Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
panel.c
Go to the documentation of this file.
1 /*
2  * Front panel driver for Linux
3  * Copyright (C) 2000-2008, Willy Tarreau <[email protected]>
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License
7  * as published by the Free Software Foundation; either version
8  * 2 of the License, or (at your option) any later version.
9  *
10  * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
11  * connected to a parallel printer port.
12  *
13  * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
14  * serial module compatible with Samsung's KS0074. The pins may be connected in
15  * any combination, everything is programmable.
16  *
17  * The keypad consists in a matrix of push buttons connecting input pins to
18  * data output pins or to the ground. The combinations have to be hard-coded
19  * in the driver, though several profiles exist and adding new ones is easy.
20  *
21  * Several profiles are provided for commonly found LCD+keypad modules on the
22  * market, such as those found in Nexcom's appliances.
23  *
24  * FIXME:
25  * - the initialization/deinitialization process is very dirty and should
26  * be rewritten. It may even be buggy.
27  *
28  * TODO:
29  * - document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
30  * - make the LCD a part of a virtual screen of Vx*Vy
31  * - make the inputs list smp-safe
32  * - change the keyboard to a double mapping : signals -> key_id -> values
33  * so that applications can change values without knowing signals
34  *
35  */
36 
37 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 
39 #include <linux/module.h>
40 
41 #include <linux/types.h>
42 #include <linux/errno.h>
43 #include <linux/signal.h>
44 #include <linux/sched.h>
45 #include <linux/spinlock.h>
46 #include <linux/interrupt.h>
47 #include <linux/miscdevice.h>
48 #include <linux/slab.h>
49 #include <linux/ioport.h>
50 #include <linux/fcntl.h>
51 #include <linux/init.h>
52 #include <linux/delay.h>
53 #include <linux/kernel.h>
54 #include <linux/ctype.h>
55 #include <linux/parport.h>
56 #include <linux/list.h>
57 #include <linux/notifier.h>
58 #include <linux/reboot.h>
59 #include <generated/utsrelease.h>
60 
61 #include <linux/io.h>
62 #include <linux/uaccess.h>
63 
64 #define LCD_MINOR 156
65 #define KEYPAD_MINOR 185
66 
67 #define PANEL_VERSION "0.9.5"
68 
69 #define LCD_MAXBYTES 256 /* max burst write */
70 
71 #define KEYPAD_BUFFER 64
72 
73 /* poll the keyboard this every second */
74 #define INPUT_POLL_TIME (HZ/50)
75 /* a key starts to repeat after this times INPUT_POLL_TIME */
76 #define KEYPAD_REP_START (10)
77 /* a key repeats this times INPUT_POLL_TIME */
78 #define KEYPAD_REP_DELAY (2)
79 
80 /* keep the light on this times INPUT_POLL_TIME for each flash */
81 #define FLASH_LIGHT_TEMPO (200)
82 
83 /* converts an r_str() input to an active high, bits string : 000BAOSE */
84 #define PNL_PINPUT(a) ((((unsigned char)(a)) ^ 0x7F) >> 3)
85 
86 #define PNL_PBUSY 0x80 /* inverted input, active low */
87 #define PNL_PACK 0x40 /* direct input, active low */
88 #define PNL_POUTPA 0x20 /* direct input, active high */
89 #define PNL_PSELECD 0x10 /* direct input, active high */
90 #define PNL_PERRORP 0x08 /* direct input, active low */
91 
92 #define PNL_PBIDIR 0x20 /* bi-directional ports */
93 /* high to read data in or-ed with data out */
94 #define PNL_PINTEN 0x10
95 #define PNL_PSELECP 0x08 /* inverted output, active low */
96 #define PNL_PINITP 0x04 /* direct output, active low */
97 #define PNL_PAUTOLF 0x02 /* inverted output, active low */
98 #define PNL_PSTROBE 0x01 /* inverted output */
99 
100 #define PNL_PD0 0x01
101 #define PNL_PD1 0x02
102 #define PNL_PD2 0x04
103 #define PNL_PD3 0x08
104 #define PNL_PD4 0x10
105 #define PNL_PD5 0x20
106 #define PNL_PD6 0x40
107 #define PNL_PD7 0x80
108 
109 #define PIN_NONE 0
110 #define PIN_STROBE 1
111 #define PIN_D0 2
112 #define PIN_D1 3
113 #define PIN_D2 4
114 #define PIN_D3 5
115 #define PIN_D4 6
116 #define PIN_D5 7
117 #define PIN_D6 8
118 #define PIN_D7 9
119 #define PIN_AUTOLF 14
120 #define PIN_INITP 16
121 #define PIN_SELECP 17
122 #define PIN_NOT_SET 127
123 
124 #define LCD_FLAG_S 0x0001
125 #define LCD_FLAG_ID 0x0002
126 #define LCD_FLAG_B 0x0004 /* blink on */
127 #define LCD_FLAG_C 0x0008 /* cursor on */
128 #define LCD_FLAG_D 0x0010 /* display on */
129 #define LCD_FLAG_F 0x0020 /* large font mode */
130 #define LCD_FLAG_N 0x0040 /* 2-rows mode */
131 #define LCD_FLAG_L 0x0080 /* backlight enabled */
132 
133 #define LCD_ESCAPE_LEN 24 /* max chars for LCD escape command */
134 #define LCD_ESCAPE_CHAR 27 /* use char 27 for escape command */
135 
136 /* macros to simplify use of the parallel port */
137 #define r_ctr(x) (parport_read_control((x)->port))
138 #define r_dtr(x) (parport_read_data((x)->port))
139 #define r_str(x) (parport_read_status((x)->port))
140 #define w_ctr(x, y) (parport_write_control((x)->port, (y)))
141 #define w_dtr(x, y) (parport_write_data((x)->port, (y)))
142 
143 /* this defines which bits are to be used and which ones to be ignored */
144 /* logical or of the output bits involved in the scan matrix */
145 static __u8 scan_mask_o;
146 /* logical or of the input bits involved in the scan matrix */
147 static __u8 scan_mask_i;
148 
149 typedef __u64 pmask_t;
150 
154 };
155 
161 };
162 
164  struct list_head list;
171 
172  union {
173  struct { /* valid when type == INPUT_TYPE_STD */
178  } std;
179  struct { /* valid when type == INPUT_TYPE_KBD */
180  /* strings can be non null-terminated */
181  char press_str[sizeof(void *) + sizeof(int)];
182  char repeat_str[sizeof(void *) + sizeof(int)];
183  char release_str[sizeof(void *) + sizeof(int)];
184  } kbd;
185  } u;
186 };
187 
188 LIST_HEAD(logical_inputs); /* list of all defined logical inputs */
189 
190 /* physical contacts history
191  * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
192  * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
193  * corresponds to the ground.
194  * Within each group, bits are stored in the same order as read on the port :
195  * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
196  * So, each __u64 (or pmask_t) is represented like this :
197  * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
198  * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
199  */
200 
201 /* what has just been read from the I/O ports */
202 static pmask_t phys_read;
203 /* previous phys_read */
204 static pmask_t phys_read_prev;
205 /* stabilized phys_read (phys_read|phys_read_prev) */
206 static pmask_t phys_curr;
207 /* previous phys_curr */
208 static pmask_t phys_prev;
209 /* 0 means that at least one logical signal needs be computed */
210 static char inputs_stable;
211 
212 /* these variables are specific to the keypad */
213 static char keypad_buffer[KEYPAD_BUFFER];
214 static int keypad_buflen;
215 static int keypad_start;
216 static char keypressed;
217 static wait_queue_head_t keypad_read_wait;
218 
219 /* lcd-specific variables */
220 
221 /* contains the LCD config state */
222 static unsigned long int lcd_flags;
223 /* contains the LCD X offset */
224 static unsigned long int lcd_addr_x;
225 /* contains the LCD Y offset */
226 static unsigned long int lcd_addr_y;
227 /* current escape sequence, 0 terminated */
228 static char lcd_escape[LCD_ESCAPE_LEN + 1];
229 /* not in escape state. >=0 = escape cmd len */
230 static int lcd_escape_len = -1;
231 
232 /*
233  * Bit masks to convert LCD signals to parallel port outputs.
234  * _d_ are values for data port, _c_ are for control port.
235  * [0] = signal OFF, [1] = signal ON, [2] = mask
236  */
237 #define BIT_CLR 0
238 #define BIT_SET 1
239 #define BIT_MSK 2
240 #define BIT_STATES 3
241 /*
242  * one entry for each bit on the LCD
243  */
244 #define LCD_BIT_E 0
245 #define LCD_BIT_RS 1
246 #define LCD_BIT_RW 2
247 #define LCD_BIT_BL 3
248 #define LCD_BIT_CL 4
249 #define LCD_BIT_DA 5
250 #define LCD_BITS 6
251 
252 /*
253  * each bit can be either connected to a DATA or CTRL port
254  */
255 #define LCD_PORT_C 0
256 #define LCD_PORT_D 1
257 #define LCD_PORTS 2
258 
259 static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
260 
261 /*
262  * LCD protocols
263  */
264 #define LCD_PROTO_PARALLEL 0
265 #define LCD_PROTO_SERIAL 1
266 #define LCD_PROTO_TI_DA8XX_LCD 2
267 
268 /*
269  * LCD character sets
270  */
271 #define LCD_CHARSET_NORMAL 0
272 #define LCD_CHARSET_KS0074 1
273 
274 /*
275  * LCD types
276  */
277 #define LCD_TYPE_NONE 0
278 #define LCD_TYPE_OLD 1
279 #define LCD_TYPE_KS0074 2
280 #define LCD_TYPE_HANTRONIX 3
281 #define LCD_TYPE_NEXCOM 4
282 #define LCD_TYPE_CUSTOM 5
283 
284 /*
285  * keypad types
286  */
287 #define KEYPAD_TYPE_NONE 0
288 #define KEYPAD_TYPE_OLD 1
289 #define KEYPAD_TYPE_NEW 2
290 #define KEYPAD_TYPE_NEXCOM 3
291 
292 /*
293  * panel profiles
294  */
295 #define PANEL_PROFILE_CUSTOM 0
296 #define PANEL_PROFILE_OLD 1
297 #define PANEL_PROFILE_NEW 2
298 #define PANEL_PROFILE_HANTRONIX 3
299 #define PANEL_PROFILE_NEXCOM 4
300 #define PANEL_PROFILE_LARGE 5
301 
302 /*
303  * Construct custom config from the kernel's configuration
304  */
305 #define DEFAULT_PROFILE PANEL_PROFILE_LARGE
306 #define DEFAULT_PARPORT 0
307 #define DEFAULT_LCD LCD_TYPE_OLD
308 #define DEFAULT_KEYPAD KEYPAD_TYPE_OLD
309 #define DEFAULT_LCD_WIDTH 40
310 #define DEFAULT_LCD_BWIDTH 40
311 #define DEFAULT_LCD_HWIDTH 64
312 #define DEFAULT_LCD_HEIGHT 2
313 #define DEFAULT_LCD_PROTO LCD_PROTO_PARALLEL
314 
315 #define DEFAULT_LCD_PIN_E PIN_AUTOLF
316 #define DEFAULT_LCD_PIN_RS PIN_SELECP
317 #define DEFAULT_LCD_PIN_RW PIN_INITP
318 #define DEFAULT_LCD_PIN_SCL PIN_STROBE
319 #define DEFAULT_LCD_PIN_SDA PIN_D0
320 #define DEFAULT_LCD_PIN_BL PIN_NOT_SET
321 #define DEFAULT_LCD_CHARSET LCD_CHARSET_NORMAL
322 
323 #ifdef CONFIG_PANEL_PROFILE
324 #undef DEFAULT_PROFILE
325 #define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
326 #endif
327 
328 #ifdef CONFIG_PANEL_PARPORT
329 #undef DEFAULT_PARPORT
330 #define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
331 #endif
332 
333 #if DEFAULT_PROFILE == 0 /* custom */
334 #ifdef CONFIG_PANEL_KEYPAD
335 #undef DEFAULT_KEYPAD
336 #define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
337 #endif
338 
339 #ifdef CONFIG_PANEL_LCD
340 #undef DEFAULT_LCD
341 #define DEFAULT_LCD CONFIG_PANEL_LCD
342 #endif
343 
344 #ifdef CONFIG_PANEL_LCD_WIDTH
345 #undef DEFAULT_LCD_WIDTH
346 #define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
347 #endif
348 
349 #ifdef CONFIG_PANEL_LCD_BWIDTH
350 #undef DEFAULT_LCD_BWIDTH
351 #define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
352 #endif
353 
354 #ifdef CONFIG_PANEL_LCD_HWIDTH
355 #undef DEFAULT_LCD_HWIDTH
356 #define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
357 #endif
358 
359 #ifdef CONFIG_PANEL_LCD_HEIGHT
360 #undef DEFAULT_LCD_HEIGHT
361 #define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
362 #endif
363 
364 #ifdef CONFIG_PANEL_LCD_PROTO
365 #undef DEFAULT_LCD_PROTO
366 #define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
367 #endif
368 
369 #ifdef CONFIG_PANEL_LCD_PIN_E
370 #undef DEFAULT_LCD_PIN_E
371 #define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
372 #endif
373 
374 #ifdef CONFIG_PANEL_LCD_PIN_RS
375 #undef DEFAULT_LCD_PIN_RS
376 #define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
377 #endif
378 
379 #ifdef CONFIG_PANEL_LCD_PIN_RW
380 #undef DEFAULT_LCD_PIN_RW
381 #define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
382 #endif
383 
384 #ifdef CONFIG_PANEL_LCD_PIN_SCL
385 #undef DEFAULT_LCD_PIN_SCL
386 #define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
387 #endif
388 
389 #ifdef CONFIG_PANEL_LCD_PIN_SDA
390 #undef DEFAULT_LCD_PIN_SDA
391 #define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
392 #endif
393 
394 #ifdef CONFIG_PANEL_LCD_PIN_BL
395 #undef DEFAULT_LCD_PIN_BL
396 #define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
397 #endif
398 
399 #ifdef CONFIG_PANEL_LCD_CHARSET
400 #undef DEFAULT_LCD_CHARSET
401 #define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
402 #endif
403 
404 #endif /* DEFAULT_PROFILE == 0 */
405 
406 /* global variables */
407 static int keypad_open_cnt; /* #times opened */
408 static int lcd_open_cnt; /* #times opened */
409 static struct pardevice *pprt;
410 
411 static int lcd_initialized;
412 static int keypad_initialized;
413 
414 static int light_tempo;
415 
416 static char lcd_must_clear;
417 static char lcd_left_shift;
418 static char init_in_progress;
419 
420 static void (*lcd_write_cmd) (int);
421 static void (*lcd_write_data) (int);
422 static void (*lcd_clear_fast) (void);
423 
424 static DEFINE_SPINLOCK(pprt_lock);
425 static struct timer_list scan_timer;
426 
427 MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
428 
429 static int parport = -1;
430 module_param(parport, int, 0000);
431 MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
432 
433 static int lcd_height = -1;
434 module_param(lcd_height, int, 0000);
435 MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
436 
437 static int lcd_width = -1;
438 module_param(lcd_width, int, 0000);
439 MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
440 
441 static int lcd_bwidth = -1; /* internal buffer width (usually 40) */
442 module_param(lcd_bwidth, int, 0000);
443 MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
444 
445 static int lcd_hwidth = -1; /* hardware buffer width (usually 64) */
446 module_param(lcd_hwidth, int, 0000);
447 MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
448 
449 static int lcd_enabled = -1;
450 module_param(lcd_enabled, int, 0000);
451 MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
452 
453 static int keypad_enabled = -1;
454 module_param(keypad_enabled, int, 0000);
455 MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
456 
457 static int lcd_type = -1;
458 module_param(lcd_type, int, 0000);
459 MODULE_PARM_DESC(lcd_type,
460  "LCD type: 0=none, 1=old //, 2=serial ks0074, "
461  "3=hantronix //, 4=nexcom //, 5=compiled-in");
462 
463 static int lcd_proto = -1;
464 module_param(lcd_proto, int, 0000);
465 MODULE_PARM_DESC(lcd_proto,
466  "LCD communication: 0=parallel (//), 1=serial,"
467  "2=TI LCD Interface");
468 
469 static int lcd_charset = -1;
470 module_param(lcd_charset, int, 0000);
471 MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
472 
473 static int keypad_type = -1;
474 module_param(keypad_type, int, 0000);
475 MODULE_PARM_DESC(keypad_type,
476  "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, "
477  "3=nexcom 4 keys");
478 
479 static int profile = DEFAULT_PROFILE;
480 module_param(profile, int, 0000);
482  "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
483  "4=16x2 nexcom; default=40x2, old kp");
484 
485 /*
486  * These are the parallel port pins the LCD control signals are connected to.
487  * Set this to 0 if the signal is not used. Set it to its opposite value
488  * (negative) if the signal is negated. -MAXINT is used to indicate that the
489  * pin has not been explicitly specified.
490  *
491  * WARNING! no check will be performed about collisions with keypad !
492  */
493 
494 static int lcd_e_pin = PIN_NOT_SET;
495 module_param(lcd_e_pin, int, 0000);
496 MODULE_PARM_DESC(lcd_e_pin,
497  "# of the // port pin connected to LCD 'E' signal, "
498  "with polarity (-17..17)");
499 
500 static int lcd_rs_pin = PIN_NOT_SET;
501 module_param(lcd_rs_pin, int, 0000);
502 MODULE_PARM_DESC(lcd_rs_pin,
503  "# of the // port pin connected to LCD 'RS' signal, "
504  "with polarity (-17..17)");
505 
506 static int lcd_rw_pin = PIN_NOT_SET;
507 module_param(lcd_rw_pin, int, 0000);
508 MODULE_PARM_DESC(lcd_rw_pin,
509  "# of the // port pin connected to LCD 'RW' signal, "
510  "with polarity (-17..17)");
511 
512 static int lcd_bl_pin = PIN_NOT_SET;
513 module_param(lcd_bl_pin, int, 0000);
514 MODULE_PARM_DESC(lcd_bl_pin,
515  "# of the // port pin connected to LCD backlight, "
516  "with polarity (-17..17)");
517 
518 static int lcd_da_pin = PIN_NOT_SET;
519 module_param(lcd_da_pin, int, 0000);
520 MODULE_PARM_DESC(lcd_da_pin,
521  "# of the // port pin connected to serial LCD 'SDA' "
522  "signal, with polarity (-17..17)");
523 
524 static int lcd_cl_pin = PIN_NOT_SET;
525 module_param(lcd_cl_pin, int, 0000);
526 MODULE_PARM_DESC(lcd_cl_pin,
527  "# of the // port pin connected to serial LCD 'SCL' "
528  "signal, with polarity (-17..17)");
529 
530 static unsigned char *lcd_char_conv;
531 
532 /* for some LCD drivers (ks0074) we need a charset conversion table. */
533 static unsigned char lcd_char_conv_ks0074[256] = {
534  /* 0|8 1|9 2|A 3|B 4|C 5|D 6|E 7|F */
535  /* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
536  /* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
537  /* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
538  /* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
539  /* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
540  /* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
541  /* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
542  /* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
543  /* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
544  /* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
545  /* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
546  /* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
547  /* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
548  /* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
549  /* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
550  /* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
551  /* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
552  /* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
553  /* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
554  /* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
555  /* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
556  /* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
557  /* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
558  /* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
559  /* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
560  /* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
561  /* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
562  /* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
563  /* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
564  /* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
565  /* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
566  /* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
567 };
568 
569 char old_keypad_profile[][4][9] = {
570  {"S0", "Left\n", "Left\n", ""},
571  {"S1", "Down\n", "Down\n", ""},
572  {"S2", "Up\n", "Up\n", ""},
573  {"S3", "Right\n", "Right\n", ""},
574  {"S4", "Esc\n", "Esc\n", ""},
575  {"S5", "Ret\n", "Ret\n", ""},
576  {"", "", "", ""}
577 };
578 
579 /* signals, press, repeat, release */
580 char new_keypad_profile[][4][9] = {
581  {"S0", "Left\n", "Left\n", ""},
582  {"S1", "Down\n", "Down\n", ""},
583  {"S2", "Up\n", "Up\n", ""},
584  {"S3", "Right\n", "Right\n", ""},
585  {"S4s5", "", "Esc\n", "Esc\n"},
586  {"s4S5", "", "Ret\n", "Ret\n"},
587  {"S4S5", "Help\n", "", ""},
588  /* add new signals above this line */
589  {"", "", "", ""}
590 };
591 
592 /* signals, press, repeat, release */
593 char nexcom_keypad_profile[][4][9] = {
594  {"a-p-e-", "Down\n", "Down\n", ""},
595  {"a-p-E-", "Ret\n", "Ret\n", ""},
596  {"a-P-E-", "Esc\n", "Esc\n", ""},
597  {"a-P-e-", "Up\n", "Up\n", ""},
598  /* add new signals above this line */
599  {"", "", "", ""}
600 };
601 
602 static char (*keypad_profile)[4][9] = old_keypad_profile;
603 
604 /* FIXME: this should be converted to a bit array containing signals states */
605 static struct {
606  unsigned char e; /* parallel LCD E (data latch on falling edge) */
607  unsigned char rs; /* parallel LCD RS (0 = cmd, 1 = data) */
608  unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
609  unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
610  unsigned char cl; /* serial LCD clock (latch on rising edge) */
611  unsigned char da; /* serial LCD data */
612 } bits;
613 
614 static void init_scan_timer(void);
615 
616 /* sets data port bits according to current signals values */
617 static int set_data_bits(void)
618 {
619  int val, bit;
620 
621  val = r_dtr(pprt);
622  for (bit = 0; bit < LCD_BITS; bit++)
623  val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
624 
625  val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
626  | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
627  | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
628  | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
629  | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
630  | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
631 
632  w_dtr(pprt, val);
633  return val;
634 }
635 
636 /* sets ctrl port bits according to current signals values */
637 static int set_ctrl_bits(void)
638 {
639  int val, bit;
640 
641  val = r_ctr(pprt);
642  for (bit = 0; bit < LCD_BITS; bit++)
643  val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
644 
645  val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
646  | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
647  | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
648  | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
649  | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
650  | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
651 
652  w_ctr(pprt, val);
653  return val;
654 }
655 
656 /* sets ctrl & data port bits according to current signals values */
657 static void panel_set_bits(void)
658 {
659  set_data_bits();
660  set_ctrl_bits();
661 }
662 
663 /*
664  * Converts a parallel port pin (from -25 to 25) to data and control ports
665  * masks, and data and control port bits. The signal will be considered
666  * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
667  *
668  * Result will be used this way :
669  * out(dport, in(dport) & d_val[2] | d_val[signal_state])
670  * out(cport, in(cport) & c_val[2] | c_val[signal_state])
671  */
672 void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
673 {
674  int d_bit, c_bit, inv;
675 
676  d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
677  d_val[2] = c_val[2] = 0xFF;
678 
679  if (pin == 0)
680  return;
681 
682  inv = (pin < 0);
683  if (inv)
684  pin = -pin;
685 
686  d_bit = c_bit = 0;
687 
688  switch (pin) {
689  case PIN_STROBE: /* strobe, inverted */
690  c_bit = PNL_PSTROBE;
691  inv = !inv;
692  break;
693  case PIN_D0...PIN_D7: /* D0 - D7 = 2 - 9 */
694  d_bit = 1 << (pin - 2);
695  break;
696  case PIN_AUTOLF: /* autofeed, inverted */
697  c_bit = PNL_PAUTOLF;
698  inv = !inv;
699  break;
700  case PIN_INITP: /* init, direct */
701  c_bit = PNL_PINITP;
702  break;
703  case PIN_SELECP: /* select_in, inverted */
704  c_bit = PNL_PSELECP;
705  inv = !inv;
706  break;
707  default: /* unknown pin, ignore */
708  break;
709  }
710 
711  if (c_bit) {
712  c_val[2] &= ~c_bit;
713  c_val[!inv] = c_bit;
714  } else if (d_bit) {
715  d_val[2] &= ~d_bit;
716  d_val[!inv] = d_bit;
717  }
718 }
719 
720 /* sleeps that many milliseconds with a reschedule */
721 static void long_sleep(int ms)
722 {
723 
724  if (in_interrupt())
725  mdelay(ms);
726  else {
727  current->state = TASK_INTERRUPTIBLE;
728  schedule_timeout((ms * HZ + 999) / 1000);
729  }
730 }
731 
732 /* send a serial byte to the LCD panel. The caller is responsible for locking
733  if needed. */
734 static void lcd_send_serial(int byte)
735 {
736  int bit;
737 
738  /* the data bit is set on D0, and the clock on STROBE.
739  * LCD reads D0 on STROBE's rising edge. */
740  for (bit = 0; bit < 8; bit++) {
741  bits.cl = BIT_CLR; /* CLK low */
742  panel_set_bits();
743  bits.da = byte & 1;
744  panel_set_bits();
745  udelay(2); /* maintain the data during 2 us before CLK up */
746  bits.cl = BIT_SET; /* CLK high */
747  panel_set_bits();
748  udelay(1); /* maintain the strobe during 1 us */
749  byte >>= 1;
750  }
751 }
752 
753 /* turn the backlight on or off */
754 static void lcd_backlight(int on)
755 {
756  if (lcd_bl_pin == PIN_NONE)
757  return;
758 
759  /* The backlight is activated by setting the AUTOFEED line to +5V */
760  spin_lock_irq(&pprt_lock);
761  bits.bl = on;
762  panel_set_bits();
763  spin_unlock_irq(&pprt_lock);
764 }
765 
766 /* send a command to the LCD panel in serial mode */
767 static void lcd_write_cmd_s(int cmd)
768 {
769  spin_lock_irq(&pprt_lock);
770  lcd_send_serial(0x1F); /* R/W=W, RS=0 */
771  lcd_send_serial(cmd & 0x0F);
772  lcd_send_serial((cmd >> 4) & 0x0F);
773  udelay(40); /* the shortest command takes at least 40 us */
774  spin_unlock_irq(&pprt_lock);
775 }
776 
777 /* send data to the LCD panel in serial mode */
778 static void lcd_write_data_s(int data)
779 {
780  spin_lock_irq(&pprt_lock);
781  lcd_send_serial(0x5F); /* R/W=W, RS=1 */
782  lcd_send_serial(data & 0x0F);
783  lcd_send_serial((data >> 4) & 0x0F);
784  udelay(40); /* the shortest data takes at least 40 us */
785  spin_unlock_irq(&pprt_lock);
786 }
787 
788 /* send a command to the LCD panel in 8 bits parallel mode */
789 static void lcd_write_cmd_p8(int cmd)
790 {
791  spin_lock_irq(&pprt_lock);
792  /* present the data to the data port */
793  w_dtr(pprt, cmd);
794  udelay(20); /* maintain the data during 20 us before the strobe */
795 
796  bits.e = BIT_SET;
797  bits.rs = BIT_CLR;
798  bits.rw = BIT_CLR;
799  set_ctrl_bits();
800 
801  udelay(40); /* maintain the strobe during 40 us */
802 
803  bits.e = BIT_CLR;
804  set_ctrl_bits();
805 
806  udelay(120); /* the shortest command takes at least 120 us */
807  spin_unlock_irq(&pprt_lock);
808 }
809 
810 /* send data to the LCD panel in 8 bits parallel mode */
811 static void lcd_write_data_p8(int data)
812 {
813  spin_lock_irq(&pprt_lock);
814  /* present the data to the data port */
815  w_dtr(pprt, data);
816  udelay(20); /* maintain the data during 20 us before the strobe */
817 
818  bits.e = BIT_SET;
819  bits.rs = BIT_SET;
820  bits.rw = BIT_CLR;
821  set_ctrl_bits();
822 
823  udelay(40); /* maintain the strobe during 40 us */
824 
825  bits.e = BIT_CLR;
826  set_ctrl_bits();
827 
828  udelay(45); /* the shortest data takes at least 45 us */
829  spin_unlock_irq(&pprt_lock);
830 }
831 
832 /* send a command to the TI LCD panel */
833 static void lcd_write_cmd_tilcd(int cmd)
834 {
835  spin_lock_irq(&pprt_lock);
836  /* present the data to the control port */
837  w_ctr(pprt, cmd);
838  udelay(60);
839  spin_unlock_irq(&pprt_lock);
840 }
841 
842 /* send data to the TI LCD panel */
843 static void lcd_write_data_tilcd(int data)
844 {
845  spin_lock_irq(&pprt_lock);
846  /* present the data to the data port */
847  w_dtr(pprt, data);
848  udelay(60);
849  spin_unlock_irq(&pprt_lock);
850 }
851 
852 static void lcd_gotoxy(void)
853 {
854  lcd_write_cmd(0x80 /* set DDRAM address */
855  | (lcd_addr_y ? lcd_hwidth : 0)
856  /* we force the cursor to stay at the end of the
857  line if it wants to go farther */
858  | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
859  (lcd_hwidth - 1) : lcd_bwidth - 1));
860 }
861 
862 static void lcd_print(char c)
863 {
864  if (lcd_addr_x < lcd_bwidth) {
865  if (lcd_char_conv != NULL)
866  c = lcd_char_conv[(unsigned char)c];
867  lcd_write_data(c);
868  lcd_addr_x++;
869  }
870  /* prevents the cursor from wrapping onto the next line */
871  if (lcd_addr_x == lcd_bwidth)
872  lcd_gotoxy();
873 }
874 
875 /* fills the display with spaces and resets X/Y */
876 static void lcd_clear_fast_s(void)
877 {
878  int pos;
879  lcd_addr_x = lcd_addr_y = 0;
880  lcd_gotoxy();
881 
882  spin_lock_irq(&pprt_lock);
883  for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
884  lcd_send_serial(0x5F); /* R/W=W, RS=1 */
885  lcd_send_serial(' ' & 0x0F);
886  lcd_send_serial((' ' >> 4) & 0x0F);
887  udelay(40); /* the shortest data takes at least 40 us */
888  }
889  spin_unlock_irq(&pprt_lock);
890 
891  lcd_addr_x = lcd_addr_y = 0;
892  lcd_gotoxy();
893 }
894 
895 /* fills the display with spaces and resets X/Y */
896 static void lcd_clear_fast_p8(void)
897 {
898  int pos;
899  lcd_addr_x = lcd_addr_y = 0;
900  lcd_gotoxy();
901 
902  spin_lock_irq(&pprt_lock);
903  for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
904  /* present the data to the data port */
905  w_dtr(pprt, ' ');
906 
907  /* maintain the data during 20 us before the strobe */
908  udelay(20);
909 
910  bits.e = BIT_SET;
911  bits.rs = BIT_SET;
912  bits.rw = BIT_CLR;
913  set_ctrl_bits();
914 
915  /* maintain the strobe during 40 us */
916  udelay(40);
917 
918  bits.e = BIT_CLR;
919  set_ctrl_bits();
920 
921  /* the shortest data takes at least 45 us */
922  udelay(45);
923  }
924  spin_unlock_irq(&pprt_lock);
925 
926  lcd_addr_x = lcd_addr_y = 0;
927  lcd_gotoxy();
928 }
929 
930 /* fills the display with spaces and resets X/Y */
931 static void lcd_clear_fast_tilcd(void)
932 {
933  int pos;
934  lcd_addr_x = lcd_addr_y = 0;
935  lcd_gotoxy();
936 
937  spin_lock_irq(&pprt_lock);
938  for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
939  /* present the data to the data port */
940  w_dtr(pprt, ' ');
941  udelay(60);
942  }
943 
944  spin_unlock_irq(&pprt_lock);
945 
946  lcd_addr_x = lcd_addr_y = 0;
947  lcd_gotoxy();
948 }
949 
950 /* clears the display and resets X/Y */
951 static void lcd_clear_display(void)
952 {
953  lcd_write_cmd(0x01); /* clear display */
954  lcd_addr_x = lcd_addr_y = 0;
955  /* we must wait a few milliseconds (15) */
956  long_sleep(15);
957 }
958 
959 static void lcd_init_display(void)
960 {
961 
962  lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
964 
965  long_sleep(20); /* wait 20 ms after power-up for the paranoid */
966 
967  lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
968  long_sleep(10);
969  lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
970  long_sleep(10);
971  lcd_write_cmd(0x30); /* 8bits, 1 line, small fonts */
972  long_sleep(10);
973 
974  lcd_write_cmd(0x30 /* set font height and lines number */
975  | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
976  | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
977  );
978  long_sleep(10);
979 
980  lcd_write_cmd(0x08); /* display off, cursor off, blink off */
981  long_sleep(10);
982 
983  lcd_write_cmd(0x08 /* set display mode */
984  | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
985  | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
986  | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
987  );
988 
989  lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
990 
991  long_sleep(10);
992 
993  /* entry mode set : increment, cursor shifting */
994  lcd_write_cmd(0x06);
995 
996  lcd_clear_display();
997 }
998 
999 /*
1000  * These are the file operation function for user access to /dev/lcd
1001  * This function can also be called from inside the kernel, by
1002  * setting file and ppos to NULL.
1003  *
1004  */
1005 
1006 static inline int handle_lcd_special_code(void)
1007 {
1008  /* LCD special codes */
1009 
1010  int processed = 0;
1011 
1012  char *esc = lcd_escape + 2;
1013  int oldflags = lcd_flags;
1014 
1015  /* check for display mode flags */
1016  switch (*esc) {
1017  case 'D': /* Display ON */
1018  lcd_flags |= LCD_FLAG_D;
1019  processed = 1;
1020  break;
1021  case 'd': /* Display OFF */
1022  lcd_flags &= ~LCD_FLAG_D;
1023  processed = 1;
1024  break;
1025  case 'C': /* Cursor ON */
1026  lcd_flags |= LCD_FLAG_C;
1027  processed = 1;
1028  break;
1029  case 'c': /* Cursor OFF */
1030  lcd_flags &= ~LCD_FLAG_C;
1031  processed = 1;
1032  break;
1033  case 'B': /* Blink ON */
1034  lcd_flags |= LCD_FLAG_B;
1035  processed = 1;
1036  break;
1037  case 'b': /* Blink OFF */
1038  lcd_flags &= ~LCD_FLAG_B;
1039  processed = 1;
1040  break;
1041  case '+': /* Back light ON */
1042  lcd_flags |= LCD_FLAG_L;
1043  processed = 1;
1044  break;
1045  case '-': /* Back light OFF */
1046  lcd_flags &= ~LCD_FLAG_L;
1047  processed = 1;
1048  break;
1049  case '*':
1050  /* flash back light using the keypad timer */
1051  if (scan_timer.function != NULL) {
1052  if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1053  lcd_backlight(1);
1054  light_tempo = FLASH_LIGHT_TEMPO;
1055  }
1056  processed = 1;
1057  break;
1058  case 'f': /* Small Font */
1059  lcd_flags &= ~LCD_FLAG_F;
1060  processed = 1;
1061  break;
1062  case 'F': /* Large Font */
1063  lcd_flags |= LCD_FLAG_F;
1064  processed = 1;
1065  break;
1066  case 'n': /* One Line */
1067  lcd_flags &= ~LCD_FLAG_N;
1068  processed = 1;
1069  break;
1070  case 'N': /* Two Lines */
1071  lcd_flags |= LCD_FLAG_N;
1072  break;
1073  case 'l': /* Shift Cursor Left */
1074  if (lcd_addr_x > 0) {
1075  /* back one char if not at end of line */
1076  if (lcd_addr_x < lcd_bwidth)
1077  lcd_write_cmd(0x10);
1078  lcd_addr_x--;
1079  }
1080  processed = 1;
1081  break;
1082  case 'r': /* shift cursor right */
1083  if (lcd_addr_x < lcd_width) {
1084  /* allow the cursor to pass the end of the line */
1085  if (lcd_addr_x <
1086  (lcd_bwidth - 1))
1087  lcd_write_cmd(0x14);
1088  lcd_addr_x++;
1089  }
1090  processed = 1;
1091  break;
1092  case 'L': /* shift display left */
1093  lcd_left_shift++;
1094  lcd_write_cmd(0x18);
1095  processed = 1;
1096  break;
1097  case 'R': /* shift display right */
1098  lcd_left_shift--;
1099  lcd_write_cmd(0x1C);
1100  processed = 1;
1101  break;
1102  case 'k': { /* kill end of line */
1103  int x;
1104  for (x = lcd_addr_x; x < lcd_bwidth; x++)
1105  lcd_write_data(' ');
1106 
1107  /* restore cursor position */
1108  lcd_gotoxy();
1109  processed = 1;
1110  break;
1111  }
1112  case 'I': /* reinitialize display */
1113  lcd_init_display();
1114  lcd_left_shift = 0;
1115  processed = 1;
1116  break;
1117  case 'G': {
1118  /* Generator : LGcxxxxx...xx; must have <c> between '0'
1119  * and '7', representing the numerical ASCII code of the
1120  * redefined character, and <xx...xx> a sequence of 16
1121  * hex digits representing 8 bytes for each character.
1122  * Most LCDs will only use 5 lower bits of the 7 first
1123  * bytes.
1124  */
1125 
1126  unsigned char cgbytes[8];
1127  unsigned char cgaddr;
1128  int cgoffset;
1129  int shift;
1130  char value;
1131  int addr;
1132 
1133  if (strchr(esc, ';') == NULL)
1134  break;
1135 
1136  esc++;
1137 
1138  cgaddr = *(esc++) - '0';
1139  if (cgaddr > 7) {
1140  processed = 1;
1141  break;
1142  }
1143 
1144  cgoffset = 0;
1145  shift = 0;
1146  value = 0;
1147  while (*esc && cgoffset < 8) {
1148  shift ^= 4;
1149  if (*esc >= '0' && *esc <= '9')
1150  value |= (*esc - '0') << shift;
1151  else if (*esc >= 'A' && *esc <= 'Z')
1152  value |= (*esc - 'A' + 10) << shift;
1153  else if (*esc >= 'a' && *esc <= 'z')
1154  value |= (*esc - 'a' + 10) << shift;
1155  else {
1156  esc++;
1157  continue;
1158  }
1159 
1160  if (shift == 0) {
1161  cgbytes[cgoffset++] = value;
1162  value = 0;
1163  }
1164 
1165  esc++;
1166  }
1167 
1168  lcd_write_cmd(0x40 | (cgaddr * 8));
1169  for (addr = 0; addr < cgoffset; addr++)
1170  lcd_write_data(cgbytes[addr]);
1171 
1172  /* ensures that we stop writing to CGRAM */
1173  lcd_gotoxy();
1174  processed = 1;
1175  break;
1176  }
1177  case 'x': /* gotoxy : LxXXX[yYYY]; */
1178  case 'y': /* gotoxy : LyYYY[xXXX]; */
1179  if (strchr(esc, ';') == NULL)
1180  break;
1181 
1182  while (*esc) {
1183  if (*esc == 'x') {
1184  esc++;
1185  if (kstrtoul(esc, 10, &lcd_addr_x) < 0)
1186  break;
1187  } else if (*esc == 'y') {
1188  esc++;
1189  if (kstrtoul(esc, 10, &lcd_addr_y) < 0)
1190  break;
1191  } else
1192  break;
1193  }
1194 
1195  lcd_gotoxy();
1196  processed = 1;
1197  break;
1198  }
1199 
1200  /* Check whether one flag was changed */
1201  if (oldflags != lcd_flags) {
1202  /* check whether one of B,C,D flags were changed */
1203  if ((oldflags ^ lcd_flags) &
1204  (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1205  /* set display mode */
1206  lcd_write_cmd(0x08
1207  | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
1208  | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
1209  | ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
1210  /* check whether one of F,N flags was changed */
1211  else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
1212  lcd_write_cmd(0x30
1213  | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
1214  | ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
1215  /* check whether L flag was changed */
1216  else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
1217  if (lcd_flags & (LCD_FLAG_L))
1218  lcd_backlight(1);
1219  else if (light_tempo == 0)
1220  /* switch off the light only when the tempo
1221  lighting is gone */
1222  lcd_backlight(0);
1223  }
1224  }
1225 
1226  return processed;
1227 }
1228 
1229 static ssize_t lcd_write(struct file *file,
1230  const char *buf, size_t count, loff_t *ppos)
1231 {
1232  const char *tmp = buf;
1233  char c;
1234 
1235  for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
1236  if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1237  /* let's be a little nice with other processes
1238  that need some CPU */
1239  schedule();
1240 
1241  if (ppos == NULL && file == NULL)
1242  /* let's not use get_user() from the kernel ! */
1243  c = *tmp;
1244  else if (get_user(c, tmp))
1245  return -EFAULT;
1246 
1247  /* first, we'll test if we're in escape mode */
1248  if ((c != '\n') && lcd_escape_len >= 0) {
1249  /* yes, let's add this char to the buffer */
1250  lcd_escape[lcd_escape_len++] = c;
1251  lcd_escape[lcd_escape_len] = 0;
1252  } else {
1253  /* aborts any previous escape sequence */
1254  lcd_escape_len = -1;
1255 
1256  switch (c) {
1257  case LCD_ESCAPE_CHAR:
1258  /* start of an escape sequence */
1259  lcd_escape_len = 0;
1260  lcd_escape[lcd_escape_len] = 0;
1261  break;
1262  case '\b':
1263  /* go back one char and clear it */
1264  if (lcd_addr_x > 0) {
1265  /* check if we're not at the
1266  end of the line */
1267  if (lcd_addr_x < lcd_bwidth)
1268  /* back one char */
1269  lcd_write_cmd(0x10);
1270  lcd_addr_x--;
1271  }
1272  /* replace with a space */
1273  lcd_write_data(' ');
1274  /* back one char again */
1275  lcd_write_cmd(0x10);
1276  break;
1277  case '\014':
1278  /* quickly clear the display */
1279  lcd_clear_fast();
1280  break;
1281  case '\n':
1282  /* flush the remainder of the current line and
1283  go to the beginning of the next line */
1284  for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
1285  lcd_write_data(' ');
1286  lcd_addr_x = 0;
1287  lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
1288  lcd_gotoxy();
1289  break;
1290  case '\r':
1291  /* go to the beginning of the same line */
1292  lcd_addr_x = 0;
1293  lcd_gotoxy();
1294  break;
1295  case '\t':
1296  /* print a space instead of the tab */
1297  lcd_print(' ');
1298  break;
1299  default:
1300  /* simply print this char */
1301  lcd_print(c);
1302  break;
1303  }
1304  }
1305 
1306  /* now we'll see if we're in an escape mode and if the current
1307  escape sequence can be understood. */
1308  if (lcd_escape_len >= 2) {
1309  int processed = 0;
1310 
1311  if (!strcmp(lcd_escape, "[2J")) {
1312  /* clear the display */
1313  lcd_clear_fast();
1314  processed = 1;
1315  } else if (!strcmp(lcd_escape, "[H")) {
1316  /* cursor to home */
1317  lcd_addr_x = lcd_addr_y = 0;
1318  lcd_gotoxy();
1319  processed = 1;
1320  }
1321  /* codes starting with ^[[L */
1322  else if ((lcd_escape_len >= 3) &&
1323  (lcd_escape[0] == '[') &&
1324  (lcd_escape[1] == 'L')) {
1325  processed = handle_lcd_special_code();
1326  }
1327 
1328  /* LCD special escape codes */
1329  /* flush the escape sequence if it's been processed
1330  or if it is getting too long. */
1331  if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
1332  lcd_escape_len = -1;
1333  } /* escape codes */
1334  }
1335 
1336  return tmp - buf;
1337 }
1338 
1339 static int lcd_open(struct inode *inode, struct file *file)
1340 {
1341  if (lcd_open_cnt)
1342  return -EBUSY; /* open only once at a time */
1343 
1344  if (file->f_mode & FMODE_READ) /* device is write-only */
1345  return -EPERM;
1346 
1347  if (lcd_must_clear) {
1348  lcd_clear_display();
1349  lcd_must_clear = 0;
1350  }
1351  lcd_open_cnt++;
1352  return nonseekable_open(inode, file);
1353 }
1354 
1355 static int lcd_release(struct inode *inode, struct file *file)
1356 {
1357  lcd_open_cnt--;
1358  return 0;
1359 }
1360 
1361 static const struct file_operations lcd_fops = {
1362  .write = lcd_write,
1363  .open = lcd_open,
1364  .release = lcd_release,
1365  .llseek = no_llseek,
1366 };
1367 
1368 static struct miscdevice lcd_dev = {
1369  LCD_MINOR,
1370  "lcd",
1371  &lcd_fops
1372 };
1373 
1374 /* public function usable from the kernel for any purpose */
1375 void panel_lcd_print(char *s)
1376 {
1377  if (lcd_enabled && lcd_initialized)
1378  lcd_write(NULL, s, strlen(s), NULL);
1379 }
1380 
1381 /* initialize the LCD driver */
1382 void lcd_init(void)
1383 {
1384  switch (lcd_type) {
1385  case LCD_TYPE_OLD:
1386  /* parallel mode, 8 bits */
1387  if (lcd_proto < 0)
1388  lcd_proto = LCD_PROTO_PARALLEL;
1389  if (lcd_charset < 0)
1390  lcd_charset = LCD_CHARSET_NORMAL;
1391  if (lcd_e_pin == PIN_NOT_SET)
1392  lcd_e_pin = PIN_STROBE;
1393  if (lcd_rs_pin == PIN_NOT_SET)
1394  lcd_rs_pin = PIN_AUTOLF;
1395 
1396  if (lcd_width < 0)
1397  lcd_width = 40;
1398  if (lcd_bwidth < 0)
1399  lcd_bwidth = 40;
1400  if (lcd_hwidth < 0)
1401  lcd_hwidth = 64;
1402  if (lcd_height < 0)
1403  lcd_height = 2;
1404  break;
1405  case LCD_TYPE_KS0074:
1406  /* serial mode, ks0074 */
1407  if (lcd_proto < 0)
1408  lcd_proto = LCD_PROTO_SERIAL;
1409  if (lcd_charset < 0)
1410  lcd_charset = LCD_CHARSET_KS0074;
1411  if (lcd_bl_pin == PIN_NOT_SET)
1412  lcd_bl_pin = PIN_AUTOLF;
1413  if (lcd_cl_pin == PIN_NOT_SET)
1414  lcd_cl_pin = PIN_STROBE;
1415  if (lcd_da_pin == PIN_NOT_SET)
1416  lcd_da_pin = PIN_D0;
1417 
1418  if (lcd_width < 0)
1419  lcd_width = 16;
1420  if (lcd_bwidth < 0)
1421  lcd_bwidth = 40;
1422  if (lcd_hwidth < 0)
1423  lcd_hwidth = 16;
1424  if (lcd_height < 0)
1425  lcd_height = 2;
1426  break;
1427  case LCD_TYPE_NEXCOM:
1428  /* parallel mode, 8 bits, generic */
1429  if (lcd_proto < 0)
1430  lcd_proto = LCD_PROTO_PARALLEL;
1431  if (lcd_charset < 0)
1432  lcd_charset = LCD_CHARSET_NORMAL;
1433  if (lcd_e_pin == PIN_NOT_SET)
1434  lcd_e_pin = PIN_AUTOLF;
1435  if (lcd_rs_pin == PIN_NOT_SET)
1436  lcd_rs_pin = PIN_SELECP;
1437  if (lcd_rw_pin == PIN_NOT_SET)
1438  lcd_rw_pin = PIN_INITP;
1439 
1440  if (lcd_width < 0)
1441  lcd_width = 16;
1442  if (lcd_bwidth < 0)
1443  lcd_bwidth = 40;
1444  if (lcd_hwidth < 0)
1445  lcd_hwidth = 64;
1446  if (lcd_height < 0)
1447  lcd_height = 2;
1448  break;
1449  case LCD_TYPE_CUSTOM:
1450  /* customer-defined */
1451  if (lcd_proto < 0)
1452  lcd_proto = DEFAULT_LCD_PROTO;
1453  if (lcd_charset < 0)
1454  lcd_charset = DEFAULT_LCD_CHARSET;
1455  /* default geometry will be set later */
1456  break;
1457  case LCD_TYPE_HANTRONIX:
1458  /* parallel mode, 8 bits, hantronix-like */
1459  default:
1460  if (lcd_proto < 0)
1461  lcd_proto = LCD_PROTO_PARALLEL;
1462  if (lcd_charset < 0)
1463  lcd_charset = LCD_CHARSET_NORMAL;
1464  if (lcd_e_pin == PIN_NOT_SET)
1465  lcd_e_pin = PIN_STROBE;
1466  if (lcd_rs_pin == PIN_NOT_SET)
1467  lcd_rs_pin = PIN_SELECP;
1468 
1469  if (lcd_width < 0)
1470  lcd_width = 16;
1471  if (lcd_bwidth < 0)
1472  lcd_bwidth = 40;
1473  if (lcd_hwidth < 0)
1474  lcd_hwidth = 64;
1475  if (lcd_height < 0)
1476  lcd_height = 2;
1477  break;
1478  }
1479 
1480  /* this is used to catch wrong and default values */
1481  if (lcd_width <= 0)
1482  lcd_width = DEFAULT_LCD_WIDTH;
1483  if (lcd_bwidth <= 0)
1484  lcd_bwidth = DEFAULT_LCD_BWIDTH;
1485  if (lcd_hwidth <= 0)
1486  lcd_hwidth = DEFAULT_LCD_HWIDTH;
1487  if (lcd_height <= 0)
1488  lcd_height = DEFAULT_LCD_HEIGHT;
1489 
1490  if (lcd_proto == LCD_PROTO_SERIAL) { /* SERIAL */
1491  lcd_write_cmd = lcd_write_cmd_s;
1492  lcd_write_data = lcd_write_data_s;
1493  lcd_clear_fast = lcd_clear_fast_s;
1494 
1495  if (lcd_cl_pin == PIN_NOT_SET)
1496  lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
1497  if (lcd_da_pin == PIN_NOT_SET)
1498  lcd_da_pin = DEFAULT_LCD_PIN_SDA;
1499 
1500  } else if (lcd_proto == LCD_PROTO_PARALLEL) { /* PARALLEL */
1501  lcd_write_cmd = lcd_write_cmd_p8;
1502  lcd_write_data = lcd_write_data_p8;
1503  lcd_clear_fast = lcd_clear_fast_p8;
1504 
1505  if (lcd_e_pin == PIN_NOT_SET)
1506  lcd_e_pin = DEFAULT_LCD_PIN_E;
1507  if (lcd_rs_pin == PIN_NOT_SET)
1508  lcd_rs_pin = DEFAULT_LCD_PIN_RS;
1509  if (lcd_rw_pin == PIN_NOT_SET)
1510  lcd_rw_pin = DEFAULT_LCD_PIN_RW;
1511  } else {
1512  lcd_write_cmd = lcd_write_cmd_tilcd;
1513  lcd_write_data = lcd_write_data_tilcd;
1514  lcd_clear_fast = lcd_clear_fast_tilcd;
1515  }
1516 
1517  if (lcd_bl_pin == PIN_NOT_SET)
1518  lcd_bl_pin = DEFAULT_LCD_PIN_BL;
1519 
1520  if (lcd_e_pin == PIN_NOT_SET)
1521  lcd_e_pin = PIN_NONE;
1522  if (lcd_rs_pin == PIN_NOT_SET)
1523  lcd_rs_pin = PIN_NONE;
1524  if (lcd_rw_pin == PIN_NOT_SET)
1525  lcd_rw_pin = PIN_NONE;
1526  if (lcd_bl_pin == PIN_NOT_SET)
1527  lcd_bl_pin = PIN_NONE;
1528  if (lcd_cl_pin == PIN_NOT_SET)
1529  lcd_cl_pin = PIN_NONE;
1530  if (lcd_da_pin == PIN_NOT_SET)
1531  lcd_da_pin = PIN_NONE;
1532 
1533  if (lcd_charset < 0)
1534  lcd_charset = DEFAULT_LCD_CHARSET;
1535 
1536  if (lcd_charset == LCD_CHARSET_KS0074)
1537  lcd_char_conv = lcd_char_conv_ks0074;
1538  else
1539  lcd_char_conv = NULL;
1540 
1541  if (lcd_bl_pin != PIN_NONE)
1542  init_scan_timer();
1543 
1544  pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1545  lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1546  pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1547  lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1548  pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1549  lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1550  pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1551  lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1552  pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1553  lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1554  pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1555  lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1556 
1557  /* before this line, we must NOT send anything to the display.
1558  * Since lcd_init_display() needs to write data, we have to
1559  * enable mark the LCD initialized just before. */
1560  lcd_initialized = 1;
1561  lcd_init_display();
1562 
1563  /* display a short message */
1564 #ifdef CONFIG_PANEL_CHANGE_MESSAGE
1565 #ifdef CONFIG_PANEL_BOOT_MESSAGE
1566  panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1567 #endif
1568 #else
1569  panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1570  PANEL_VERSION);
1571 #endif
1572  lcd_addr_x = lcd_addr_y = 0;
1573  /* clear the display on the next device opening */
1574  lcd_must_clear = 1;
1575  lcd_gotoxy();
1576 }
1577 
1578 /*
1579  * These are the file operation function for user access to /dev/keypad
1580  */
1581 
1582 static ssize_t keypad_read(struct file *file,
1583  char *buf, size_t count, loff_t *ppos)
1584 {
1585 
1586  unsigned i = *ppos;
1587  char *tmp = buf;
1588 
1589  if (keypad_buflen == 0) {
1590  if (file->f_flags & O_NONBLOCK)
1591  return -EAGAIN;
1592 
1593  interruptible_sleep_on(&keypad_read_wait);
1594  if (signal_pending(current))
1595  return -EINTR;
1596  }
1597 
1598  for (; count-- > 0 && (keypad_buflen > 0);
1599  ++i, ++tmp, --keypad_buflen) {
1600  put_user(keypad_buffer[keypad_start], tmp);
1601  keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1602  }
1603  *ppos = i;
1604 
1605  return tmp - buf;
1606 }
1607 
1608 static int keypad_open(struct inode *inode, struct file *file)
1609 {
1610 
1611  if (keypad_open_cnt)
1612  return -EBUSY; /* open only once at a time */
1613 
1614  if (file->f_mode & FMODE_WRITE) /* device is read-only */
1615  return -EPERM;
1616 
1617  keypad_buflen = 0; /* flush the buffer on opening */
1618  keypad_open_cnt++;
1619  return 0;
1620 }
1621 
1622 static int keypad_release(struct inode *inode, struct file *file)
1623 {
1624  keypad_open_cnt--;
1625  return 0;
1626 }
1627 
1628 static const struct file_operations keypad_fops = {
1629  .read = keypad_read, /* read */
1630  .open = keypad_open, /* open */
1631  .release = keypad_release, /* close */
1632  .llseek = default_llseek,
1633 };
1634 
1635 static struct miscdevice keypad_dev = {
1636  KEYPAD_MINOR,
1637  "keypad",
1638  &keypad_fops
1639 };
1640 
1641 static void keypad_send_key(char *string, int max_len)
1642 {
1643  if (init_in_progress)
1644  return;
1645 
1646  /* send the key to the device only if a process is attached to it. */
1647  if (keypad_open_cnt > 0) {
1648  while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1649  keypad_buffer[(keypad_start + keypad_buflen++) %
1650  KEYPAD_BUFFER] = *string++;
1651  }
1652  wake_up_interruptible(&keypad_read_wait);
1653  }
1654 }
1655 
1656 /* this function scans all the bits involving at least one logical signal,
1657  * and puts the results in the bitfield "phys_read" (one bit per established
1658  * contact), and sets "phys_read_prev" to "phys_read".
1659  *
1660  * Note: to debounce input signals, we will only consider as switched a signal
1661  * which is stable across 2 measures. Signals which are different between two
1662  * reads will be kept as they previously were in their logical form (phys_prev).
1663  * A signal which has just switched will have a 1 in
1664  * (phys_read ^ phys_read_prev).
1665  */
1666 static void phys_scan_contacts(void)
1667 {
1668  int bit, bitval;
1669  char oldval;
1670  char bitmask;
1671  char gndmask;
1672 
1673  phys_prev = phys_curr;
1674  phys_read_prev = phys_read;
1675  phys_read = 0; /* flush all signals */
1676 
1677  /* keep track of old value, with all outputs disabled */
1678  oldval = r_dtr(pprt) | scan_mask_o;
1679  /* activate all keyboard outputs (active low) */
1680  w_dtr(pprt, oldval & ~scan_mask_o);
1681 
1682  /* will have a 1 for each bit set to gnd */
1683  bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1684  /* disable all matrix signals */
1685  w_dtr(pprt, oldval);
1686 
1687  /* now that all outputs are cleared, the only active input bits are
1688  * directly connected to the ground
1689  */
1690 
1691  /* 1 for each grounded input */
1692  gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1693 
1694  /* grounded inputs are signals 40-44 */
1695  phys_read |= (pmask_t) gndmask << 40;
1696 
1697  if (bitmask != gndmask) {
1698  /* since clearing the outputs changed some inputs, we know
1699  * that some input signals are currently tied to some outputs.
1700  * So we'll scan them.
1701  */
1702  for (bit = 0; bit < 8; bit++) {
1703  bitval = 1 << bit;
1704 
1705  if (!(scan_mask_o & bitval)) /* skip unused bits */
1706  continue;
1707 
1708  w_dtr(pprt, oldval & ~bitval); /* enable this output */
1709  bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1710  phys_read |= (pmask_t) bitmask << (5 * bit);
1711  }
1712  w_dtr(pprt, oldval); /* disable all outputs */
1713  }
1714  /* this is easy: use old bits when they are flapping,
1715  * use new ones when stable */
1716  phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1717  (phys_read & ~(phys_read ^ phys_read_prev));
1718 }
1719 
1720 static inline int input_state_high(struct logical_input *input)
1721 {
1722 #if 0
1723  /* FIXME:
1724  * this is an invalid test. It tries to catch
1725  * transitions from single-key to multiple-key, but
1726  * doesn't take into account the contacts polarity.
1727  * The only solution to the problem is to parse keys
1728  * from the most complex to the simplest combinations,
1729  * and mark them as 'caught' once a combination
1730  * matches, then unmatch it for all other ones.
1731  */
1732 
1733  /* try to catch dangerous transitions cases :
1734  * someone adds a bit, so this signal was a false
1735  * positive resulting from a transition. We should
1736  * invalidate the signal immediately and not call the
1737  * release function.
1738  * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1739  */
1740  if (((phys_prev & input->mask) == input->value)
1741  && ((phys_curr & input->mask) > input->value)) {
1742  input->state = INPUT_ST_LOW; /* invalidate */
1743  return 1;
1744  }
1745 #endif
1746 
1747  if ((phys_curr & input->mask) == input->value) {
1748  if ((input->type == INPUT_TYPE_STD) &&
1749  (input->high_timer == 0)) {
1750  input->high_timer++;
1751  if (input->u.std.press_fct != NULL)
1752  input->u.std.press_fct(input->u.std.press_data);
1753  } else if (input->type == INPUT_TYPE_KBD) {
1754  /* will turn on the light */
1755  keypressed = 1;
1756 
1757  if (input->high_timer == 0) {
1758  char *press_str = input->u.kbd.press_str;
1759  if (press_str[0])
1760  keypad_send_key(press_str,
1761  sizeof(press_str));
1762  }
1763 
1764  if (input->u.kbd.repeat_str[0]) {
1765  char *repeat_str = input->u.kbd.repeat_str;
1766  if (input->high_timer >= KEYPAD_REP_START) {
1767  input->high_timer -= KEYPAD_REP_DELAY;
1768  keypad_send_key(repeat_str,
1769  sizeof(repeat_str));
1770  }
1771  /* we will need to come back here soon */
1772  inputs_stable = 0;
1773  }
1774 
1775  if (input->high_timer < 255)
1776  input->high_timer++;
1777  }
1778  return 1;
1779  } else {
1780  /* else signal falling down. Let's fall through. */
1781  input->state = INPUT_ST_FALLING;
1782  input->fall_timer = 0;
1783  }
1784  return 0;
1785 }
1786 
1787 static inline void input_state_falling(struct logical_input *input)
1788 {
1789 #if 0
1790  /* FIXME !!! same comment as in input_state_high */
1791  if (((phys_prev & input->mask) == input->value)
1792  && ((phys_curr & input->mask) > input->value)) {
1793  input->state = INPUT_ST_LOW; /* invalidate */
1794  return;
1795  }
1796 #endif
1797 
1798  if ((phys_curr & input->mask) == input->value) {
1799  if (input->type == INPUT_TYPE_KBD) {
1800  /* will turn on the light */
1801  keypressed = 1;
1802 
1803  if (input->u.kbd.repeat_str[0]) {
1804  char *repeat_str = input->u.kbd.repeat_str;
1805  if (input->high_timer >= KEYPAD_REP_START)
1806  input->high_timer -= KEYPAD_REP_DELAY;
1807  keypad_send_key(repeat_str,
1808  sizeof(repeat_str));
1809  /* we will need to come back here soon */
1810  inputs_stable = 0;
1811  }
1812 
1813  if (input->high_timer < 255)
1814  input->high_timer++;
1815  }
1816  input->state = INPUT_ST_HIGH;
1817  } else if (input->fall_timer >= input->fall_time) {
1818  /* call release event */
1819  if (input->type == INPUT_TYPE_STD) {
1820  void (*release_fct)(int) = input->u.std.release_fct;
1821  if (release_fct != NULL)
1822  release_fct(input->u.std.release_data);
1823  } else if (input->type == INPUT_TYPE_KBD) {
1824  char *release_str = input->u.kbd.release_str;
1825  if (release_str[0])
1826  keypad_send_key(release_str,
1827  sizeof(release_str));
1828  }
1829 
1830  input->state = INPUT_ST_LOW;
1831  } else {
1832  input->fall_timer++;
1833  inputs_stable = 0;
1834  }
1835 }
1836 
1837 static void panel_process_inputs(void)
1838 {
1839  struct list_head *item;
1840  struct logical_input *input;
1841 
1842  keypressed = 0;
1843  inputs_stable = 1;
1844  list_for_each(item, &logical_inputs) {
1845  input = list_entry(item, struct logical_input, list);
1846 
1847  switch (input->state) {
1848  case INPUT_ST_LOW:
1849  if ((phys_curr & input->mask) != input->value)
1850  break;
1851  /* if all needed ones were already set previously,
1852  * this means that this logical signal has been
1853  * activated by the releasing of another combined
1854  * signal, so we don't want to match.
1855  * eg: AB -(release B)-> A -(release A)-> 0 :
1856  * don't match A.
1857  */
1858  if ((phys_prev & input->mask) == input->value)
1859  break;
1860  input->rise_timer = 0;
1861  input->state = INPUT_ST_RISING;
1862  /* no break here, fall through */
1863  case INPUT_ST_RISING:
1864  if ((phys_curr & input->mask) != input->value) {
1865  input->state = INPUT_ST_LOW;
1866  break;
1867  }
1868  if (input->rise_timer < input->rise_time) {
1869  inputs_stable = 0;
1870  input->rise_timer++;
1871  break;
1872  }
1873  input->high_timer = 0;
1874  input->state = INPUT_ST_HIGH;
1875  /* no break here, fall through */
1876  case INPUT_ST_HIGH:
1877  if (input_state_high(input))
1878  break;
1879  /* no break here, fall through */
1880  case INPUT_ST_FALLING:
1881  input_state_falling(input);
1882  }
1883  }
1884 }
1885 
1886 static void panel_scan_timer(void)
1887 {
1888  if (keypad_enabled && keypad_initialized) {
1889  if (spin_trylock_irq(&pprt_lock)) {
1890  phys_scan_contacts();
1891 
1892  /* no need for the parport anymore */
1893  spin_unlock_irq(&pprt_lock);
1894  }
1895 
1896  if (!inputs_stable || phys_curr != phys_prev)
1897  panel_process_inputs();
1898  }
1899 
1900  if (lcd_enabled && lcd_initialized) {
1901  if (keypressed) {
1902  if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1903  lcd_backlight(1);
1904  light_tempo = FLASH_LIGHT_TEMPO;
1905  } else if (light_tempo > 0) {
1906  light_tempo--;
1907  if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1908  lcd_backlight(0);
1909  }
1910  }
1911 
1912  mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1913 }
1914 
1915 static void init_scan_timer(void)
1916 {
1917  if (scan_timer.function != NULL)
1918  return; /* already started */
1919 
1920  init_timer(&scan_timer);
1921  scan_timer.expires = jiffies + INPUT_POLL_TIME;
1922  scan_timer.data = 0;
1923  scan_timer.function = (void *)&panel_scan_timer;
1924  add_timer(&scan_timer);
1925 }
1926 
1927 /* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1928  * if <omask> or <imask> are non-null, they will be or'ed with the bits
1929  * corresponding to out and in bits respectively.
1930  * returns 1 if ok, 0 if error (in which case, nothing is written).
1931  */
1932 static int input_name2mask(char *name, pmask_t *mask, pmask_t *value,
1933  char *imask, char *omask)
1934 {
1935  static char sigtab[10] = "EeSsPpAaBb";
1936  char im, om;
1937  pmask_t m, v;
1938 
1939  om = im = m = v = 0ULL;
1940  while (*name) {
1941  int in, out, bit, neg;
1942  for (in = 0; (in < sizeof(sigtab)) &&
1943  (sigtab[in] != *name); in++)
1944  ;
1945  if (in >= sizeof(sigtab))
1946  return 0; /* input name not found */
1947  neg = (in & 1); /* odd (lower) names are negated */
1948  in >>= 1;
1949  im |= (1 << in);
1950 
1951  name++;
1952  if (isdigit(*name)) {
1953  out = *name - '0';
1954  om |= (1 << out);
1955  } else if (*name == '-')
1956  out = 8;
1957  else
1958  return 0; /* unknown bit name */
1959 
1960  bit = (out * 5) + in;
1961 
1962  m |= 1ULL << bit;
1963  if (!neg)
1964  v |= 1ULL << bit;
1965  name++;
1966  }
1967  *mask = m;
1968  *value = v;
1969  if (imask)
1970  *imask |= im;
1971  if (omask)
1972  *omask |= om;
1973  return 1;
1974 }
1975 
1976 /* tries to bind a key to the signal name <name>. The key will send the
1977  * strings <press>, <repeat>, <release> for these respective events.
1978  * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1979  */
1980 static struct logical_input *panel_bind_key(char *name, char *press,
1981  char *repeat, char *release)
1982 {
1983  struct logical_input *key;
1984 
1985  key = kzalloc(sizeof(struct logical_input), GFP_KERNEL);
1986  if (!key)
1987  return NULL;
1988 
1989  if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1990  &scan_mask_o)) {
1991  kfree(key);
1992  return NULL;
1993  }
1994 
1995  key->type = INPUT_TYPE_KBD;
1996  key->state = INPUT_ST_LOW;
1997  key->rise_time = 1;
1998  key->fall_time = 1;
1999 
2000  strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2001  strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2002  strncpy(key->u.kbd.release_str, release,
2003  sizeof(key->u.kbd.release_str));
2004  list_add(&key->list, &logical_inputs);
2005  return key;
2006 }
2007 
2008 #if 0
2009 /* tries to bind a callback function to the signal name <name>. The function
2010  * <press_fct> will be called with the <press_data> arg when the signal is
2011  * activated, and so on for <release_fct>/<release_data>
2012  * Returns the pointer to the new signal if ok, NULL if the signal could not
2013  * be bound.
2014  */
2015 static struct logical_input *panel_bind_callback(char *name,
2016  void (*press_fct) (int),
2017  int press_data,
2018  void (*release_fct) (int),
2019  int release_data)
2020 {
2021  struct logical_input *callback;
2022 
2023  callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
2024  if (!callback)
2025  return NULL;
2026 
2027  memset(callback, 0, sizeof(struct logical_input));
2028  if (!input_name2mask(name, &callback->mask, &callback->value,
2029  &scan_mask_i, &scan_mask_o))
2030  return NULL;
2031 
2032  callback->type = INPUT_TYPE_STD;
2033  callback->state = INPUT_ST_LOW;
2034  callback->rise_time = 1;
2035  callback->fall_time = 1;
2036  callback->u.std.press_fct = press_fct;
2037  callback->u.std.press_data = press_data;
2038  callback->u.std.release_fct = release_fct;
2039  callback->u.std.release_data = release_data;
2040  list_add(&callback->list, &logical_inputs);
2041  return callback;
2042 }
2043 #endif
2044 
2045 static void keypad_init(void)
2046 {
2047  int keynum;
2048  init_waitqueue_head(&keypad_read_wait);
2049  keypad_buflen = 0; /* flushes any eventual noisy keystroke */
2050 
2051  /* Let's create all known keys */
2052 
2053  for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2054  panel_bind_key(keypad_profile[keynum][0],
2055  keypad_profile[keynum][1],
2056  keypad_profile[keynum][2],
2057  keypad_profile[keynum][3]);
2058  }
2059 
2060  init_scan_timer();
2061  keypad_initialized = 1;
2062 }
2063 
2064 /**************************************************/
2065 /* device initialization */
2066 /**************************************************/
2067 
2068 static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2069  void *unused)
2070 {
2071  if (lcd_enabled && lcd_initialized) {
2072  switch (code) {
2073  case SYS_DOWN:
2075  ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2076  break;
2077  case SYS_HALT:
2079  ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2080  break;
2081  case SYS_POWER_OFF:
2082  panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2083  break;
2084  default:
2085  break;
2086  }
2087  }
2088  return NOTIFY_DONE;
2089 }
2090 
2091 static struct notifier_block panel_notifier = {
2092  panel_notify_sys,
2093  NULL,
2094  0
2095 };
2096 
2097 static void panel_attach(struct parport *port)
2098 {
2099  if (port->number != parport)
2100  return;
2101 
2102  if (pprt) {
2103  pr_err("%s: port->number=%d parport=%d, already registered!\n",
2104  __func__, port->number, parport);
2105  return;
2106  }
2107 
2108  pprt = parport_register_device(port, "panel", NULL, NULL, /* pf, kf */
2109  NULL,
2110  /*PARPORT_DEV_EXCL */
2111  0, (void *)&pprt);
2112  if (pprt == NULL) {
2113  pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2114  __func__, port->number, parport);
2115  return;
2116  }
2117 
2118  if (parport_claim(pprt)) {
2119  pr_err("could not claim access to parport%d. Aborting.\n",
2120  parport);
2121  goto err_unreg_device;
2122  }
2123 
2124  /* must init LCD first, just in case an IRQ from the keypad is
2125  * generated at keypad init
2126  */
2127  if (lcd_enabled) {
2128  lcd_init();
2129  if (misc_register(&lcd_dev))
2130  goto err_unreg_device;
2131  }
2132 
2133  if (keypad_enabled) {
2134  keypad_init();
2135  if (misc_register(&keypad_dev))
2136  goto err_lcd_unreg;
2137  }
2138  return;
2139 
2140 err_lcd_unreg:
2141  if (lcd_enabled)
2142  misc_deregister(&lcd_dev);
2143 err_unreg_device:
2145  pprt = NULL;
2146 }
2147 
2148 static void panel_detach(struct parport *port)
2149 {
2150  if (port->number != parport)
2151  return;
2152 
2153  if (!pprt) {
2154  pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2155  __func__, port->number, parport);
2156  return;
2157  }
2158 
2159  if (keypad_enabled && keypad_initialized) {
2160  misc_deregister(&keypad_dev);
2161  keypad_initialized = 0;
2162  }
2163 
2164  if (lcd_enabled && lcd_initialized) {
2165  misc_deregister(&lcd_dev);
2166  lcd_initialized = 0;
2167  }
2168 
2169  parport_release(pprt);
2171  pprt = NULL;
2172 }
2173 
2174 static struct parport_driver panel_driver = {
2175  .name = "panel",
2176  .attach = panel_attach,
2177  .detach = panel_detach,
2178 };
2179 
2180 /* init function */
2181 int panel_init(void)
2182 {
2183  /* for backwards compatibility */
2184  if (keypad_type < 0)
2185  keypad_type = keypad_enabled;
2186 
2187  if (lcd_type < 0)
2188  lcd_type = lcd_enabled;
2189 
2190  if (parport < 0)
2192 
2193  /* take care of an eventual profile */
2194  switch (profile) {
2195  case PANEL_PROFILE_CUSTOM:
2196  /* custom profile */
2197  if (keypad_type < 0)
2198  keypad_type = DEFAULT_KEYPAD;
2199  if (lcd_type < 0)
2200  lcd_type = DEFAULT_LCD;
2201  break;
2202  case PANEL_PROFILE_OLD:
2203  /* 8 bits, 2*16, old keypad */
2204  if (keypad_type < 0)
2205  keypad_type = KEYPAD_TYPE_OLD;
2206  if (lcd_type < 0)
2207  lcd_type = LCD_TYPE_OLD;
2208  if (lcd_width < 0)
2209  lcd_width = 16;
2210  if (lcd_hwidth < 0)
2211  lcd_hwidth = 16;
2212  break;
2213  case PANEL_PROFILE_NEW:
2214  /* serial, 2*16, new keypad */
2215  if (keypad_type < 0)
2216  keypad_type = KEYPAD_TYPE_NEW;
2217  if (lcd_type < 0)
2218  lcd_type = LCD_TYPE_KS0074;
2219  break;
2221  /* 8 bits, 2*16 hantronix-like, no keypad */
2222  if (keypad_type < 0)
2223  keypad_type = KEYPAD_TYPE_NONE;
2224  if (lcd_type < 0)
2225  lcd_type = LCD_TYPE_HANTRONIX;
2226  break;
2227  case PANEL_PROFILE_NEXCOM:
2228  /* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2229  if (keypad_type < 0)
2230  keypad_type = KEYPAD_TYPE_NEXCOM;
2231  if (lcd_type < 0)
2232  lcd_type = LCD_TYPE_NEXCOM;
2233  break;
2234  case PANEL_PROFILE_LARGE:
2235  /* 8 bits, 2*40, old keypad */
2236  if (keypad_type < 0)
2237  keypad_type = KEYPAD_TYPE_OLD;
2238  if (lcd_type < 0)
2239  lcd_type = LCD_TYPE_OLD;
2240  break;
2241  }
2242 
2243  lcd_enabled = (lcd_type > 0);
2244  keypad_enabled = (keypad_type > 0);
2245 
2246  switch (keypad_type) {
2247  case KEYPAD_TYPE_OLD:
2248  keypad_profile = old_keypad_profile;
2249  break;
2250  case KEYPAD_TYPE_NEW:
2251  keypad_profile = new_keypad_profile;
2252  break;
2253  case KEYPAD_TYPE_NEXCOM:
2254  keypad_profile = nexcom_keypad_profile;
2255  break;
2256  default:
2257  keypad_profile = NULL;
2258  break;
2259  }
2260 
2261  /* tells various subsystems about the fact that we are initializing */
2262  init_in_progress = 1;
2263 
2264  if (parport_register_driver(&panel_driver)) {
2265  pr_err("could not register with parport. Aborting.\n");
2266  return -EIO;
2267  }
2268 
2269  if (!lcd_enabled && !keypad_enabled) {
2270  /* no device enabled, let's release the parport */
2271  if (pprt) {
2272  parport_release(pprt);
2274  pprt = NULL;
2275  }
2276  parport_unregister_driver(&panel_driver);
2277  pr_err("driver version " PANEL_VERSION " disabled.\n");
2278  return -ENODEV;
2279  }
2280 
2281  register_reboot_notifier(&panel_notifier);
2282 
2283  if (pprt)
2284  pr_info("driver version " PANEL_VERSION
2285  " registered on parport%d (io=0x%lx).\n", parport,
2286  pprt->port->base);
2287  else
2288  pr_info("driver version " PANEL_VERSION
2289  " not yet registered\n");
2290  /* tells various subsystems about the fact that initialization
2291  is finished */
2292  init_in_progress = 0;
2293  return 0;
2294 }
2295 
2296 static int __init panel_init_module(void)
2297 {
2298  return panel_init();
2299 }
2300 
2301 static void __exit panel_cleanup_module(void)
2302 {
2303  unregister_reboot_notifier(&panel_notifier);
2304 
2305  if (scan_timer.function != NULL)
2306  del_timer(&scan_timer);
2307 
2308  if (pprt != NULL) {
2309  if (keypad_enabled) {
2310  misc_deregister(&keypad_dev);
2311  keypad_initialized = 0;
2312  }
2313 
2314  if (lcd_enabled) {
2315  panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2316  "\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2317  misc_deregister(&lcd_dev);
2318  lcd_initialized = 0;
2319  }
2320 
2321  /* TODO: free all input signals */
2322  parport_release(pprt);
2324  pprt = NULL;
2325  }
2326  parport_unregister_driver(&panel_driver);
2327 }
2328 
2329 module_init(panel_init_module);
2330 module_exit(panel_cleanup_module);
2331 MODULE_AUTHOR("Willy Tarreau");
2332 MODULE_LICENSE("GPL");
2333 
2334 /*
2335  * Local variables:
2336  * c-indent-level: 4
2337  * tab-width: 8
2338  * End:
2339  */