Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
nuvoton-cir.c
Go to the documentation of this file.
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <[email protected]>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25  * USA
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
39 
40 #include "nuvoton-cir.h"
41 
42 /* write val to config reg */
43 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
44 {
45  outb(reg, nvt->cr_efir);
46  outb(val, nvt->cr_efdr);
47 }
48 
49 /* read val from config reg */
50 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
51 {
52  outb(reg, nvt->cr_efir);
53  return inb(nvt->cr_efdr);
54 }
55 
56 /* update config register bit without changing other bits */
57 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59  u8 tmp = nvt_cr_read(nvt, reg) | val;
60  nvt_cr_write(nvt, tmp, reg);
61 }
62 
63 /* clear config register bit without changing other bits */
64 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
65 {
66  u8 tmp = nvt_cr_read(nvt, reg) & ~val;
67  nvt_cr_write(nvt, tmp, reg);
68 }
69 
70 /* enter extended function mode */
71 static inline void nvt_efm_enable(struct nvt_dev *nvt)
72 {
73  /* Enabling Extended Function Mode explicitly requires writing 2x */
76 }
77 
78 /* exit extended function mode */
79 static inline void nvt_efm_disable(struct nvt_dev *nvt)
80 {
82 }
83 
84 /*
85  * When you want to address a specific logical device, write its logical
86  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
87  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
88  */
89 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
90 {
92  outb(ldev, nvt->cr_efdr);
93 }
94 
95 /* write val to cir config register */
96 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
97 {
98  outb(val, nvt->cir_addr + offset);
99 }
100 
101 /* read val from cir config register */
102 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
103 {
104  u8 val;
105 
106  val = inb(nvt->cir_addr + offset);
107 
108  return val;
109 }
110 
111 /* write val to cir wake register */
112 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
113  u8 val, u8 offset)
114 {
115  outb(val, nvt->cir_wake_addr + offset);
116 }
117 
118 /* read val from cir wake config register */
119 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
120 {
121  u8 val;
122 
123  val = inb(nvt->cir_wake_addr + offset);
124 
125  return val;
126 }
127 
128 /* dump current cir register contents */
129 static void cir_dump_regs(struct nvt_dev *nvt)
130 {
131  nvt_efm_enable(nvt);
132  nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
133 
134  pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
135  pr_info(" * CR CIR ACTIVE : 0x%x\n",
136  nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
137  pr_info(" * CR CIR BASE ADDR: 0x%x\n",
138  (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
139  nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
140  pr_info(" * CR CIR IRQ NUM: 0x%x\n",
141  nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
142 
143  nvt_efm_disable(nvt);
144 
145  pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
146  pr_info(" * IRCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
147  pr_info(" * IRSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
148  pr_info(" * IREN: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
149  pr_info(" * RXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
150  pr_info(" * CP: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
151  pr_info(" * CC: 0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
152  pr_info(" * SLCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
153  pr_info(" * SLCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
154  pr_info(" * FIFOCON: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
155  pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
156  pr_info(" * SRXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
157  pr_info(" * TXFCONT: 0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
158  pr_info(" * STXFIFO: 0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
159  pr_info(" * FCCH: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
160  pr_info(" * FCCL: 0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
161  pr_info(" * IRFSM: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
162 }
163 
164 /* dump current cir wake register contents */
165 static void cir_wake_dump_regs(struct nvt_dev *nvt)
166 {
167  u8 i, fifo_len;
168 
169  nvt_efm_enable(nvt);
170  nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
171 
172  pr_info("%s: Dump CIR WAKE logical device registers:\n",
174  pr_info(" * CR CIR WAKE ACTIVE : 0x%x\n",
175  nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
176  pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
177  (nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
178  nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
179  pr_info(" * CR CIR WAKE IRQ NUM: 0x%x\n",
180  nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
181 
182  nvt_efm_disable(nvt);
183 
184  pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
185  pr_info(" * IRCON: 0x%x\n",
186  nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
187  pr_info(" * IRSTS: 0x%x\n",
188  nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
189  pr_info(" * IREN: 0x%x\n",
190  nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
191  pr_info(" * FIFO CMP DEEP: 0x%x\n",
192  nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
193  pr_info(" * FIFO CMP TOL: 0x%x\n",
194  nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
195  pr_info(" * FIFO COUNT: 0x%x\n",
196  nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
197  pr_info(" * SLCH: 0x%x\n",
198  nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
199  pr_info(" * SLCL: 0x%x\n",
200  nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
201  pr_info(" * FIFOCON: 0x%x\n",
202  nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
203  pr_info(" * SRXFSTS: 0x%x\n",
204  nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
205  pr_info(" * SAMPLE RX FIFO: 0x%x\n",
206  nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
207  pr_info(" * WR FIFO DATA: 0x%x\n",
208  nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
209  pr_info(" * RD FIFO ONLY: 0x%x\n",
210  nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
211  pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
212  nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
213  pr_info(" * FIFO IGNORE: 0x%x\n",
214  nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
215  pr_info(" * IRFSM: 0x%x\n",
216  nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
217 
218  fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
219  pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
220  pr_info("* Contents =");
221  for (i = 0; i < fifo_len; i++)
222  pr_cont(" %02x",
223  nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
224  pr_cont("\n");
225 }
226 
227 /* detect hardware features */
228 static int nvt_hw_detect(struct nvt_dev *nvt)
229 {
230  unsigned long flags;
231  u8 chip_major, chip_minor;
232  int ret = 0;
233  char chip_id[12];
234  bool chip_unknown = false;
235 
236  nvt_efm_enable(nvt);
237 
238  /* Check if we're wired for the alternate EFER setup */
239  chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
240  if (chip_major == 0xff) {
241  nvt->cr_efir = CR_EFIR2;
242  nvt->cr_efdr = CR_EFDR2;
243  nvt_efm_enable(nvt);
244  chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
245  }
246 
247  chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
248 
249  /* these are the known working chip revisions... */
250  switch (chip_major) {
251  case CHIP_ID_HIGH_667:
252  strcpy(chip_id, "w83667hg\0");
253  if (chip_minor != CHIP_ID_LOW_667)
254  chip_unknown = true;
255  break;
256  case CHIP_ID_HIGH_677B:
257  strcpy(chip_id, "w83677hg\0");
258  if (chip_minor != CHIP_ID_LOW_677B2 &&
259  chip_minor != CHIP_ID_LOW_677B3)
260  chip_unknown = true;
261  break;
262  case CHIP_ID_HIGH_677C:
263  strcpy(chip_id, "w83677hg-c\0");
264  if (chip_minor != CHIP_ID_LOW_677C)
265  chip_unknown = true;
266  break;
267  default:
268  strcpy(chip_id, "w836x7hg\0");
269  chip_unknown = true;
270  break;
271  }
272 
273  /* warn, but still let the driver load, if we don't know this chip */
274  if (chip_unknown)
275  nvt_pr(KERN_WARNING, "%s: unknown chip, id: 0x%02x 0x%02x, "
276  "it may not work...", chip_id, chip_major, chip_minor);
277  else
278  nvt_dbg("%s: chip id: 0x%02x 0x%02x",
279  chip_id, chip_major, chip_minor);
280 
281  nvt_efm_disable(nvt);
282 
283  spin_lock_irqsave(&nvt->nvt_lock, flags);
284  nvt->chip_major = chip_major;
285  nvt->chip_minor = chip_minor;
286  spin_unlock_irqrestore(&nvt->nvt_lock, flags);
287 
288  return ret;
289 }
290 
291 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
292 {
293  u8 val, psreg, psmask, psval;
294 
295  if (nvt->chip_major == CHIP_ID_HIGH_667) {
296  psreg = CR_MULTIFUNC_PIN_SEL;
297  psmask = MULTIFUNC_PIN_SEL_MASK;
299  } else {
300  psreg = CR_OUTPUT_PIN_SEL;
301  psmask = OUTPUT_PIN_SEL_MASK;
303  }
304 
305  /* output pin selection: enable CIR, with WB sensor enabled */
306  val = nvt_cr_read(nvt, psreg);
307  val &= psmask;
308  val |= psval;
309  nvt_cr_write(nvt, val, psreg);
310 
311  /* Select CIR logical device and enable */
312  nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
313  nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
314 
315  nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
316  nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
317 
318  nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
319 
320  nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
321  nvt->cir_addr, nvt->cir_irq);
322 }
323 
324 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
325 {
326  /* Select ACPI logical device, enable it and CIR Wake */
327  nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
328  nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
329 
330  /* Enable CIR Wake via PSOUT# (Pin60) */
331  nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
332 
333  /* enable cir interrupt of mouse/keyboard IRQ event */
334  nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
335 
336  /* enable pme interrupt of cir wakeup event */
337  nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
338 
339  /* Select CIR Wake logical device and enable */
340  nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
341  nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
342 
343  nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
344  nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
345 
346  nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
347 
348  nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
349  nvt->cir_wake_addr, nvt->cir_wake_irq);
350 }
351 
352 /* clear out the hardware's cir rx fifo */
353 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
354 {
355  u8 val;
356 
357  val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
358  nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
359 }
360 
361 /* clear out the hardware's cir wake rx fifo */
362 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
363 {
364  u8 val;
365 
366  val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
367  nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
369 }
370 
371 /* clear out the hardware's cir tx fifo */
372 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
373 {
374  u8 val;
375 
376  val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
377  nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
378 }
379 
380 /* enable RX Trigger Level Reach and Packet End interrupts */
381 static void nvt_set_cir_iren(struct nvt_dev *nvt)
382 {
383  u8 iren;
384 
385  iren = CIR_IREN_RTR | CIR_IREN_PE;
386  nvt_cir_reg_write(nvt, iren, CIR_IREN);
387 }
388 
389 static void nvt_cir_regs_init(struct nvt_dev *nvt)
390 {
391  /* set sample limit count (PE interrupt raised when reached) */
392  nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
393  nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
394 
395  /* set fifo irq trigger levels */
396  nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
398 
399  /*
400  * Enable TX and RX, specify carrier on = low, off = high, and set
401  * sample period (currently 50us)
402  */
403  nvt_cir_reg_write(nvt,
406  CIR_IRCON);
407 
408  /* clear hardware rx and tx fifos */
409  nvt_clear_cir_fifo(nvt);
410  nvt_clear_tx_fifo(nvt);
411 
412  /* clear any and all stray interrupts */
413  nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
414 
415  /* and finally, enable interrupts */
416  nvt_set_cir_iren(nvt);
417 }
418 
419 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
420 {
421  /* set number of bytes needed for wake from s3 (default 65) */
422  nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
424 
425  /* set tolerance/variance allowed per byte during wake compare */
426  nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
428 
429  /* set sample limit count (PE interrupt raised when reached) */
430  nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
431  nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
432 
433  /* set cir wake fifo rx trigger level (currently 67) */
434  nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
436 
437  /*
438  * Enable TX and RX, specific carrier on = low, off = high, and set
439  * sample period (currently 50us)
440  */
441  nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
445 
446  /* clear cir wake rx fifo */
447  nvt_clear_cir_wake_fifo(nvt);
448 
449  /* clear any and all stray interrupts */
450  nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
451 }
452 
453 static void nvt_enable_wake(struct nvt_dev *nvt)
454 {
455  nvt_efm_enable(nvt);
456 
457  nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
458  nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
459  nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
460  nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
461 
462  nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
463  nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
464 
465  nvt_efm_disable(nvt);
466 
467  nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
471  nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
472  nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
473 }
474 
475 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
476 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
477 {
478  u32 count, carrier, duration = 0;
479  int i;
480 
481  count = nvt_cir_reg_read(nvt, CIR_FCCL) |
482  nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
483 
484  for (i = 0; i < nvt->pkts; i++) {
485  if (nvt->buf[i] & BUF_PULSE_BIT)
486  duration += nvt->buf[i] & BUF_LEN_MASK;
487  }
488 
489  duration *= SAMPLE_PERIOD;
490 
491  if (!count || !duration) {
492  nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
493  count, duration);
494  return 0;
495  }
496 
497  carrier = MS_TO_NS(count) / duration;
498 
499  if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
500  nvt_dbg("WTF? Carrier frequency out of range!");
501 
502  nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
503  carrier, count, duration);
504 
505  return carrier;
506 }
507 
508 /*
509  * set carrier frequency
510  *
511  * set carrier on 2 registers: CP & CC
512  * always set CP as 0x81
513  * set CC by SPEC, CC = 3MHz/carrier - 1
514  */
515 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
516 {
517  struct nvt_dev *nvt = dev->priv;
518  u16 val;
519 
520  if (carrier == 0)
521  return -EINVAL;
522 
523  nvt_cir_reg_write(nvt, 1, CIR_CP);
524  val = 3000000 / (carrier) - 1;
525  nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
526 
527  nvt_dbg("cp: 0x%x cc: 0x%x\n",
528  nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
529 
530  return 0;
531 }
532 
533 /*
534  * nvt_tx_ir
535  *
536  * 1) clean TX fifo first (handled by AP)
537  * 2) copy data from user space
538  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
539  * 4) send 9 packets to TX FIFO to open TTR
540  * in interrupt_handler:
541  * 5) send all data out
542  * go back to write():
543  * 6) disable TX interrupts, re-enable RX interupts
544  *
545  * The key problem of this function is user space data may larger than
546  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
547  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
548  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
549  * set TXFCONT as 0xff, until buf_count less than 0xff.
550  */
551 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
552 {
553  struct nvt_dev *nvt = dev->priv;
554  unsigned long flags;
555  unsigned int i;
556  u8 iren;
557  int ret;
558 
559  spin_lock_irqsave(&nvt->tx.lock, flags);
560 
561  ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
562  nvt->tx.buf_count = (ret * sizeof(unsigned));
563 
564  memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
565 
566  nvt->tx.cur_buf_num = 0;
567 
568  /* save currently enabled interrupts */
569  iren = nvt_cir_reg_read(nvt, CIR_IREN);
570 
571  /* now disable all interrupts, save TFU & TTR */
572  nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
573 
574  nvt->tx.tx_state = ST_TX_REPLY;
575 
576  nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
578 
579  /* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
580  for (i = 0; i < 9; i++)
581  nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
582 
583  spin_unlock_irqrestore(&nvt->tx.lock, flags);
584 
585  wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
586 
587  spin_lock_irqsave(&nvt->tx.lock, flags);
588  nvt->tx.tx_state = ST_TX_NONE;
589  spin_unlock_irqrestore(&nvt->tx.lock, flags);
590 
591  /* restore enabled interrupts to prior state */
592  nvt_cir_reg_write(nvt, iren, CIR_IREN);
593 
594  return ret;
595 }
596 
597 /* dump contents of the last rx buffer we got from the hw rx fifo */
598 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
599 {
600  int i;
601 
602  printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
603  for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
604  printk(KERN_CONT "0x%02x ", nvt->buf[i]);
605  printk(KERN_CONT "\n");
606 }
607 
608 /*
609  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
610  * trigger decode when appropriate.
611  *
612  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
613  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
614  * (default 50us) intervals for that pulse/space. A discrete signal is
615  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
616  * to signal more IR coming (repeats) or end of IR, respectively. We store
617  * sample data in the raw event kfifo until we see 0x7<something> (except f)
618  * or 0x80, at which time, we trigger a decode operation.
619  */
620 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
621 {
622  DEFINE_IR_RAW_EVENT(rawir);
623  u32 carrier;
624  u8 sample;
625  int i;
626 
627  nvt_dbg_verbose("%s firing", __func__);
628 
629  if (debug)
630  nvt_dump_rx_buf(nvt);
631 
632  if (nvt->carrier_detect_enabled)
633  carrier = nvt_rx_carrier_detect(nvt);
634 
635  nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
636 
637  init_ir_raw_event(&rawir);
638 
639  for (i = 0; i < nvt->pkts; i++) {
640  sample = nvt->buf[i];
641 
642  rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
643  rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
644  * SAMPLE_PERIOD);
645 
646  nvt_dbg("Storing %s with duration %d",
647  rawir.pulse ? "pulse" : "space", rawir.duration);
648 
649  ir_raw_event_store_with_filter(nvt->rdev, &rawir);
650 
651  /*
652  * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
653  * indicates end of IR signal, but new data incoming. In both
654  * cases, it means we're ready to call ir_raw_event_handle
655  */
656  if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
657  nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
659  }
660  }
661 
662  nvt->pkts = 0;
663 
664  nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
666 
667  nvt_dbg_verbose("%s done", __func__);
668 }
669 
670 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
671 {
672  nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
673 
674  nvt->pkts = 0;
675  nvt_clear_cir_fifo(nvt);
676  ir_raw_event_reset(nvt->rdev);
677 }
678 
679 /* copy data from hardware rx fifo into driver buffer */
680 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
681 {
682  unsigned long flags;
683  u8 fifocount, val;
684  unsigned int b_idx;
685  bool overrun = false;
686  int i;
687 
688  /* Get count of how many bytes to read from RX FIFO */
689  fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
690  /* if we get 0xff, probably means the logical dev is disabled */
691  if (fifocount == 0xff)
692  return;
693  /* watch out for a fifo overrun condition */
694  else if (fifocount > RX_BUF_LEN) {
695  overrun = true;
696  fifocount = RX_BUF_LEN;
697  }
698 
699  nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
700 
701  spin_lock_irqsave(&nvt->nvt_lock, flags);
702 
703  b_idx = nvt->pkts;
704 
705  /* This should never happen, but lets check anyway... */
706  if (b_idx + fifocount > RX_BUF_LEN) {
707  nvt_process_rx_ir_data(nvt);
708  b_idx = 0;
709  }
710 
711  /* Read fifocount bytes from CIR Sample RX FIFO register */
712  for (i = 0; i < fifocount; i++) {
713  val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
714  nvt->buf[b_idx + i] = val;
715  }
716 
717  nvt->pkts += fifocount;
718  nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
719 
720  nvt_process_rx_ir_data(nvt);
721 
722  if (overrun)
723  nvt_handle_rx_fifo_overrun(nvt);
724 
725  spin_unlock_irqrestore(&nvt->nvt_lock, flags);
726 }
727 
728 static void nvt_cir_log_irqs(u8 status, u8 iren)
729 {
730  nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
731  status, iren,
732  status & CIR_IRSTS_RDR ? " RDR" : "",
733  status & CIR_IRSTS_RTR ? " RTR" : "",
734  status & CIR_IRSTS_PE ? " PE" : "",
735  status & CIR_IRSTS_RFO ? " RFO" : "",
736  status & CIR_IRSTS_TE ? " TE" : "",
737  status & CIR_IRSTS_TTR ? " TTR" : "",
738  status & CIR_IRSTS_TFU ? " TFU" : "",
739  status & CIR_IRSTS_GH ? " GH" : "",
740  status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
741  CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
742  CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
743 }
744 
745 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
746 {
747  unsigned long flags;
748  bool tx_inactive;
749  u8 tx_state;
750 
751  spin_lock_irqsave(&nvt->tx.lock, flags);
752  tx_state = nvt->tx.tx_state;
753  spin_unlock_irqrestore(&nvt->tx.lock, flags);
754 
755  tx_inactive = (tx_state == ST_TX_NONE);
756 
757  return tx_inactive;
758 }
759 
760 /* interrupt service routine for incoming and outgoing CIR data */
761 static irqreturn_t nvt_cir_isr(int irq, void *data)
762 {
763  struct nvt_dev *nvt = data;
764  u8 status, iren, cur_state;
765  unsigned long flags;
766 
767  nvt_dbg_verbose("%s firing", __func__);
768 
769  nvt_efm_enable(nvt);
770  nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
771  nvt_efm_disable(nvt);
772 
773  /*
774  * Get IR Status register contents. Write 1 to ack/clear
775  *
776  * bit: reg name - description
777  * 7: CIR_IRSTS_RDR - RX Data Ready
778  * 6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
779  * 5: CIR_IRSTS_PE - Packet End
780  * 4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
781  * 3: CIR_IRSTS_TE - TX FIFO Empty
782  * 2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
783  * 1: CIR_IRSTS_TFU - TX FIFO Underrun
784  * 0: CIR_IRSTS_GH - Min Length Detected
785  */
786  status = nvt_cir_reg_read(nvt, CIR_IRSTS);
787  if (!status) {
788  nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
789  nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
790  return IRQ_RETVAL(IRQ_NONE);
791  }
792 
793  /* ack/clear all irq flags we've got */
794  nvt_cir_reg_write(nvt, status, CIR_IRSTS);
795  nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
796 
797  /* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
798  iren = nvt_cir_reg_read(nvt, CIR_IREN);
799  if (!iren) {
800  nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
801  return IRQ_RETVAL(IRQ_NONE);
802  }
803 
804  if (debug)
805  nvt_cir_log_irqs(status, iren);
806 
807  if (status & CIR_IRSTS_RTR) {
808  /* FIXME: add code for study/learn mode */
809  /* We only do rx if not tx'ing */
810  if (nvt_cir_tx_inactive(nvt))
811  nvt_get_rx_ir_data(nvt);
812  }
813 
814  if (status & CIR_IRSTS_PE) {
815  if (nvt_cir_tx_inactive(nvt))
816  nvt_get_rx_ir_data(nvt);
817 
818  spin_lock_irqsave(&nvt->nvt_lock, flags);
819 
820  cur_state = nvt->study_state;
821 
822  spin_unlock_irqrestore(&nvt->nvt_lock, flags);
823 
824  if (cur_state == ST_STUDY_NONE)
825  nvt_clear_cir_fifo(nvt);
826  }
827 
828  if (status & CIR_IRSTS_TE)
829  nvt_clear_tx_fifo(nvt);
830 
831  if (status & CIR_IRSTS_TTR) {
832  unsigned int pos, count;
833  u8 tmp;
834 
835  spin_lock_irqsave(&nvt->tx.lock, flags);
836 
837  pos = nvt->tx.cur_buf_num;
838  count = nvt->tx.buf_count;
839 
840  /* Write data into the hardware tx fifo while pos < count */
841  if (pos < count) {
842  nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
843  nvt->tx.cur_buf_num++;
844  /* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
845  } else {
846  tmp = nvt_cir_reg_read(nvt, CIR_IREN);
847  nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
848  }
849 
850  spin_unlock_irqrestore(&nvt->tx.lock, flags);
851 
852  }
853 
854  if (status & CIR_IRSTS_TFU) {
855  spin_lock_irqsave(&nvt->tx.lock, flags);
856  if (nvt->tx.tx_state == ST_TX_REPLY) {
857  nvt->tx.tx_state = ST_TX_REQUEST;
858  wake_up(&nvt->tx.queue);
859  }
860  spin_unlock_irqrestore(&nvt->tx.lock, flags);
861  }
862 
863  nvt_dbg_verbose("%s done", __func__);
864  return IRQ_RETVAL(IRQ_HANDLED);
865 }
866 
867 /* Interrupt service routine for CIR Wake */
868 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
869 {
870  u8 status, iren, val;
871  struct nvt_dev *nvt = data;
872  unsigned long flags;
873 
874  nvt_dbg_wake("%s firing", __func__);
875 
876  status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
877  if (!status)
878  return IRQ_RETVAL(IRQ_NONE);
879 
880  if (status & CIR_WAKE_IRSTS_IR_PENDING)
881  nvt_clear_cir_wake_fifo(nvt);
882 
883  nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
884  nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
885 
886  /* Interrupt may be shared with CIR, bail if Wake not enabled */
887  iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
888  if (!iren) {
889  nvt_dbg_wake("%s exiting, wake not enabled", __func__);
890  return IRQ_RETVAL(IRQ_HANDLED);
891  }
892 
893  if ((status & CIR_WAKE_IRSTS_PE) &&
894  (nvt->wake_state == ST_WAKE_START)) {
895  while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
896  val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
897  nvt_dbg("setting wake up key: 0x%x", val);
898  }
899 
900  nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
901  spin_lock_irqsave(&nvt->nvt_lock, flags);
902  nvt->wake_state = ST_WAKE_FINISH;
903  spin_unlock_irqrestore(&nvt->nvt_lock, flags);
904  }
905 
906  nvt_dbg_wake("%s done", __func__);
907  return IRQ_RETVAL(IRQ_HANDLED);
908 }
909 
910 static void nvt_enable_cir(struct nvt_dev *nvt)
911 {
912  /* set function enable flags */
913  nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
915  CIR_IRCON);
916 
917  nvt_efm_enable(nvt);
918 
919  /* enable the CIR logical device */
920  nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
921  nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
922 
923  nvt_efm_disable(nvt);
924 
925  /* clear all pending interrupts */
926  nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
927 
928  /* enable interrupts */
929  nvt_set_cir_iren(nvt);
930 }
931 
932 static void nvt_disable_cir(struct nvt_dev *nvt)
933 {
934  /* disable CIR interrupts */
935  nvt_cir_reg_write(nvt, 0, CIR_IREN);
936 
937  /* clear any and all pending interrupts */
938  nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
939 
940  /* clear all function enable flags */
941  nvt_cir_reg_write(nvt, 0, CIR_IRCON);
942 
943  /* clear hardware rx and tx fifos */
944  nvt_clear_cir_fifo(nvt);
945  nvt_clear_tx_fifo(nvt);
946 
947  nvt_efm_enable(nvt);
948 
949  /* disable the CIR logical device */
950  nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
951  nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
952 
953  nvt_efm_disable(nvt);
954 }
955 
956 static int nvt_open(struct rc_dev *dev)
957 {
958  struct nvt_dev *nvt = dev->priv;
959  unsigned long flags;
960 
961  spin_lock_irqsave(&nvt->nvt_lock, flags);
962  nvt_enable_cir(nvt);
963  spin_unlock_irqrestore(&nvt->nvt_lock, flags);
964 
965  return 0;
966 }
967 
968 static void nvt_close(struct rc_dev *dev)
969 {
970  struct nvt_dev *nvt = dev->priv;
971  unsigned long flags;
972 
973  spin_lock_irqsave(&nvt->nvt_lock, flags);
974  nvt_disable_cir(nvt);
975  spin_unlock_irqrestore(&nvt->nvt_lock, flags);
976 }
977 
978 /* Allocate memory, probe hardware, and initialize everything */
979 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
980 {
981  struct nvt_dev *nvt;
982  struct rc_dev *rdev;
983  int ret = -ENOMEM;
984 
985  nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
986  if (!nvt)
987  return ret;
988 
989  /* input device for IR remote (and tx) */
990  rdev = rc_allocate_device();
991  if (!rdev)
992  goto failure;
993 
994  ret = -ENODEV;
995  /* validate pnp resources */
996  if (!pnp_port_valid(pdev, 0) ||
997  pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
998  dev_err(&pdev->dev, "IR PNP Port not valid!\n");
999  goto failure;
1000  }
1001 
1002  if (!pnp_irq_valid(pdev, 0)) {
1003  dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1004  goto failure;
1005  }
1006 
1007  if (!pnp_port_valid(pdev, 1) ||
1008  pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1009  dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1010  goto failure;
1011  }
1012 
1013  nvt->cir_addr = pnp_port_start(pdev, 0);
1014  nvt->cir_irq = pnp_irq(pdev, 0);
1015 
1016  nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1017  /* irq is always shared between cir and cir wake */
1018  nvt->cir_wake_irq = nvt->cir_irq;
1019 
1020  nvt->cr_efir = CR_EFIR;
1021  nvt->cr_efdr = CR_EFDR;
1022 
1023  spin_lock_init(&nvt->nvt_lock);
1024  spin_lock_init(&nvt->tx.lock);
1025 
1026  pnp_set_drvdata(pdev, nvt);
1027  nvt->pdev = pdev;
1028 
1029  init_waitqueue_head(&nvt->tx.queue);
1030 
1031  ret = nvt_hw_detect(nvt);
1032  if (ret)
1033  goto failure;
1034 
1035  /* Initialize CIR & CIR Wake Logical Devices */
1036  nvt_efm_enable(nvt);
1037  nvt_cir_ldev_init(nvt);
1038  nvt_cir_wake_ldev_init(nvt);
1039  nvt_efm_disable(nvt);
1040 
1041  /* Initialize CIR & CIR Wake Config Registers */
1042  nvt_cir_regs_init(nvt);
1043  nvt_cir_wake_regs_init(nvt);
1044 
1045  /* Set up the rc device */
1046  rdev->priv = nvt;
1047  rdev->driver_type = RC_DRIVER_IR_RAW;
1048  rdev->allowed_protos = RC_TYPE_ALL;
1049  rdev->open = nvt_open;
1050  rdev->close = nvt_close;
1051  rdev->tx_ir = nvt_tx_ir;
1052  rdev->s_tx_carrier = nvt_set_tx_carrier;
1053  rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1054  rdev->input_phys = "nuvoton/cir0";
1055  rdev->input_id.bustype = BUS_HOST;
1056  rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1057  rdev->input_id.product = nvt->chip_major;
1058  rdev->input_id.version = nvt->chip_minor;
1059  rdev->dev.parent = &pdev->dev;
1060  rdev->driver_name = NVT_DRIVER_NAME;
1061  rdev->map_name = RC_MAP_RC6_MCE;
1062  rdev->timeout = MS_TO_NS(100);
1063  /* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1065 #if 0
1066  rdev->min_timeout = XYZ;
1067  rdev->max_timeout = XYZ;
1068  /* tx bits */
1069  rdev->tx_resolution = XYZ;
1070 #endif
1071 
1072  ret = -EBUSY;
1073  /* now claim resources */
1074  if (!request_region(nvt->cir_addr,
1076  goto failure;
1077 
1078  if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
1079  NVT_DRIVER_NAME, (void *)nvt))
1080  goto failure2;
1081 
1082  if (!request_region(nvt->cir_wake_addr,
1084  goto failure3;
1085 
1086  if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
1087  NVT_DRIVER_NAME, (void *)nvt))
1088  goto failure4;
1089 
1090  ret = rc_register_device(rdev);
1091  if (ret)
1092  goto failure5;
1093 
1094  device_init_wakeup(&pdev->dev, true);
1095  nvt->rdev = rdev;
1096  nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
1097  if (debug) {
1098  cir_dump_regs(nvt);
1099  cir_wake_dump_regs(nvt);
1100  }
1101 
1102  return 0;
1103 
1104 failure5:
1105  free_irq(nvt->cir_wake_irq, nvt);
1106 failure4:
1108 failure3:
1109  free_irq(nvt->cir_irq, nvt);
1110 failure2:
1112 failure:
1113  rc_free_device(rdev);
1114  kfree(nvt);
1115 
1116  return ret;
1117 }
1118 
1119 static void __devexit nvt_remove(struct pnp_dev *pdev)
1120 {
1121  struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1122  unsigned long flags;
1123 
1124  spin_lock_irqsave(&nvt->nvt_lock, flags);
1125  /* disable CIR */
1126  nvt_cir_reg_write(nvt, 0, CIR_IREN);
1127  nvt_disable_cir(nvt);
1128  /* enable CIR Wake (for IR power-on) */
1129  nvt_enable_wake(nvt);
1130  spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1131 
1132  /* free resources */
1133  free_irq(nvt->cir_irq, nvt);
1134  free_irq(nvt->cir_wake_irq, nvt);
1137 
1138  rc_unregister_device(nvt->rdev);
1139 
1140  kfree(nvt);
1141 }
1142 
1143 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1144 {
1145  struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1146  unsigned long flags;
1147 
1148  nvt_dbg("%s called", __func__);
1149 
1150  /* zero out misc state tracking */
1151  spin_lock_irqsave(&nvt->nvt_lock, flags);
1152  nvt->study_state = ST_STUDY_NONE;
1153  nvt->wake_state = ST_WAKE_NONE;
1154  spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1155 
1156  spin_lock_irqsave(&nvt->tx.lock, flags);
1157  nvt->tx.tx_state = ST_TX_NONE;
1158  spin_unlock_irqrestore(&nvt->tx.lock, flags);
1159 
1160  /* disable all CIR interrupts */
1161  nvt_cir_reg_write(nvt, 0, CIR_IREN);
1162 
1163  nvt_efm_enable(nvt);
1164 
1165  /* disable cir logical dev */
1166  nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1167  nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1168 
1169  nvt_efm_disable(nvt);
1170 
1171  /* make sure wake is enabled */
1172  nvt_enable_wake(nvt);
1173 
1174  return 0;
1175 }
1176 
1177 static int nvt_resume(struct pnp_dev *pdev)
1178 {
1179  int ret = 0;
1180  struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1181 
1182  nvt_dbg("%s called", __func__);
1183 
1184  /* open interrupt */
1185  nvt_set_cir_iren(nvt);
1186 
1187  /* Enable CIR logical device */
1188  nvt_efm_enable(nvt);
1189  nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1190  nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1191 
1192  nvt_efm_disable(nvt);
1193 
1194  nvt_cir_regs_init(nvt);
1195  nvt_cir_wake_regs_init(nvt);
1196 
1197  return ret;
1198 }
1199 
1200 static void nvt_shutdown(struct pnp_dev *pdev)
1201 {
1202  struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1203  nvt_enable_wake(nvt);
1204 }
1205 
1206 static const struct pnp_device_id nvt_ids[] = {
1207  { "WEC0530", 0 }, /* CIR */
1208  { "NTN0530", 0 }, /* CIR for new chip's pnp id*/
1209  { "", 0 },
1210 };
1211 
1212 static struct pnp_driver nvt_driver = {
1213  .name = NVT_DRIVER_NAME,
1214  .id_table = nvt_ids,
1216  .probe = nvt_probe,
1217  .remove = __devexit_p(nvt_remove),
1218  .suspend = nvt_suspend,
1219  .resume = nvt_resume,
1220  .shutdown = nvt_shutdown,
1221 };
1222 
1223 int nvt_init(void)
1224 {
1225  return pnp_register_driver(&nvt_driver);
1226 }
1227 
1228 void nvt_exit(void)
1229 {
1230  pnp_unregister_driver(&nvt_driver);
1231 }
1232 
1234 MODULE_PARM_DESC(debug, "Enable debugging output");
1235 
1236 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1237 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1238 
1239 MODULE_AUTHOR("Jarod Wilson <[email protected]>");
1240 MODULE_LICENSE("GPL");
1241