Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
nftlmount.c
Go to the documentation of this file.
1 /*
2  * NFTL mount code with extensive checks
3  *
4  * Author: Fabrice Bellard ([email protected])
5  * Copyright © 2000 Netgem S.A.
6  * Copyright © 1999-2010 David Woodhouse <[email protected]>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
21  */
22 
23 #include <linux/kernel.h>
24 #include <asm/errno.h>
25 #include <linux/delay.h>
26 #include <linux/slab.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/nand.h>
29 #include <linux/mtd/nftl.h>
30 
31 #define SECTORSIZE 512
32 
33 /* find_boot_record: Find the NFTL Media Header and its Spare copy which contains the
34  * various device information of the NFTL partition and Bad Unit Table. Update
35  * the ReplUnitTable[] table according to the Bad Unit Table. ReplUnitTable[]
36  * is used for management of Erase Unit in other routines in nftl.c and nftlmount.c
37  */
38 static int find_boot_record(struct NFTLrecord *nftl)
39 {
40  struct nftl_uci1 h1;
41  unsigned int block, boot_record_count = 0;
42  size_t retlen;
43  u8 buf[SECTORSIZE];
44  struct NFTLMediaHeader *mh = &nftl->MediaHdr;
45  struct mtd_info *mtd = nftl->mbd.mtd;
46  unsigned int i;
47 
48  /* Assume logical EraseSize == physical erasesize for starting the scan.
49  We'll sort it out later if we find a MediaHeader which says otherwise */
50  /* Actually, we won't. The new DiskOnChip driver has already scanned
51  the MediaHeader and adjusted the virtual erasesize it presents in
52  the mtd device accordingly. We could even get rid of
53  nftl->EraseSize if there were any point in doing so. */
54  nftl->EraseSize = nftl->mbd.mtd->erasesize;
55  nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
56 
57  nftl->MediaUnit = BLOCK_NIL;
58  nftl->SpareMediaUnit = BLOCK_NIL;
59 
60  /* search for a valid boot record */
61  for (block = 0; block < nftl->nb_blocks; block++) {
62  int ret;
63 
64  /* Check for ANAND header first. Then can whinge if it's found but later
65  checks fail */
66  ret = mtd_read(mtd, block * nftl->EraseSize, SECTORSIZE,
67  &retlen, buf);
68  /* We ignore ret in case the ECC of the MediaHeader is invalid
69  (which is apparently acceptable) */
70  if (retlen != SECTORSIZE) {
71  static int warncount = 5;
72 
73  if (warncount) {
74  printk(KERN_WARNING "Block read at 0x%x of mtd%d failed: %d\n",
75  block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
76  if (!--warncount)
77  printk(KERN_WARNING "Further failures for this block will not be printed\n");
78  }
79  continue;
80  }
81 
82  if (retlen < 6 || memcmp(buf, "ANAND", 6)) {
83  /* ANAND\0 not found. Continue */
84 #if 0
85  printk(KERN_DEBUG "ANAND header not found at 0x%x in mtd%d\n",
86  block * nftl->EraseSize, nftl->mbd.mtd->index);
87 #endif
88  continue;
89  }
90 
91  /* To be safer with BIOS, also use erase mark as discriminant */
92  if ((ret = nftl_read_oob(mtd, block * nftl->EraseSize +
93  SECTORSIZE + 8, 8, &retlen,
94  (char *)&h1) < 0)) {
95  printk(KERN_WARNING "ANAND header found at 0x%x in mtd%d, but OOB data read failed (err %d)\n",
96  block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
97  continue;
98  }
99 
100 #if 0 /* Some people seem to have devices without ECC or erase marks
101  on the Media Header blocks. There are enough other sanity
102  checks in here that we can probably do without it.
103  */
104  if (le16_to_cpu(h1.EraseMark | h1.EraseMark1) != ERASE_MARK) {
105  printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but erase mark not present (0x%04x,0x%04x instead)\n",
106  block * nftl->EraseSize, nftl->mbd.mtd->index,
108  continue;
109  }
110 
111  /* Finally reread to check ECC */
112  if ((ret = mtd->read(mtd, block * nftl->EraseSize, SECTORSIZE,
113  &retlen, buf) < 0)) {
114  printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but ECC read failed (err %d)\n",
115  block * nftl->EraseSize, nftl->mbd.mtd->index, ret);
116  continue;
117  }
118 
119  /* Paranoia. Check the ANAND header is still there after the ECC read */
120  if (memcmp(buf, "ANAND", 6)) {
121  printk(KERN_NOTICE "ANAND header found at 0x%x in mtd%d, but went away on reread!\n",
122  block * nftl->EraseSize, nftl->mbd.mtd->index);
123  printk(KERN_NOTICE "New data are: %02x %02x %02x %02x %02x %02x\n",
124  buf[0], buf[1], buf[2], buf[3], buf[4], buf[5]);
125  continue;
126  }
127 #endif
128  /* OK, we like it. */
129 
130  if (boot_record_count) {
131  /* We've already processed one. So we just check if
132  this one is the same as the first one we found */
133  if (memcmp(mh, buf, sizeof(struct NFTLMediaHeader))) {
134  printk(KERN_NOTICE "NFTL Media Headers at 0x%x and 0x%x disagree.\n",
135  nftl->MediaUnit * nftl->EraseSize, block * nftl->EraseSize);
136  /* if (debug) Print both side by side */
137  if (boot_record_count < 2) {
138  /* We haven't yet seen two real ones */
139  return -1;
140  }
141  continue;
142  }
143  if (boot_record_count == 1)
144  nftl->SpareMediaUnit = block;
145 
146  /* Mark this boot record (NFTL MediaHeader) block as reserved */
148 
149 
150  boot_record_count++;
151  continue;
152  }
153 
154  /* This is the first we've seen. Copy the media header structure into place */
155  memcpy(mh, buf, sizeof(struct NFTLMediaHeader));
156 
157  /* Do some sanity checks on it */
158 #if 0
159 The new DiskOnChip driver scans the MediaHeader itself, and presents a virtual
160 erasesize based on UnitSizeFactor. So the erasesize we read from the mtd
161 device is already correct.
162  if (mh->UnitSizeFactor == 0) {
163  printk(KERN_NOTICE "NFTL: UnitSizeFactor 0x00 detected. This violates the spec but we think we know what it means...\n");
164  } else if (mh->UnitSizeFactor < 0xfc) {
165  printk(KERN_NOTICE "Sorry, we don't support UnitSizeFactor 0x%02x\n",
166  mh->UnitSizeFactor);
167  return -1;
168  } else if (mh->UnitSizeFactor != 0xff) {
169  printk(KERN_NOTICE "WARNING: Support for NFTL with UnitSizeFactor 0x%02x is experimental\n",
170  mh->UnitSizeFactor);
171  nftl->EraseSize = nftl->mbd.mtd->erasesize << (0xff - mh->UnitSizeFactor);
172  nftl->nb_blocks = (u32)nftl->mbd.mtd->size / nftl->EraseSize;
173  }
174 #endif
176  if ((nftl->nb_boot_blocks + 2) >= nftl->nb_blocks) {
177  printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
178  printk(KERN_NOTICE "nb_boot_blocks (%d) + 2 > nb_blocks (%d)\n",
179  nftl->nb_boot_blocks, nftl->nb_blocks);
180  return -1;
181  }
182 
183  nftl->numvunits = le32_to_cpu(mh->FormattedSize) / nftl->EraseSize;
184  if (nftl->numvunits > (nftl->nb_blocks - nftl->nb_boot_blocks - 2)) {
185  printk(KERN_NOTICE "NFTL Media Header sanity check failed:\n");
186  printk(KERN_NOTICE "numvunits (%d) > nb_blocks (%d) - nb_boot_blocks(%d) - 2\n",
187  nftl->numvunits, nftl->nb_blocks, nftl->nb_boot_blocks);
188  return -1;
189  }
190 
191  nftl->mbd.size = nftl->numvunits * (nftl->EraseSize / SECTORSIZE);
192 
193  /* If we're not using the last sectors in the device for some reason,
194  reduce nb_blocks accordingly so we forget they're there */
196 
197  /* XXX: will be suppressed */
198  nftl->lastEUN = nftl->nb_blocks - 1;
199 
200  /* memory alloc */
201  nftl->EUNtable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
202  if (!nftl->EUNtable) {
203  printk(KERN_NOTICE "NFTL: allocation of EUNtable failed\n");
204  return -ENOMEM;
205  }
206 
207  nftl->ReplUnitTable = kmalloc(nftl->nb_blocks * sizeof(u16), GFP_KERNEL);
208  if (!nftl->ReplUnitTable) {
209  kfree(nftl->EUNtable);
210  printk(KERN_NOTICE "NFTL: allocation of ReplUnitTable failed\n");
211  return -ENOMEM;
212  }
213 
214  /* mark the bios blocks (blocks before NFTL MediaHeader) as reserved */
215  for (i = 0; i < nftl->nb_boot_blocks; i++)
216  nftl->ReplUnitTable[i] = BLOCK_RESERVED;
217  /* mark all remaining blocks as potentially containing data */
218  for (; i < nftl->nb_blocks; i++) {
220  }
221 
222  /* Mark this boot record (NFTL MediaHeader) block as reserved */
224 
225  /* read the Bad Erase Unit Table and modify ReplUnitTable[] accordingly */
226  for (i = 0; i < nftl->nb_blocks; i++) {
227 #if 0
228 The new DiskOnChip driver already scanned the bad block table. Just query it.
229  if ((i & (SECTORSIZE - 1)) == 0) {
230  /* read one sector for every SECTORSIZE of blocks */
231  if ((ret = mtd->read(nftl->mbd.mtd, block * nftl->EraseSize +
232  i + SECTORSIZE, SECTORSIZE, &retlen,
233  buf)) < 0) {
234  printk(KERN_NOTICE "Read of bad sector table failed (err %d)\n",
235  ret);
236  kfree(nftl->ReplUnitTable);
237  kfree(nftl->EUNtable);
238  return -1;
239  }
240  }
241  /* mark the Bad Erase Unit as RESERVED in ReplUnitTable */
242  if (buf[i & (SECTORSIZE - 1)] != 0xff)
243  nftl->ReplUnitTable[i] = BLOCK_RESERVED;
244 #endif
245  if (mtd_block_isbad(nftl->mbd.mtd,
246  i * nftl->EraseSize))
247  nftl->ReplUnitTable[i] = BLOCK_RESERVED;
248  }
249 
250  nftl->MediaUnit = block;
251  boot_record_count++;
252 
253  } /* foreach (block) */
254 
255  return boot_record_count?0:-1;
256 }
257 
258 static int memcmpb(void *a, int c, int n)
259 {
260  int i;
261  for (i = 0; i < n; i++) {
262  if (c != ((unsigned char *)a)[i])
263  return 1;
264  }
265  return 0;
266 }
267 
268 /* check_free_sector: check if a free sector is actually FREE, i.e. All 0xff in data and oob area */
269 static int check_free_sectors(struct NFTLrecord *nftl, unsigned int address, int len,
270  int check_oob)
271 {
272  u8 buf[SECTORSIZE + nftl->mbd.mtd->oobsize];
273  struct mtd_info *mtd = nftl->mbd.mtd;
274  size_t retlen;
275  int i;
276 
277  for (i = 0; i < len; i += SECTORSIZE) {
278  if (mtd_read(mtd, address, SECTORSIZE, &retlen, buf))
279  return -1;
280  if (memcmpb(buf, 0xff, SECTORSIZE) != 0)
281  return -1;
282 
283  if (check_oob) {
284  if(nftl_read_oob(mtd, address, mtd->oobsize,
285  &retlen, &buf[SECTORSIZE]) < 0)
286  return -1;
287  if (memcmpb(buf + SECTORSIZE, 0xff, mtd->oobsize) != 0)
288  return -1;
289  }
290  address += SECTORSIZE;
291  }
292 
293  return 0;
294 }
295 
296 /* NFTL_format: format a Erase Unit by erasing ALL Erase Zones in the Erase Unit and
297  * Update NFTL metadata. Each erase operation is checked with check_free_sectors
298  *
299  * Return: 0 when succeed, -1 on error.
300  *
301  * ToDo: 1. Is it necessary to check_free_sector after erasing ??
302  */
303 int NFTL_formatblock(struct NFTLrecord *nftl, int block)
304 {
305  size_t retlen;
306  unsigned int nb_erases, erase_mark;
307  struct nftl_uci1 uci;
308  struct erase_info *instr = &nftl->instr;
309  struct mtd_info *mtd = nftl->mbd.mtd;
310 
311  /* Read the Unit Control Information #1 for Wear-Leveling */
312  if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8,
313  8, &retlen, (char *)&uci) < 0)
314  goto default_uci1;
315 
316  erase_mark = le16_to_cpu ((uci.EraseMark | uci.EraseMark1));
317  if (erase_mark != ERASE_MARK) {
318  default_uci1:
321  uci.WearInfo = cpu_to_le32(0);
322  }
323 
324  memset(instr, 0, sizeof(struct erase_info));
325 
326  /* XXX: use async erase interface, XXX: test return code */
327  instr->mtd = nftl->mbd.mtd;
328  instr->addr = block * nftl->EraseSize;
329  instr->len = nftl->EraseSize;
330  mtd_erase(mtd, instr);
331 
332  if (instr->state == MTD_ERASE_FAILED) {
333  printk("Error while formatting block %d\n", block);
334  goto fail;
335  }
336 
337  /* increase and write Wear-Leveling info */
338  nb_erases = le32_to_cpu(uci.WearInfo);
339  nb_erases++;
340 
341  /* wrap (almost impossible with current flash) or free block */
342  if (nb_erases == 0)
343  nb_erases = 1;
344 
345  /* check the "freeness" of Erase Unit before updating metadata
346  * FixMe: is this check really necessary ? since we have check the
347  * return code after the erase operation. */
348  if (check_free_sectors(nftl, instr->addr, nftl->EraseSize, 1) != 0)
349  goto fail;
350 
351  uci.WearInfo = le32_to_cpu(nb_erases);
352  if (nftl_write_oob(mtd, block * nftl->EraseSize + SECTORSIZE +
353  8, 8, &retlen, (char *)&uci) < 0)
354  goto fail;
355  return 0;
356 fail:
357  /* could not format, update the bad block table (caller is responsible
358  for setting the ReplUnitTable to BLOCK_RESERVED on failure) */
359  mtd_block_markbad(nftl->mbd.mtd, instr->addr);
360  return -1;
361 }
362 
363 /* check_sectors_in_chain: Check that each sector of a Virtual Unit Chain is correct.
364  * Mark as 'IGNORE' each incorrect sector. This check is only done if the chain
365  * was being folded when NFTL was interrupted.
366  *
367  * The check_free_sectors in this function is necessary. There is a possible
368  * situation that after writing the Data area, the Block Control Information is
369  * not updated according (due to power failure or something) which leaves the block
370  * in an inconsistent state. So we have to check if a block is really FREE in this
371  * case. */
372 static void check_sectors_in_chain(struct NFTLrecord *nftl, unsigned int first_block)
373 {
374  struct mtd_info *mtd = nftl->mbd.mtd;
375  unsigned int block, i, status;
376  struct nftl_bci bci;
377  int sectors_per_block;
378  size_t retlen;
379 
380  sectors_per_block = nftl->EraseSize / SECTORSIZE;
381  block = first_block;
382  for (;;) {
383  for (i = 0; i < sectors_per_block; i++) {
384  if (nftl_read_oob(mtd,
385  block * nftl->EraseSize + i * SECTORSIZE,
386  8, &retlen, (char *)&bci) < 0)
387  status = SECTOR_IGNORE;
388  else
389  status = bci.Status | bci.Status1;
390 
391  switch(status) {
392  case SECTOR_FREE:
393  /* verify that the sector is really free. If not, mark
394  as ignore */
395  if (memcmpb(&bci, 0xff, 8) != 0 ||
396  check_free_sectors(nftl, block * nftl->EraseSize + i * SECTORSIZE,
397  SECTORSIZE, 0) != 0) {
398  printk("Incorrect free sector %d in block %d: "
399  "marking it as ignored\n",
400  i, block);
401 
402  /* sector not free actually : mark it as SECTOR_IGNORE */
403  bci.Status = SECTOR_IGNORE;
404  bci.Status1 = SECTOR_IGNORE;
405  nftl_write_oob(mtd, block *
406  nftl->EraseSize +
407  i * SECTORSIZE, 8,
408  &retlen, (char *)&bci);
409  }
410  break;
411  default:
412  break;
413  }
414  }
415 
416  /* proceed to next Erase Unit on the chain */
417  block = nftl->ReplUnitTable[block];
418  if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
419  printk("incorrect ReplUnitTable[] : %d\n", block);
420  if (block == BLOCK_NIL || block >= nftl->nb_blocks)
421  break;
422  }
423 }
424 
425 /* calc_chain_length: Walk through a Virtual Unit Chain and estimate chain length */
426 static int calc_chain_length(struct NFTLrecord *nftl, unsigned int first_block)
427 {
428  unsigned int length = 0, block = first_block;
429 
430  for (;;) {
431  length++;
432  /* avoid infinite loops, although this is guaranteed not to
433  happen because of the previous checks */
434  if (length >= nftl->nb_blocks) {
435  printk("nftl: length too long %d !\n", length);
436  break;
437  }
438 
439  block = nftl->ReplUnitTable[block];
440  if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
441  printk("incorrect ReplUnitTable[] : %d\n", block);
442  if (block == BLOCK_NIL || block >= nftl->nb_blocks)
443  break;
444  }
445  return length;
446 }
447 
448 /* format_chain: Format an invalid Virtual Unit chain. It frees all the Erase Units in a
449  * Virtual Unit Chain, i.e. all the units are disconnected.
450  *
451  * It is not strictly correct to begin from the first block of the chain because
452  * if we stop the code, we may see again a valid chain if there was a first_block
453  * flag in a block inside it. But is it really a problem ?
454  *
455  * FixMe: Figure out what the last statement means. What if power failure when we are
456  * in the for (;;) loop formatting blocks ??
457  */
458 static void format_chain(struct NFTLrecord *nftl, unsigned int first_block)
459 {
460  unsigned int block = first_block, block1;
461 
462  printk("Formatting chain at block %d\n", first_block);
463 
464  for (;;) {
465  block1 = nftl->ReplUnitTable[block];
466 
467  printk("Formatting block %d\n", block);
468  if (NFTL_formatblock(nftl, block) < 0) {
469  /* cannot format !!!! Mark it as Bad Unit */
471  } else {
472  nftl->ReplUnitTable[block] = BLOCK_FREE;
473  }
474 
475  /* goto next block on the chain */
476  block = block1;
477 
478  if (!(block == BLOCK_NIL || block < nftl->nb_blocks))
479  printk("incorrect ReplUnitTable[] : %d\n", block);
480  if (block == BLOCK_NIL || block >= nftl->nb_blocks)
481  break;
482  }
483 }
484 
485 /* check_and_mark_free_block: Verify that a block is free in the NFTL sense (valid erase mark) or
486  * totally free (only 0xff).
487  *
488  * Definition: Free Erase Unit -- A properly erased/formatted Free Erase Unit should have meet the
489  * following criteria:
490  * 1. */
491 static int check_and_mark_free_block(struct NFTLrecord *nftl, int block)
492 {
493  struct mtd_info *mtd = nftl->mbd.mtd;
494  struct nftl_uci1 h1;
495  unsigned int erase_mark;
496  size_t retlen;
497 
498  /* check erase mark. */
499  if (nftl_read_oob(mtd, block * nftl->EraseSize + SECTORSIZE + 8, 8,
500  &retlen, (char *)&h1) < 0)
501  return -1;
502 
503  erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
504  if (erase_mark != ERASE_MARK) {
505  /* if no erase mark, the block must be totally free. This is
506  possible in two cases : empty filesystem or interrupted erase (very unlikely) */
507  if (check_free_sectors (nftl, block * nftl->EraseSize, nftl->EraseSize, 1) != 0)
508  return -1;
509 
510  /* free block : write erase mark */
511  h1.EraseMark = cpu_to_le16(ERASE_MARK);
512  h1.EraseMark1 = cpu_to_le16(ERASE_MARK);
513  h1.WearInfo = cpu_to_le32(0);
514  if (nftl_write_oob(mtd,
515  block * nftl->EraseSize + SECTORSIZE + 8, 8,
516  &retlen, (char *)&h1) < 0)
517  return -1;
518  } else {
519 #if 0
520  /* if erase mark present, need to skip it when doing check */
521  for (i = 0; i < nftl->EraseSize; i += SECTORSIZE) {
522  /* check free sector */
523  if (check_free_sectors (nftl, block * nftl->EraseSize + i,
524  SECTORSIZE, 0) != 0)
525  return -1;
526 
527  if (nftl_read_oob(mtd, block * nftl->EraseSize + i,
528  16, &retlen, buf) < 0)
529  return -1;
530  if (i == SECTORSIZE) {
531  /* skip erase mark */
532  if (memcmpb(buf, 0xff, 8))
533  return -1;
534  } else {
535  if (memcmpb(buf, 0xff, 16))
536  return -1;
537  }
538  }
539 #endif
540  }
541 
542  return 0;
543 }
544 
545 /* get_fold_mark: Read fold mark from Unit Control Information #2, we use FOLD_MARK_IN_PROGRESS
546  * to indicate that we are in the progression of a Virtual Unit Chain folding. If the UCI #2
547  * is FOLD_MARK_IN_PROGRESS when mounting the NFTL, the (previous) folding process is interrupted
548  * for some reason. A clean up/check of the VUC is necessary in this case.
549  *
550  * WARNING: return 0 if read error
551  */
552 static int get_fold_mark(struct NFTLrecord *nftl, unsigned int block)
553 {
554  struct mtd_info *mtd = nftl->mbd.mtd;
555  struct nftl_uci2 uci;
556  size_t retlen;
557 
558  if (nftl_read_oob(mtd, block * nftl->EraseSize + 2 * SECTORSIZE + 8,
559  8, &retlen, (char *)&uci) < 0)
560  return 0;
561 
562  return le16_to_cpu((uci.FoldMark | uci.FoldMark1));
563 }
564 
565 int NFTL_mount(struct NFTLrecord *s)
566 {
567  int i;
568  unsigned int first_logical_block, logical_block, rep_block, nb_erases, erase_mark;
569  unsigned int block, first_block, is_first_block;
570  int chain_length, do_format_chain;
571  struct nftl_uci0 h0;
572  struct nftl_uci1 h1;
573  struct mtd_info *mtd = s->mbd.mtd;
574  size_t retlen;
575 
576  /* search for NFTL MediaHeader and Spare NFTL Media Header */
577  if (find_boot_record(s) < 0) {
578  printk("Could not find valid boot record\n");
579  return -1;
580  }
581 
582  /* init the logical to physical table */
583  for (i = 0; i < s->nb_blocks; i++) {
584  s->EUNtable[i] = BLOCK_NIL;
585  }
586 
587  /* first pass : explore each block chain */
588  first_logical_block = 0;
589  for (first_block = 0; first_block < s->nb_blocks; first_block++) {
590  /* if the block was not already explored, we can look at it */
591  if (s->ReplUnitTable[first_block] == BLOCK_NOTEXPLORED) {
592  block = first_block;
593  chain_length = 0;
594  do_format_chain = 0;
595 
596  for (;;) {
597  /* read the block header. If error, we format the chain */
598  if (nftl_read_oob(mtd,
599  block * s->EraseSize + 8, 8,
600  &retlen, (char *)&h0) < 0 ||
601  nftl_read_oob(mtd,
602  block * s->EraseSize +
603  SECTORSIZE + 8, 8,
604  &retlen, (char *)&h1) < 0) {
606  do_format_chain = 1;
607  break;
608  }
609 
610  logical_block = le16_to_cpu ((h0.VirtUnitNum | h0.SpareVirtUnitNum));
611  rep_block = le16_to_cpu ((h0.ReplUnitNum | h0.SpareReplUnitNum));
612  nb_erases = le32_to_cpu (h1.WearInfo);
613  erase_mark = le16_to_cpu ((h1.EraseMark | h1.EraseMark1));
614 
615  is_first_block = !(logical_block >> 15);
616  logical_block = logical_block & 0x7fff;
617 
618  /* invalid/free block test */
619  if (erase_mark != ERASE_MARK || logical_block >= s->nb_blocks) {
620  if (chain_length == 0) {
621  /* if not currently in a chain, we can handle it safely */
622  if (check_and_mark_free_block(s, block) < 0) {
623  /* not really free: format it */
624  printk("Formatting block %d\n", block);
625  if (NFTL_formatblock(s, block) < 0) {
626  /* could not format: reserve the block */
628  } else {
630  }
631  } else {
632  /* free block: mark it */
634  }
635  /* directly examine the next block. */
636  goto examine_ReplUnitTable;
637  } else {
638  /* the block was in a chain : this is bad. We
639  must format all the chain */
640  printk("Block %d: free but referenced in chain %d\n",
641  block, first_block);
643  do_format_chain = 1;
644  break;
645  }
646  }
647 
648  /* we accept only first blocks here */
649  if (chain_length == 0) {
650  /* this block is not the first block in chain :
651  ignore it, it will be included in a chain
652  later, or marked as not explored */
653  if (!is_first_block)
654  goto examine_ReplUnitTable;
655  first_logical_block = logical_block;
656  } else {
657  if (logical_block != first_logical_block) {
658  printk("Block %d: incorrect logical block: %d expected: %d\n",
659  block, logical_block, first_logical_block);
660  /* the chain is incorrect : we must format it,
661  but we need to read it completely */
662  do_format_chain = 1;
663  }
664  if (is_first_block) {
665  /* we accept that a block is marked as first
666  block while being last block in a chain
667  only if the chain is being folded */
668  if (get_fold_mark(s, block) != FOLD_MARK_IN_PROGRESS ||
669  rep_block != 0xffff) {
670  printk("Block %d: incorrectly marked as first block in chain\n",
671  block);
672  /* the chain is incorrect : we must format it,
673  but we need to read it completely */
674  do_format_chain = 1;
675  } else {
676  printk("Block %d: folding in progress - ignoring first block flag\n",
677  block);
678  }
679  }
680  }
681  chain_length++;
682  if (rep_block == 0xffff) {
683  /* no more blocks after */
685  break;
686  } else if (rep_block >= s->nb_blocks) {
687  printk("Block %d: referencing invalid block %d\n",
688  block, rep_block);
689  do_format_chain = 1;
691  break;
692  } else if (s->ReplUnitTable[rep_block] != BLOCK_NOTEXPLORED) {
693  /* same problem as previous 'is_first_block' test:
694  we accept that the last block of a chain has
695  the first_block flag set if folding is in
696  progress. We handle here the case where the
697  last block appeared first */
698  if (s->ReplUnitTable[rep_block] == BLOCK_NIL &&
699  s->EUNtable[first_logical_block] == rep_block &&
700  get_fold_mark(s, first_block) == FOLD_MARK_IN_PROGRESS) {
701  /* EUNtable[] will be set after */
702  printk("Block %d: folding in progress - ignoring first block flag\n",
703  rep_block);
704  s->ReplUnitTable[block] = rep_block;
705  s->EUNtable[first_logical_block] = BLOCK_NIL;
706  } else {
707  printk("Block %d: referencing block %d already in another chain\n",
708  block, rep_block);
709  /* XXX: should handle correctly fold in progress chains */
710  do_format_chain = 1;
712  }
713  break;
714  } else {
715  /* this is OK */
716  s->ReplUnitTable[block] = rep_block;
717  block = rep_block;
718  }
719  }
720 
721  /* the chain was completely explored. Now we can decide
722  what to do with it */
723  if (do_format_chain) {
724  /* invalid chain : format it */
725  format_chain(s, first_block);
726  } else {
727  unsigned int first_block1, chain_to_format, chain_length1;
728  int fold_mark;
729 
730  /* valid chain : get foldmark */
731  fold_mark = get_fold_mark(s, first_block);
732  if (fold_mark == 0) {
733  /* cannot get foldmark : format the chain */
734  printk("Could read foldmark at block %d\n", first_block);
735  format_chain(s, first_block);
736  } else {
737  if (fold_mark == FOLD_MARK_IN_PROGRESS)
738  check_sectors_in_chain(s, first_block);
739 
740  /* now handle the case where we find two chains at the
741  same virtual address : we select the longer one,
742  because the shorter one is the one which was being
743  folded if the folding was not done in place */
744  first_block1 = s->EUNtable[first_logical_block];
745  if (first_block1 != BLOCK_NIL) {
746  /* XXX: what to do if same length ? */
747  chain_length1 = calc_chain_length(s, first_block1);
748  printk("Two chains at blocks %d (len=%d) and %d (len=%d)\n",
749  first_block1, chain_length1, first_block, chain_length);
750 
751  if (chain_length >= chain_length1) {
752  chain_to_format = first_block1;
753  s->EUNtable[first_logical_block] = first_block;
754  } else {
755  chain_to_format = first_block;
756  }
757  format_chain(s, chain_to_format);
758  } else {
759  s->EUNtable[first_logical_block] = first_block;
760  }
761  }
762  }
763  }
764  examine_ReplUnitTable:;
765  }
766 
767  /* second pass to format unreferenced blocks and init free block count */
768  s->numfreeEUNs = 0;
769  s->LastFreeEUN = le16_to_cpu(s->MediaHdr.FirstPhysicalEUN);
770 
771  for (block = 0; block < s->nb_blocks; block++) {
772  if (s->ReplUnitTable[block] == BLOCK_NOTEXPLORED) {
773  printk("Unreferenced block %d, formatting it\n", block);
774  if (NFTL_formatblock(s, block) < 0)
776  else
778  }
779  if (s->ReplUnitTable[block] == BLOCK_FREE) {
780  s->numfreeEUNs++;
781  s->LastFreeEUN = block;
782  }
783  }
784 
785  return 0;
786 }