Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
nxt6000.c
Go to the documentation of this file.
1 /*
2  NxtWave Communications - NXT6000 demodulator driver
3 
4  Copyright (C) 2002-2003 Florian Schirmer <[email protected]>
5  Copyright (C) 2003 Paul Andreassen <[email protected]>
6 
7  This program is free software; you can redistribute it and/or modify
8  it under the terms of the GNU General Public License as published by
9  the Free Software Foundation; either version 2 of the License, or
10  (at your option) any later version.
11 
12  This program is distributed in the hope that it will be useful,
13  but WITHOUT ANY WARRANTY; without even the implied warranty of
14  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  GNU General Public License for more details.
16 
17  You should have received a copy of the GNU General Public License
18  along with this program; if not, write to the Free Software
19  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20 */
21 
22 #include <linux/init.h>
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/string.h>
26 #include <linux/slab.h>
27 
28 #include "dvb_frontend.h"
29 #include "nxt6000_priv.h"
30 #include "nxt6000.h"
31 
32 
33 
34 struct nxt6000_state {
35  struct i2c_adapter* i2c;
36  /* configuration settings */
37  const struct nxt6000_config* config;
39 };
40 
41 static int debug;
42 #define dprintk if (debug) printk
43 
44 static int nxt6000_writereg(struct nxt6000_state* state, u8 reg, u8 data)
45 {
46  u8 buf[] = { reg, data };
47  struct i2c_msg msg = {.addr = state->config->demod_address,.flags = 0,.buf = buf,.len = 2 };
48  int ret;
49 
50  if ((ret = i2c_transfer(state->i2c, &msg, 1)) != 1)
51  dprintk("nxt6000: nxt6000_write error (reg: 0x%02X, data: 0x%02X, ret: %d)\n", reg, data, ret);
52 
53  return (ret != 1) ? -EIO : 0;
54 }
55 
56 static u8 nxt6000_readreg(struct nxt6000_state* state, u8 reg)
57 {
58  int ret;
59  u8 b0[] = { reg };
60  u8 b1[] = { 0 };
61  struct i2c_msg msgs[] = {
62  {.addr = state->config->demod_address,.flags = 0,.buf = b0,.len = 1},
63  {.addr = state->config->demod_address,.flags = I2C_M_RD,.buf = b1,.len = 1}
64  };
65 
66  ret = i2c_transfer(state->i2c, msgs, 2);
67 
68  if (ret != 2)
69  dprintk("nxt6000: nxt6000_read error (reg: 0x%02X, ret: %d)\n", reg, ret);
70 
71  return b1[0];
72 }
73 
74 static void nxt6000_reset(struct nxt6000_state* state)
75 {
76  u8 val;
77 
78  val = nxt6000_readreg(state, OFDM_COR_CTL);
79 
80  nxt6000_writereg(state, OFDM_COR_CTL, val & ~COREACT);
81  nxt6000_writereg(state, OFDM_COR_CTL, val | COREACT);
82 }
83 
84 static int nxt6000_set_bandwidth(struct nxt6000_state *state, u32 bandwidth)
85 {
86  u16 nominal_rate;
87  int result;
88 
89  switch (bandwidth) {
90  case 6000000:
91  nominal_rate = 0x55B7;
92  break;
93 
94  case 7000000:
95  nominal_rate = 0x6400;
96  break;
97 
98  case 8000000:
99  nominal_rate = 0x7249;
100  break;
101 
102  default:
103  return -EINVAL;
104  }
105 
106  if ((result = nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, nominal_rate & 0xFF)) < 0)
107  return result;
108 
109  return nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, (nominal_rate >> 8) & 0xFF);
110 }
111 
112 static int nxt6000_set_guard_interval(struct nxt6000_state* state, fe_guard_interval_t guard_interval)
113 {
114  switch (guard_interval) {
115 
116  case GUARD_INTERVAL_1_32:
117  return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x00 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
118 
119  case GUARD_INTERVAL_1_16:
120  return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x01 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
121 
122  case GUARD_INTERVAL_AUTO:
123  case GUARD_INTERVAL_1_8:
124  return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x02 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
125 
126  case GUARD_INTERVAL_1_4:
127  return nxt6000_writereg(state, OFDM_COR_MODEGUARD, 0x03 | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x03));
128 
129  default:
130  return -EINVAL;
131  }
132 }
133 
134 static int nxt6000_set_inversion(struct nxt6000_state* state, fe_spectral_inversion_t inversion)
135 {
136  switch (inversion) {
137 
138  case INVERSION_OFF:
139  return nxt6000_writereg(state, OFDM_ITB_CTL, 0x00);
140 
141  case INVERSION_ON:
142  return nxt6000_writereg(state, OFDM_ITB_CTL, ITBINV);
143 
144  default:
145  return -EINVAL;
146 
147  }
148 }
149 
150 static int nxt6000_set_transmission_mode(struct nxt6000_state* state, fe_transmit_mode_t transmission_mode)
151 {
152  int result;
153 
154  switch (transmission_mode) {
155 
157  if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x00 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
158  return result;
159 
160  return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x00 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
161 
164  if ((result = nxt6000_writereg(state, EN_DMD_RACQ, 0x02 | (nxt6000_readreg(state, EN_DMD_RACQ) & ~0x03))) < 0)
165  return result;
166 
167  return nxt6000_writereg(state, OFDM_COR_MODEGUARD, (0x01 << 2) | (nxt6000_readreg(state, OFDM_COR_MODEGUARD) & ~0x04));
168 
169  default:
170  return -EINVAL;
171 
172  }
173 }
174 
175 static void nxt6000_setup(struct dvb_frontend* fe)
176 {
177  struct nxt6000_state* state = fe->demodulator_priv;
178 
179  nxt6000_writereg(state, RS_COR_SYNC_PARAM, SYNC_PARAM);
180  nxt6000_writereg(state, BER_CTRL, /*(1 << 2) | */ (0x01 << 1) | 0x01);
181  nxt6000_writereg(state, VIT_BERTIME_2, 0x00); // BER Timer = 0x000200 * 256 = 131072 bits
182  nxt6000_writereg(state, VIT_BERTIME_1, 0x02); //
183  nxt6000_writereg(state, VIT_BERTIME_0, 0x00); //
184  nxt6000_writereg(state, VIT_COR_INTEN, 0x98); // Enable BER interrupts
185  nxt6000_writereg(state, VIT_COR_CTL, 0x82); // Enable BER measurement
186  nxt6000_writereg(state, VIT_COR_CTL, VIT_COR_RESYNC | 0x02 );
187  nxt6000_writereg(state, OFDM_COR_CTL, (0x01 << 5) | (nxt6000_readreg(state, OFDM_COR_CTL) & 0x0F));
188  nxt6000_writereg(state, OFDM_COR_MODEGUARD, FORCEMODE8K | 0x02);
189  nxt6000_writereg(state, OFDM_AGC_CTL, AGCLAST | INITIAL_AGC_BW);
190  nxt6000_writereg(state, OFDM_ITB_FREQ_1, 0x06);
191  nxt6000_writereg(state, OFDM_ITB_FREQ_2, 0x31);
192  nxt6000_writereg(state, OFDM_CAS_CTL, (0x01 << 7) | (0x02 << 3) | 0x04);
193  nxt6000_writereg(state, CAS_FREQ, 0xBB); /* CHECKME */
194  nxt6000_writereg(state, OFDM_SYR_CTL, 1 << 2);
195  nxt6000_writereg(state, OFDM_PPM_CTL_1, PPM256);
196  nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_1, 0x49);
197  nxt6000_writereg(state, OFDM_TRL_NOMINALRATE_2, 0x72);
198  nxt6000_writereg(state, ANALOG_CONTROL_0, 1 << 5);
199  nxt6000_writereg(state, EN_DMD_RACQ, (1 << 7) | (3 << 4) | 2);
200  nxt6000_writereg(state, DIAG_CONFIG, TB_SET);
201 
202  if (state->config->clock_inversion)
203  nxt6000_writereg(state, SUB_DIAG_MODE_SEL, CLKINVERSION);
204  else
205  nxt6000_writereg(state, SUB_DIAG_MODE_SEL, 0);
206 
207  nxt6000_writereg(state, TS_FORMAT, 0);
208 }
209 
210 static void nxt6000_dump_status(struct nxt6000_state *state)
211 {
212  u8 val;
213 
214 /*
215  printk("RS_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, RS_COR_STAT));
216  printk("VIT_SYNC_STATUS: 0x%02X\n", nxt6000_readreg(fe, VIT_SYNC_STATUS));
217  printk("OFDM_COR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_COR_STAT));
218  printk("OFDM_SYR_STAT: 0x%02X\n", nxt6000_readreg(fe, OFDM_SYR_STAT));
219  printk("OFDM_TPS_RCVD_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_1));
220  printk("OFDM_TPS_RCVD_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_2));
221  printk("OFDM_TPS_RCVD_3: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_3));
222  printk("OFDM_TPS_RCVD_4: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RCVD_4));
223  printk("OFDM_TPS_RESERVED_1: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_1));
224  printk("OFDM_TPS_RESERVED_2: 0x%02X\n", nxt6000_readreg(fe, OFDM_TPS_RESERVED_2));
225 */
226  printk("NXT6000 status:");
227 
228  val = nxt6000_readreg(state, RS_COR_STAT);
229 
230  printk(" DATA DESCR LOCK: %d,", val & 0x01);
231  printk(" DATA SYNC LOCK: %d,", (val >> 1) & 0x01);
232 
233  val = nxt6000_readreg(state, VIT_SYNC_STATUS);
234 
235  printk(" VITERBI LOCK: %d,", (val >> 7) & 0x01);
236 
237  switch ((val >> 4) & 0x07) {
238 
239  case 0x00:
240  printk(" VITERBI CODERATE: 1/2,");
241  break;
242 
243  case 0x01:
244  printk(" VITERBI CODERATE: 2/3,");
245  break;
246 
247  case 0x02:
248  printk(" VITERBI CODERATE: 3/4,");
249  break;
250 
251  case 0x03:
252  printk(" VITERBI CODERATE: 5/6,");
253  break;
254 
255  case 0x04:
256  printk(" VITERBI CODERATE: 7/8,");
257  break;
258 
259  default:
260  printk(" VITERBI CODERATE: Reserved,");
261 
262  }
263 
264  val = nxt6000_readreg(state, OFDM_COR_STAT);
265 
266  printk(" CHCTrack: %d,", (val >> 7) & 0x01);
267  printk(" TPSLock: %d,", (val >> 6) & 0x01);
268  printk(" SYRLock: %d,", (val >> 5) & 0x01);
269  printk(" AGCLock: %d,", (val >> 4) & 0x01);
270 
271  switch (val & 0x0F) {
272 
273  case 0x00:
274  printk(" CoreState: IDLE,");
275  break;
276 
277  case 0x02:
278  printk(" CoreState: WAIT_AGC,");
279  break;
280 
281  case 0x03:
282  printk(" CoreState: WAIT_SYR,");
283  break;
284 
285  case 0x04:
286  printk(" CoreState: WAIT_PPM,");
287  break;
288 
289  case 0x01:
290  printk(" CoreState: WAIT_TRL,");
291  break;
292 
293  case 0x05:
294  printk(" CoreState: WAIT_TPS,");
295  break;
296 
297  case 0x06:
298  printk(" CoreState: MONITOR_TPS,");
299  break;
300 
301  default:
302  printk(" CoreState: Reserved,");
303 
304  }
305 
306  val = nxt6000_readreg(state, OFDM_SYR_STAT);
307 
308  printk(" SYRLock: %d,", (val >> 4) & 0x01);
309  printk(" SYRMode: %s,", (val >> 2) & 0x01 ? "8K" : "2K");
310 
311  switch ((val >> 4) & 0x03) {
312 
313  case 0x00:
314  printk(" SYRGuard: 1/32,");
315  break;
316 
317  case 0x01:
318  printk(" SYRGuard: 1/16,");
319  break;
320 
321  case 0x02:
322  printk(" SYRGuard: 1/8,");
323  break;
324 
325  case 0x03:
326  printk(" SYRGuard: 1/4,");
327  break;
328  }
329 
330  val = nxt6000_readreg(state, OFDM_TPS_RCVD_3);
331 
332  switch ((val >> 4) & 0x07) {
333 
334  case 0x00:
335  printk(" TPSLP: 1/2,");
336  break;
337 
338  case 0x01:
339  printk(" TPSLP: 2/3,");
340  break;
341 
342  case 0x02:
343  printk(" TPSLP: 3/4,");
344  break;
345 
346  case 0x03:
347  printk(" TPSLP: 5/6,");
348  break;
349 
350  case 0x04:
351  printk(" TPSLP: 7/8,");
352  break;
353 
354  default:
355  printk(" TPSLP: Reserved,");
356 
357  }
358 
359  switch (val & 0x07) {
360 
361  case 0x00:
362  printk(" TPSHP: 1/2,");
363  break;
364 
365  case 0x01:
366  printk(" TPSHP: 2/3,");
367  break;
368 
369  case 0x02:
370  printk(" TPSHP: 3/4,");
371  break;
372 
373  case 0x03:
374  printk(" TPSHP: 5/6,");
375  break;
376 
377  case 0x04:
378  printk(" TPSHP: 7/8,");
379  break;
380 
381  default:
382  printk(" TPSHP: Reserved,");
383 
384  }
385 
386  val = nxt6000_readreg(state, OFDM_TPS_RCVD_4);
387 
388  printk(" TPSMode: %s,", val & 0x01 ? "8K" : "2K");
389 
390  switch ((val >> 4) & 0x03) {
391 
392  case 0x00:
393  printk(" TPSGuard: 1/32,");
394  break;
395 
396  case 0x01:
397  printk(" TPSGuard: 1/16,");
398  break;
399 
400  case 0x02:
401  printk(" TPSGuard: 1/8,");
402  break;
403 
404  case 0x03:
405  printk(" TPSGuard: 1/4,");
406  break;
407 
408  }
409 
410  /* Strange magic required to gain access to RF_AGC_STATUS */
411  nxt6000_readreg(state, RF_AGC_VAL_1);
412  val = nxt6000_readreg(state, RF_AGC_STATUS);
413  val = nxt6000_readreg(state, RF_AGC_STATUS);
414 
415  printk(" RF AGC LOCK: %d,", (val >> 4) & 0x01);
416  printk("\n");
417 }
418 
419 static int nxt6000_read_status(struct dvb_frontend* fe, fe_status_t* status)
420 {
421  u8 core_status;
422  struct nxt6000_state* state = fe->demodulator_priv;
423 
424  *status = 0;
425 
426  core_status = nxt6000_readreg(state, OFDM_COR_STAT);
427 
428  if (core_status & AGCLOCKED)
429  *status |= FE_HAS_SIGNAL;
430 
431  if (nxt6000_readreg(state, OFDM_SYR_STAT) & GI14_SYR_LOCK)
432  *status |= FE_HAS_CARRIER;
433 
434  if (nxt6000_readreg(state, VIT_SYNC_STATUS) & VITINSYNC)
435  *status |= FE_HAS_VITERBI;
436 
437  if (nxt6000_readreg(state, RS_COR_STAT) & RSCORESTATUS)
438  *status |= FE_HAS_SYNC;
439 
440  if ((core_status & TPSLOCKED) && (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC)))
441  *status |= FE_HAS_LOCK;
442 
443  if (debug)
444  nxt6000_dump_status(state);
445 
446  return 0;
447 }
448 
449 static int nxt6000_init(struct dvb_frontend* fe)
450 {
451  struct nxt6000_state* state = fe->demodulator_priv;
452 
453  nxt6000_reset(state);
454  nxt6000_setup(fe);
455 
456  return 0;
457 }
458 
459 static int nxt6000_set_frontend(struct dvb_frontend *fe)
460 {
462  struct nxt6000_state* state = fe->demodulator_priv;
463  int result;
464 
465  if (fe->ops.tuner_ops.set_params) {
466  fe->ops.tuner_ops.set_params(fe);
467  if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
468  }
469 
470  result = nxt6000_set_bandwidth(state, p->bandwidth_hz);
471  if (result < 0)
472  return result;
473 
474  result = nxt6000_set_guard_interval(state, p->guard_interval);
475  if (result < 0)
476  return result;
477 
478  result = nxt6000_set_transmission_mode(state, p->transmission_mode);
479  if (result < 0)
480  return result;
481 
482  result = nxt6000_set_inversion(state, p->inversion);
483  if (result < 0)
484  return result;
485 
486  msleep(500);
487  return 0;
488 }
489 
490 static void nxt6000_release(struct dvb_frontend* fe)
491 {
492  struct nxt6000_state* state = fe->demodulator_priv;
493  kfree(state);
494 }
495 
496 static int nxt6000_read_snr(struct dvb_frontend* fe, u16* snr)
497 {
498  struct nxt6000_state* state = fe->demodulator_priv;
499 
500  *snr = nxt6000_readreg( state, OFDM_CHC_SNR) / 8;
501 
502  return 0;
503 }
504 
505 static int nxt6000_read_ber(struct dvb_frontend* fe, u32* ber)
506 {
507  struct nxt6000_state* state = fe->demodulator_priv;
508 
509  nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18 );
510 
511  *ber = (nxt6000_readreg( state, VIT_BER_1 ) << 8 ) |
512  nxt6000_readreg( state, VIT_BER_0 );
513 
514  nxt6000_writereg( state, VIT_COR_INTSTAT, 0x18); // Clear BER Done interrupts
515 
516  return 0;
517 }
518 
519 static int nxt6000_read_signal_strength(struct dvb_frontend* fe, u16* signal_strength)
520 {
521  struct nxt6000_state* state = fe->demodulator_priv;
522 
523  *signal_strength = (short) (511 -
524  (nxt6000_readreg(state, AGC_GAIN_1) +
525  ((nxt6000_readreg(state, AGC_GAIN_2) & 0x03) << 8)));
526 
527  return 0;
528 }
529 
530 static int nxt6000_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune)
531 {
532  tune->min_delay_ms = 500;
533  return 0;
534 }
535 
536 static int nxt6000_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
537 {
538  struct nxt6000_state* state = fe->demodulator_priv;
539 
540  if (enable) {
541  return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x01);
542  } else {
543  return nxt6000_writereg(state, ENABLE_TUNER_IIC, 0x00);
544  }
545 }
546 
547 static struct dvb_frontend_ops nxt6000_ops;
548 
550  struct i2c_adapter* i2c)
551 {
552  struct nxt6000_state* state = NULL;
553 
554  /* allocate memory for the internal state */
555  state = kzalloc(sizeof(struct nxt6000_state), GFP_KERNEL);
556  if (state == NULL) goto error;
557 
558  /* setup the state */
559  state->config = config;
560  state->i2c = i2c;
561 
562  /* check if the demod is there */
563  if (nxt6000_readreg(state, OFDM_MSC_REV) != NXT6000ASICDEVICE) goto error;
564 
565  /* create dvb_frontend */
566  memcpy(&state->frontend.ops, &nxt6000_ops, sizeof(struct dvb_frontend_ops));
567  state->frontend.demodulator_priv = state;
568  return &state->frontend;
569 
570 error:
571  kfree(state);
572  return NULL;
573 }
574 
575 static struct dvb_frontend_ops nxt6000_ops = {
576  .delsys = { SYS_DVBT },
577  .info = {
578  .name = "NxtWave NXT6000 DVB-T",
579  .frequency_min = 0,
580  .frequency_max = 863250000,
581  .frequency_stepsize = 62500,
582  /*.frequency_tolerance = *//* FIXME: 12% of SR */
583  .symbol_rate_min = 0, /* FIXME */
584  .symbol_rate_max = 9360000, /* FIXME */
585  .symbol_rate_tolerance = 4000,
592  },
593 
594  .release = nxt6000_release,
595 
596  .init = nxt6000_init,
597  .i2c_gate_ctrl = nxt6000_i2c_gate_ctrl,
598 
599  .get_tune_settings = nxt6000_fe_get_tune_settings,
600 
601  .set_frontend = nxt6000_set_frontend,
602 
603  .read_status = nxt6000_read_status,
604  .read_ber = nxt6000_read_ber,
605  .read_signal_strength = nxt6000_read_signal_strength,
606  .read_snr = nxt6000_read_snr,
607 };
608 
609 module_param(debug, int, 0644);
610 MODULE_PARM_DESC(debug, "Turn on/off frontend debugging (default:off).");
611 
612 MODULE_DESCRIPTION("NxtWave NXT6000 DVB-T demodulator driver");
613 MODULE_AUTHOR("Florian Schirmer");
614 MODULE_LICENSE("GPL");
615