 400;
3008  break;
3009  case 4:
3010  mtd->oobsize = 436;
3011  break;
3012  case 5:
3013  mtd->oobsize = 512;
3014  break;
3015  case 6:
3016  default: /* Other cases are "reserved" (unknown) */
3017  mtd->oobsize = 640;
3018  break;
3019  }
3020  extid >>= 2;
3021  /* Calc blocksize */
3022  mtd->erasesize = (128 * 1024) <<
3023  (((extid >> 1) & 0x04) | (extid & 0x03));
3024  *busw = 0;
3025  } else if (id_len == 6 && id_data[0] == NAND_MFR_HYNIX &&
3026  (chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3027  unsigned int tmp;
3028 
3029  /* Calc pagesize */
3030  mtd->writesize = 2048 << (extid & 0x03);
3031  extid >>= 2;
3032  /* Calc oobsize */
3033  switch (((extid >> 2) & 0x04) | (extid & 0x03)) {
3034  case 0:
3035  mtd->oobsize = 128;
3036  break;
3037  case 1:
3038  mtd->oobsize = 224;
3039  break;
3040  case 2:
3041  mtd->oobsize = 448;
3042  break;
3043  case 3:
3044  mtd->oobsize = 64;
3045  break;
3046  case 4:
3047  mtd->oobsize = 32;
3048  break;
3049  case 5:
3050  mtd->oobsize = 16;
3051  break;
3052  default:
3053  mtd->oobsize = 640;
3054  break;
3055  }
3056  extid >>= 2;
3057  /* Calc blocksize */
3058  tmp = ((extid >> 1) & 0x04) | (extid & 0x03);
3059  if (tmp < 0x03)
3060  mtd->erasesize = (128 * 1024) << tmp;
3061  else if (tmp == 0x03)
3062  mtd->erasesize = 768 * 1024;
3063  else
3064  mtd->erasesize = (64 * 1024) << tmp;
3065  *busw = 0;
3066  } else {
3067  /* Calc pagesize */
3068  mtd->writesize = 1024 << (extid & 0x03);
3069  extid >>= 2;
3070  /* Calc oobsize */
3071  mtd->oobsize = (8 << (extid & 0x01)) *
3072  (mtd->writesize >> 9);
3073  extid >>= 2;
3074  /* Calc blocksize. Blocksize is multiples of 64KiB */
3075  mtd->erasesize = (64 * 1024) << (extid & 0x03);
3076  extid >>= 2;
3077  /* Get buswidth information */
3078  *busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3079  }
3080 }
3081 
3082 /*
3083  * Old devices have chip data hardcoded in the device ID table. nand_decode_id
3084  * decodes a matching ID table entry and assigns the MTD size parameters for
3085  * the chip.
3086  */
3087 static void nand_decode_id(struct mtd_info *mtd, struct nand_chip *chip,
3088  struct nand_flash_dev *type, u8 id_data[8],
3089  int *busw)
3090 {
3091  int maf_id = id_data[0];
3092 
3093  mtd->erasesize = type->erasesize;
3094  mtd->writesize = type->pagesize;
3095  mtd->oobsize = mtd->writesize / 32;
3096  *busw = type->options & NAND_BUSWIDTH_16;
3097 
3098  /*
3099  * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3100  * some Spansion chips have erasesize that conflicts with size
3101  * listed in nand_ids table.
3102  * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3103  */
3104  if (maf_id == NAND_MFR_AMD && id_data[4] != 0x00 && id_data[5] == 0x00
3105  && id_data[6] == 0x00 && id_data[7] == 0x00
3106  && mtd->writesize == 512) {
3107  mtd->erasesize = 128 * 1024;
3108  mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3109  }
3110 }
3111 
3112 /*
3113  * Set the bad block marker/indicator (BBM/BBI) patterns according to some
3114  * heuristic patterns using various detected parameters (e.g., manufacturer,
3115  * page size, cell-type information).
3116  */
3117 static void nand_decode_bbm_options(struct mtd_info *mtd,
3118  struct nand_chip *chip, u8 id_data[8])
3119 {
3120  int maf_id = id_data[0];
3121 
3122  /* Set the bad block position */
3123  if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
3125  else
3127 
3128  /*
3129  * Bad block marker is stored in the last page of each block on Samsung
3130  * and Hynix MLC devices; stored in first two pages of each block on
3131  * Micron devices with 2KiB pages and on SLC Samsung, Hynix, Toshiba,
3132  * AMD/Spansion, and Macronix. All others scan only the first page.
3133  */
3134  if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3135  (maf_id == NAND_MFR_SAMSUNG ||
3136  maf_id == NAND_MFR_HYNIX))
3138  else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3139  (maf_id == NAND_MFR_SAMSUNG ||
3140  maf_id == NAND_MFR_HYNIX ||
3141  maf_id == NAND_MFR_TOSHIBA ||
3142  maf_id == NAND_MFR_AMD ||
3143  maf_id == NAND_MFR_MACRONIX)) ||
3144  (mtd->writesize == 2048 &&
3145  maf_id == NAND_MFR_MICRON))
3147 }
3148 
3149 /*
3150  * Get the flash and manufacturer id and lookup if the type is supported.
3151  */
3152 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
3153  struct nand_chip *chip,
3154  int busw,
3155  int *maf_id, int *dev_id,
3156  struct nand_flash_dev *type)
3157 {
3158  int i, maf_idx;
3159  u8 id_data[8];
3160 
3161  /* Select the device */
3162  chip->select_chip(mtd, 0);
3163 
3164  /*
3165  * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
3166  * after power-up.
3167  */
3168  chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3169 
3170  /* Send the command for reading device ID */
3171  chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3172 
3173  /* Read manufacturer and device IDs */
3174  *maf_id = chip->read_byte(mtd);
3175  *dev_id = chip->read_byte(mtd);
3176 
3177  /*
3178  * Try again to make sure, as some systems the bus-hold or other
3179  * interface concerns can cause random data which looks like a
3180  * possibly credible NAND flash to appear. If the two results do
3181  * not match, ignore the device completely.
3182  */
3183 
3184  chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3185 
3186  /* Read entire ID string */
3187  for (i = 0; i < 8; i++)
3188  id_data[i] = chip->read_byte(mtd);
3189 
3190  if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
3191  pr_info("%s: second ID read did not match "
3192  "%02x,%02x against %02x,%02x\n", __func__,
3193  *maf_id, *dev_id, id_data[0], id_data[1]);
3194  return ERR_PTR(-ENODEV);
3195  }
3196 
3197  if (!type)
3198  type = nand_flash_ids;
3199 
3200  for (; type->name != NULL; type++)
3201  if (*dev_id == type->id)
3202  break;
3203 
3204  chip->onfi_version = 0;
3205  if (!type->name || !type->pagesize) {
3206  /* Check is chip is ONFI compliant */
3207  if (nand_flash_detect_onfi(mtd, chip, &busw))
3208  goto ident_done;
3209  }
3210 
3211  if (!type->name)
3212  return ERR_PTR(-ENODEV);
3213 
3214  if (!mtd->name)
3215  mtd->name = type->name;
3216 
3217  chip->chipsize = (uint64_t)type->chipsize << 20;
3218 
3219  if (!type->pagesize && chip->init_size) {
3220  /* Set the pagesize, oobsize, erasesize by the driver */
3221  busw = chip->init_size(mtd, chip, id_data);
3222  } else if (!type->pagesize) {
3223  /* Decode parameters from extended ID */
3224  nand_decode_ext_id(mtd, chip, id_data, &busw);
3225  } else {
3226  nand_decode_id(mtd, chip, type, id_data, &busw);
3227  }
3228  /* Get chip options */
3229  chip->options |= type->options;
3230 
3231  /*
3232  * Check if chip is not a Samsung device. Do not clear the
3233  * options for chips which do not have an extended id.
3234  */
3235  if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3236  chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3237 ident_done:
3238 
3239  /* Try to identify manufacturer */
3240  for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3241  if (nand_manuf_ids[maf_idx].id == *maf_id)
3242  break;
3243  }
3244 
3245  /*
3246  * Check, if buswidth is correct. Hardware drivers should set
3247  * chip correct!
3248  */
3249  if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3250  pr_info("NAND device: Manufacturer ID:"
3251  " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3252  *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3253  pr_warn("NAND bus width %d instead %d bit\n",
3254  (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3255  busw ? 16 : 8);
3256  return ERR_PTR(-EINVAL);
3257  }
3258 
3259  nand_decode_bbm_options(mtd, chip, id_data);
3260 
3261  /* Calculate the address shift from the page size */
3262  chip->page_shift = ffs(mtd->writesize) - 1;
3263  /* Convert chipsize to number of pages per chip -1 */
3264  chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3265 
3266  chip->bbt_erase_shift = chip->phys_erase_shift =
3267  ffs(mtd->erasesize) - 1;
3268  if (chip->chipsize & 0xffffffff)
3269  chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3270  else {
3271  chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3272  chip->chip_shift += 32 - 1;
3273  }
3274 
3275  chip->badblockbits = 8;
3276 
3277  /* Check for AND chips with 4 page planes */
3278  if (chip->options & NAND_4PAGE_ARRAY)
3279  chip->erase_cmd = multi_erase_cmd;
3280  else
3281  chip->erase_cmd = single_erase_cmd;
3282 
3283  /* Do not replace user supplied command function! */
3284  if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3285  chip->cmdfunc = nand_command_lp;
3286 
3287  pr_info("NAND device: Manufacturer ID: 0x%02x, Chip ID: 0x%02x (%s %s),"
3288  " page size: %d, OOB size: %d\n",
3289  *maf_id, *dev_id, nand_manuf_ids[maf_idx].name,
3290  chip->onfi_version ? chip->onfi_params.model : type->name,
3291  mtd->writesize, mtd->oobsize);
3292 
3293  return type;
3294 }
3295 
3307 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3308  struct nand_flash_dev *table)
3309 {
3310  int i, busw, nand_maf_id, nand_dev_id;
3311  struct nand_chip *chip = mtd->priv;
3312  struct nand_flash_dev *type;
3313 
3314  /* Get buswidth to select the correct functions */
3315  busw = chip->options & NAND_BUSWIDTH_16;
3316  /* Set the default functions */
3317  nand_set_defaults(chip, busw);
3318 
3319  /* Read the flash type */
3320  type = nand_get_flash_type(mtd, chip, busw,
3321  &nand_maf_id, &nand_dev_id, table);
3322 
3323  if (IS_ERR(type)) {
3324  if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3325  pr_warn("No NAND device found\n");
3326  chip->select_chip(mtd, -1);
3327  return PTR_ERR(type);
3328  }
3329 
3330  /* Check for a chip array */
3331  for (i = 1; i < maxchips; i++) {
3332  chip->select_chip(mtd, i);
3333  /* See comment in nand_get_flash_type for reset */
3334  chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3335  /* Send the command for reading device ID */
3336  chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3337  /* Read manufacturer and device IDs */
3338  if (nand_maf_id != chip->read_byte(mtd) ||
3339  nand_dev_id != chip->read_byte(mtd))
3340  break;
3341  }
3342  if (i > 1)
3343  pr_info("%d NAND chips detected\n", i);
3344 
3345  /* Store the number of chips and calc total size for mtd */
3346  chip->numchips = i;
3347  mtd->size = i * chip->chipsize;
3348 
3349  return 0;
3350 }
3352 
3353 
3362 int nand_scan_tail(struct mtd_info *mtd)
3363 {
3364  int i;
3365  struct nand_chip *chip = mtd->priv;
3366 
3367  /* New bad blocks should be marked in OOB, flash-based BBT, or both */
3369  !(chip->bbt_options & NAND_BBT_USE_FLASH));
3370 
3371  if (!(chip->options & NAND_OWN_BUFFERS))
3372  chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3373  if (!chip->buffers)
3374  return -ENOMEM;
3375 
3376  /* Set the internal oob buffer location, just after the page data */
3377  chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3378 
3379  /*
3380  * If no default placement scheme is given, select an appropriate one.
3381  */
3382  if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3383  switch (mtd->oobsize) {
3384  case 8:
3385  chip->ecc.layout = &nand_oob_8;
3386  break;
3387  case 16:
3388  chip->ecc.layout = &nand_oob_16;
3389  break;
3390  case 64:
3391  chip->ecc.layout = &nand_oob_64;
3392  break;
3393  case 128:
3394  chip->ecc.layout = &nand_oob_128;
3395  break;
3396  default:
3397  pr_warn("No oob scheme defined for oobsize %d\n",
3398  mtd->oobsize);
3399  BUG();
3400  }
3401  }
3402 
3403  if (!chip->write_page)
3404  chip->write_page = nand_write_page;
3405 
3406  /* set for ONFI nand */
3407  if (!chip->onfi_set_features)
3408  chip->onfi_set_features = nand_onfi_set_features;
3409  if (!chip->onfi_get_features)
3410  chip->onfi_get_features = nand_onfi_get_features;
3411 
3412  /*
3413  * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3414  * selected and we have 256 byte pagesize fallback to software ECC
3415  */
3416 
3417  switch (chip->ecc.mode) {
3418  case NAND_ECC_HW_OOB_FIRST:
3419  /* Similar to NAND_ECC_HW, but a separate read_page handle */
3420  if (!chip->ecc.calculate || !chip->ecc.correct ||
3421  !chip->ecc.hwctl) {
3422  pr_warn("No ECC functions supplied; "
3423  "hardware ECC not possible\n");
3424  BUG();
3425  }
3426  if (!chip->ecc.read_page)
3427  chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3428 
3429  case NAND_ECC_HW:
3430  /* Use standard hwecc read page function? */
3431  if (!chip->ecc.read_page)
3432  chip->ecc.read_page = nand_read_page_hwecc;
3433  if (!chip->ecc.write_page)
3434  chip->ecc.write_page = nand_write_page_hwecc;
3435  if (!chip->ecc.read_page_raw)
3436  chip->ecc.read_page_raw = nand_read_page_raw;
3437  if (!chip->ecc.write_page_raw)
3438  chip->ecc.write_page_raw = nand_write_page_raw;
3439  if (!chip->ecc.read_oob)
3440  chip->ecc.read_oob = nand_read_oob_std;
3441  if (!chip->ecc.write_oob)
3442  chip->ecc.write_oob = nand_write_oob_std;
3443 
3444  case NAND_ECC_HW_SYNDROME:
3445  if ((!chip->ecc.calculate || !chip->ecc.correct ||
3446  !chip->ecc.hwctl) &&
3447  (!chip->ecc.read_page ||
3448  chip->ecc.read_page == nand_read_page_hwecc ||
3449  !chip->ecc.write_page ||
3450  chip->ecc.write_page == nand_write_page_hwecc)) {
3451  pr_warn("No ECC functions supplied; "
3452  "hardware ECC not possible\n");
3453  BUG();
3454  }
3455  /* Use standard syndrome read/write page function? */
3456  if (!chip->ecc.read_page)
3457  chip->ecc.read_page = nand_read_page_syndrome;
3458  if (!chip->ecc.write_page)
3459  chip->ecc.write_page = nand_write_page_syndrome;
3460  if (!chip->ecc.read_page_raw)
3461  chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3462  if (!chip->ecc.write_page_raw)
3463  chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3464  if (!chip->ecc.read_oob)
3465  chip->ecc.read_oob = nand_read_oob_syndrome;
3466  if (!chip->ecc.write_oob)
3467  chip->ecc.write_oob = nand_write_oob_syndrome;
3468 
3469  if (mtd->writesize >= chip->ecc.size) {
3470  if (!chip->ecc.strength) {
3471  pr_warn("Driver must set ecc.strength when using hardware ECC\n");
3472  BUG();
3473  }
3474  break;
3475  }
3476  pr_warn("%d byte HW ECC not possible on "
3477  "%d byte page size, fallback to SW ECC\n",
3478  chip->ecc.size, mtd->writesize);
3479  chip->ecc.mode = NAND_ECC_SOFT;
3480 
3481  case NAND_ECC_SOFT:
3482  chip->ecc.calculate = nand_calculate_ecc;
3483  chip->ecc.correct = nand_correct_data;
3484  chip->ecc.read_page = nand_read_page_swecc;
3485  chip->ecc.read_subpage = nand_read_subpage;
3486  chip->ecc.write_page = nand_write_page_swecc;
3487  chip->ecc.read_page_raw = nand_read_page_raw;
3488  chip->ecc.write_page_raw = nand_write_page_raw;
3489  chip->ecc.read_oob = nand_read_oob_std;
3490  chip->ecc.write_oob = nand_write_oob_std;
3491  if (!chip->ecc.size)
3492  chip->ecc.size = 256;
3493  chip->ecc.bytes = 3;
3494  chip->ecc.strength = 1;
3495  break;
3496 
3497  case NAND_ECC_SOFT_BCH:
3498  if (!mtd_nand_has_bch()) {
3499  pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3500  BUG();
3501  }
3502  chip->ecc.calculate = nand_bch_calculate_ecc;
3503  chip->ecc.correct = nand_bch_correct_data;
3504  chip->ecc.read_page = nand_read_page_swecc;
3505  chip->ecc.read_subpage = nand_read_subpage;
3506  chip->ecc.write_page = nand_write_page_swecc;
3507  chip->ecc.read_page_raw = nand_read_page_raw;
3508  chip->ecc.write_page_raw = nand_write_page_raw;
3509  chip->ecc.read_oob = nand_read_oob_std;
3510  chip->ecc.write_oob = nand_write_oob_std;
3511  /*
3512  * Board driver should supply ecc.size and ecc.bytes values to
3513  * select how many bits are correctable; see nand_bch_init()
3514  * for details. Otherwise, default to 4 bits for large page
3515  * devices.
3516  */
3517  if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3518  chip->ecc.size = 512;
3519  chip->ecc.bytes = 7;
3520  }
3521  chip->ecc.priv = nand_bch_init(mtd,
3522  chip->ecc.size,
3523  chip->ecc.bytes,
3524  &chip->ecc.layout);
3525  if (!chip->ecc.priv) {
3526  pr_warn("BCH ECC initialization failed!\n");
3527  BUG();
3528  }
3529  chip->ecc.strength =
3530  chip->ecc.bytes * 8 / fls(8 * chip->ecc.size);
3531  break;
3532 
3533  case NAND_ECC_NONE:
3534  pr_warn("NAND_ECC_NONE selected by board driver. "
3535  "This is not recommended!\n");
3536  chip->ecc.read_page = nand_read_page_raw;
3537  chip->ecc.write_page = nand_write_page_raw;
3538  chip->ecc.read_oob = nand_read_oob_std;
3539  chip->ecc.read_page_raw = nand_read_page_raw;
3540  chip->ecc.write_page_raw = nand_write_page_raw;
3541  chip->ecc.write_oob = nand_write_oob_std;
3542  chip->ecc.size = mtd->writesize;
3543  chip->ecc.bytes = 0;
3544  chip->ecc.strength = 0;
3545  break;
3546 
3547  default:
3548  pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3549  BUG();
3550  }
3551 
3552  /* For many systems, the standard OOB write also works for raw */
3553  if (!chip->ecc.read_oob_raw)
3554  chip->ecc.read_oob_raw = chip->ecc.read_oob;
3555  if (!chip->ecc.write_oob_raw)
3556  chip->ecc.write_oob_raw = chip->ecc.write_oob;
3557 
3558  /*
3559  * The number of bytes available for a client to place data into
3560  * the out of band area.
3561  */
3562  chip->ecc.layout->oobavail = 0;
3563  for (i = 0; chip->ecc.layout->oobfree[i].length
3564  && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3565  chip->ecc.layout->oobavail +=
3566  chip->ecc.layout->oobfree[i].length;
3567  mtd->oobavail = chip->ecc.layout->oobavail;
3568 
3569  /*
3570  * Set the number of read / write steps for one page depending on ECC
3571  * mode.
3572  */
3573  chip->ecc.steps = mtd->writesize / chip->ecc.size;
3574  if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3575  pr_warn("Invalid ECC parameters\n");
3576  BUG();
3577  }
3578  chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3579 
3580  /* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3581  if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3582  !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3583  switch (chip->ecc.steps) {
3584  case 2:
3585  mtd->subpage_sft = 1;
3586  break;
3587  case 4:
3588  case 8:
3589  case 16:
3590  mtd->subpage_sft = 2;
3591  break;
3592  }
3593  }
3594  chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3595 
3596  /* Initialize state */
3597  chip->state = FL_READY;
3598 
3599  /* De-select the device */
3600  chip->select_chip(mtd, -1);
3601 
3602  /* Invalidate the pagebuffer reference */
3603  chip->pagebuf = -1;
3604 
3605  /* Large page NAND with SOFT_ECC should support subpage reads */
3606  if ((chip->ecc.mode == NAND_ECC_SOFT) && (chip->page_shift > 9))
3607  chip->options |= NAND_SUBPAGE_READ;
3608 
3609  /* Fill in remaining MTD driver data */
3610  mtd->type = MTD_NANDFLASH;
3611  mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3613  mtd->_erase = nand_erase;
3614  mtd->_point = NULL;
3615  mtd->_unpoint = NULL;
3616  mtd->_read = nand_read;
3617  mtd->_write = nand_write;
3618  mtd->_panic_write = panic_nand_write;
3619  mtd->_read_oob = nand_read_oob;
3620  mtd->_write_oob = nand_write_oob;
3621  mtd->_sync = nand_sync;
3622  mtd->_lock = NULL;
3623  mtd->_unlock = NULL;
3624  mtd->_suspend = nand_suspend;
3625  mtd->_resume = nand_resume;
3626  mtd->_block_isbad = nand_block_isbad;
3627  mtd->_block_markbad = nand_block_markbad;
3628  mtd->writebufsize = mtd->writesize;
3629 
3630  /* propagate ecc info to mtd_info */
3631  mtd->ecclayout = chip->ecc.layout;
3632  mtd->ecc_strength = chip->ecc.strength;
3633  /*
3634  * Initialize bitflip_threshold to its default prior scan_bbt() call.
3635  * scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
3636  * properly set.
3637  */
3638  if (!mtd->bitflip_threshold)
3639  mtd->bitflip_threshold = mtd->ecc_strength;
3640 
3641  /* Check, if we should skip the bad block table scan */
3642  if (chip->options & NAND_SKIP_BBTSCAN)
3643  return 0;
3644 
3645  /* Build bad block table */
3646  return chip->scan_bbt(mtd);
3647 }
3649 
3650 /*
3651  * is_module_text_address() isn't exported, and it's mostly a pointless
3652  * test if this is a module _anyway_ -- they'd have to try _really_ hard
3653  * to call us from in-kernel code if the core NAND support is modular.
3654  */
3655 #ifdef MODULE
3656 #define caller_is_module() (1)
3657 #else
3658 #define caller_is_module() \
3659  is_module_text_address((unsigned long)__builtin_return_address(0))
3660 #endif
3661 
3672 int nand_scan(struct mtd_info *mtd, int maxchips)
3673 {
3674  int ret;
3675 
3676  /* Many callers got this wrong, so check for it for a while... */
3677  if (!mtd->owner && caller_is_module()) {
3678  pr_crit("%s called with NULL mtd->owner!\n", __func__);
3679  BUG();
3680  }
3681 
3682  ret = nand_scan_ident(mtd, maxchips, NULL);
3683  if (!ret)
3684  ret = nand_scan_tail(mtd);
3685  return ret;
3686 }
3688 
3693 void nand_release(struct mtd_info *mtd)
3694 {
3695  struct nand_chip *chip = mtd->priv;
3696 
3697  if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3698  nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3699 
3700  mtd_device_unregister(mtd);
3701 
3702  /* Free bad block table memory */
3703  kfree(chip->bbt);
3704  if (!(chip->options & NAND_OWN_BUFFERS))
3705  kfree(chip->buffers);
3706 
3707  /* Free bad block descriptor memory */
3708  if (chip->badblock_pattern && chip->badblock_pattern->options
3710  kfree(chip->badblock_pattern);
3711 }
3713 
3714 static int __init nand_base_init(void)
3715 {
3716  led_trigger_register_simple("nand-disk", &nand_led_trigger);
3717  return 0;
3718 }
3719 
3720 static void __exit nand_base_exit(void)
3721 {
3722  led_trigger_unregister_simple(nand_led_trigger);
3723 }
3724 
3725 module_init(nand_base_init);
3726 module_exit(nand_base_exit);
3727 
3728 MODULE_LICENSE("GPL");
3729 MODULE_AUTHOR("Steven J. Hill <[email protected]>");
3730 MODULE_AUTHOR("Thomas Gleixner <[email protected]>");
3731 MODULE_DESCRIPTION("Generic NAND flash driver code");