Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
partition-generic.c
Go to the documentation of this file.
1 /*
2  * Code extracted from drivers/block/genhd.c
3  * Copyright (C) 1991-1998 Linus Torvalds
4  * Re-organised Feb 1998 Russell King
5  *
6  * We now have independent partition support from the
7  * block drivers, which allows all the partition code to
8  * be grouped in one location, and it to be mostly self
9  * contained.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/fs.h>
15 #include <linux/slab.h>
16 #include <linux/kmod.h>
17 #include <linux/ctype.h>
18 #include <linux/genhd.h>
19 #include <linux/blktrace_api.h>
20 
21 #include "partitions/check.h"
22 
23 #ifdef CONFIG_BLK_DEV_MD
24 extern void md_autodetect_dev(dev_t dev);
25 #endif
26 
27 /*
28  * disk_name() is used by partition check code and the genhd driver.
29  * It formats the devicename of the indicated disk into
30  * the supplied buffer (of size at least 32), and returns
31  * a pointer to that same buffer (for convenience).
32  */
33 
34 char *disk_name(struct gendisk *hd, int partno, char *buf)
35 {
36  if (!partno)
37  snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
38  else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
39  snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
40  else
41  snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
42 
43  return buf;
44 }
45 
46 const char *bdevname(struct block_device *bdev, char *buf)
47 {
48  return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
49 }
50 
52 
53 /*
54  * There's very little reason to use this, you should really
55  * have a struct block_device just about everywhere and use
56  * bdevname() instead.
57  */
58 const char *__bdevname(dev_t dev, char *buffer)
59 {
60  scnprintf(buffer, BDEVNAME_SIZE, "unknown-block(%u,%u)",
61  MAJOR(dev), MINOR(dev));
62  return buffer;
63 }
64 
66 
67 static ssize_t part_partition_show(struct device *dev,
68  struct device_attribute *attr, char *buf)
69 {
70  struct hd_struct *p = dev_to_part(dev);
71 
72  return sprintf(buf, "%d\n", p->partno);
73 }
74 
75 static ssize_t part_start_show(struct device *dev,
76  struct device_attribute *attr, char *buf)
77 {
78  struct hd_struct *p = dev_to_part(dev);
79 
80  return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
81 }
82 
84  struct device_attribute *attr, char *buf)
85 {
86  struct hd_struct *p = dev_to_part(dev);
87  return sprintf(buf, "%llu\n",(unsigned long long)part_nr_sects_read(p));
88 }
89 
90 static ssize_t part_ro_show(struct device *dev,
91  struct device_attribute *attr, char *buf)
92 {
93  struct hd_struct *p = dev_to_part(dev);
94  return sprintf(buf, "%d\n", p->policy ? 1 : 0);
95 }
96 
97 static ssize_t part_alignment_offset_show(struct device *dev,
98  struct device_attribute *attr, char *buf)
99 {
100  struct hd_struct *p = dev_to_part(dev);
101  return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset);
102 }
103 
104 static ssize_t part_discard_alignment_show(struct device *dev,
105  struct device_attribute *attr, char *buf)
106 {
107  struct hd_struct *p = dev_to_part(dev);
108  return sprintf(buf, "%u\n", p->discard_alignment);
109 }
110 
112  struct device_attribute *attr, char *buf)
113 {
114  struct hd_struct *p = dev_to_part(dev);
115  int cpu;
116 
117  cpu = part_stat_lock();
118  part_round_stats(cpu, p);
119  part_stat_unlock();
120  return sprintf(buf,
121  "%8lu %8lu %8llu %8u "
122  "%8lu %8lu %8llu %8u "
123  "%8u %8u %8u"
124  "\n",
125  part_stat_read(p, ios[READ]),
126  part_stat_read(p, merges[READ]),
127  (unsigned long long)part_stat_read(p, sectors[READ]),
128  jiffies_to_msecs(part_stat_read(p, ticks[READ])),
129  part_stat_read(p, ios[WRITE]),
130  part_stat_read(p, merges[WRITE]),
131  (unsigned long long)part_stat_read(p, sectors[WRITE]),
132  jiffies_to_msecs(part_stat_read(p, ticks[WRITE])),
133  part_in_flight(p),
134  jiffies_to_msecs(part_stat_read(p, io_ticks)),
135  jiffies_to_msecs(part_stat_read(p, time_in_queue)));
136 }
137 
139  struct device_attribute *attr, char *buf)
140 {
141  struct hd_struct *p = dev_to_part(dev);
142 
143  return sprintf(buf, "%8u %8u\n", atomic_read(&p->in_flight[0]),
144  atomic_read(&p->in_flight[1]));
145 }
146 
147 #ifdef CONFIG_FAIL_MAKE_REQUEST
148 ssize_t part_fail_show(struct device *dev,
149  struct device_attribute *attr, char *buf)
150 {
151  struct hd_struct *p = dev_to_part(dev);
152 
153  return sprintf(buf, "%d\n", p->make_it_fail);
154 }
155 
156 ssize_t part_fail_store(struct device *dev,
157  struct device_attribute *attr,
158  const char *buf, size_t count)
159 {
160  struct hd_struct *p = dev_to_part(dev);
161  int i;
162 
163  if (count > 0 && sscanf(buf, "%d", &i) > 0)
164  p->make_it_fail = (i == 0) ? 0 : 1;
165 
166  return count;
167 }
168 #endif
169 
170 static DEVICE_ATTR(partition, S_IRUGO, part_partition_show, NULL);
171 static DEVICE_ATTR(start, S_IRUGO, part_start_show, NULL);
173 static DEVICE_ATTR(ro, S_IRUGO, part_ro_show, NULL);
174 static DEVICE_ATTR(alignment_offset, S_IRUGO, part_alignment_offset_show, NULL);
175 static DEVICE_ATTR(discard_alignment, S_IRUGO, part_discard_alignment_show,
176  NULL);
178 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
179 #ifdef CONFIG_FAIL_MAKE_REQUEST
180 static struct device_attribute dev_attr_fail =
181  __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
182 #endif
183 
184 static struct attribute *part_attrs[] = {
185  &dev_attr_partition.attr,
186  &dev_attr_start.attr,
187  &dev_attr_size.attr,
188  &dev_attr_ro.attr,
189  &dev_attr_alignment_offset.attr,
190  &dev_attr_discard_alignment.attr,
191  &dev_attr_stat.attr,
192  &dev_attr_inflight.attr,
193 #ifdef CONFIG_FAIL_MAKE_REQUEST
194  &dev_attr_fail.attr,
195 #endif
196  NULL
197 };
198 
199 static struct attribute_group part_attr_group = {
200  .attrs = part_attrs,
201 };
202 
203 static const struct attribute_group *part_attr_groups[] = {
204  &part_attr_group,
205 #ifdef CONFIG_BLK_DEV_IO_TRACE
206  &blk_trace_attr_group,
207 #endif
208  NULL
209 };
210 
211 static void part_release(struct device *dev)
212 {
213  struct hd_struct *p = dev_to_part(dev);
214  free_part_stats(p);
215  free_part_info(p);
216  kfree(p);
217 }
218 
220  .name = "partition",
221  .groups = part_attr_groups,
222  .release = part_release,
223 };
224 
225 static void delete_partition_rcu_cb(struct rcu_head *head)
226 {
227  struct hd_struct *part = container_of(head, struct hd_struct, rcu_head);
228 
229  part->start_sect = 0;
230  part->nr_sects = 0;
231  part_stat_set_all(part, 0);
232  put_device(part_to_dev(part));
233 }
234 
235 void __delete_partition(struct hd_struct *part)
236 {
237  call_rcu(&part->rcu_head, delete_partition_rcu_cb);
238 }
239 
240 void delete_partition(struct gendisk *disk, int partno)
241 {
242  struct disk_part_tbl *ptbl = disk->part_tbl;
243  struct hd_struct *part;
244 
245  if (partno >= ptbl->len)
246  return;
247 
248  part = ptbl->part[partno];
249  if (!part)
250  return;
251 
252  blk_free_devt(part_devt(part));
253  rcu_assign_pointer(ptbl->part[partno], NULL);
254  rcu_assign_pointer(ptbl->last_lookup, NULL);
255  kobject_put(part->holder_dir);
256  device_del(part_to_dev(part));
257 
258  hd_struct_put(part);
259 }
260 
261 static ssize_t whole_disk_show(struct device *dev,
262  struct device_attribute *attr, char *buf)
263 {
264  return 0;
265 }
266 static DEVICE_ATTR(whole_disk, S_IRUSR | S_IRGRP | S_IROTH,
267  whole_disk_show, NULL);
268 
269 struct hd_struct *add_partition(struct gendisk *disk, int partno,
270  sector_t start, sector_t len, int flags,
271  struct partition_meta_info *info)
272 {
273  struct hd_struct *p;
274  dev_t devt = MKDEV(0, 0);
275  struct device *ddev = disk_to_dev(disk);
276  struct device *pdev;
277  struct disk_part_tbl *ptbl;
278  const char *dname;
279  int err;
280 
281  err = disk_expand_part_tbl(disk, partno);
282  if (err)
283  return ERR_PTR(err);
284  ptbl = disk->part_tbl;
285 
286  if (ptbl->part[partno])
287  return ERR_PTR(-EBUSY);
288 
289  p = kzalloc(sizeof(*p), GFP_KERNEL);
290  if (!p)
291  return ERR_PTR(-EBUSY);
292 
293  if (!init_part_stats(p)) {
294  err = -ENOMEM;
295  goto out_free;
296  }
297 
298  seqcount_init(&p->nr_sects_seq);
299  pdev = part_to_dev(p);
300 
301  p->start_sect = start;
302  p->alignment_offset =
303  queue_limit_alignment_offset(&disk->queue->limits, start);
304  p->discard_alignment =
305  queue_limit_discard_alignment(&disk->queue->limits, start);
306  p->nr_sects = len;
307  p->partno = partno;
308  p->policy = get_disk_ro(disk);
309 
310  if (info) {
311  struct partition_meta_info *pinfo = alloc_part_info(disk);
312  if (!pinfo)
313  goto out_free_stats;
314  memcpy(pinfo, info, sizeof(*info));
315  p->info = pinfo;
316  }
317 
318  dname = dev_name(ddev);
319  if (isdigit(dname[strlen(dname) - 1]))
320  dev_set_name(pdev, "%sp%d", dname, partno);
321  else
322  dev_set_name(pdev, "%s%d", dname, partno);
323 
324  device_initialize(pdev);
325  pdev->class = &block_class;
326  pdev->type = &part_type;
327  pdev->parent = ddev;
328 
329  err = blk_alloc_devt(p, &devt);
330  if (err)
331  goto out_free_info;
332  pdev->devt = devt;
333 
334  /* delay uevent until 'holders' subdir is created */
335  dev_set_uevent_suppress(pdev, 1);
336  err = device_add(pdev);
337  if (err)
338  goto out_put;
339 
340  err = -ENOMEM;
341  p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
342  if (!p->holder_dir)
343  goto out_del;
344 
345  dev_set_uevent_suppress(pdev, 0);
346  if (flags & ADDPART_FLAG_WHOLEDISK) {
347  err = device_create_file(pdev, &dev_attr_whole_disk);
348  if (err)
349  goto out_del;
350  }
351 
352  /* everything is up and running, commence */
353  rcu_assign_pointer(ptbl->part[partno], p);
354 
355  /* suppress uevent if the disk suppresses it */
356  if (!dev_get_uevent_suppress(ddev))
357  kobject_uevent(&pdev->kobj, KOBJ_ADD);
358 
359  hd_ref_init(p);
360  return p;
361 
362 out_free_info:
363  free_part_info(p);
364 out_free_stats:
365  free_part_stats(p);
366 out_free:
367  kfree(p);
368  return ERR_PTR(err);
369 out_del:
370  kobject_put(p->holder_dir);
371  device_del(pdev);
372 out_put:
373  put_device(pdev);
374  blk_free_devt(devt);
375  return ERR_PTR(err);
376 }
377 
378 static bool disk_unlock_native_capacity(struct gendisk *disk)
379 {
380  const struct block_device_operations *bdops = disk->fops;
381 
382  if (bdops->unlock_native_capacity &&
383  !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
384  printk(KERN_CONT "enabling native capacity\n");
385  bdops->unlock_native_capacity(disk);
386  disk->flags |= GENHD_FL_NATIVE_CAPACITY;
387  return true;
388  } else {
389  printk(KERN_CONT "truncated\n");
390  return false;
391  }
392 }
393 
394 static int drop_partitions(struct gendisk *disk, struct block_device *bdev)
395 {
396  struct disk_part_iter piter;
397  struct hd_struct *part;
398  int res;
399 
400  if (bdev->bd_part_count)
401  return -EBUSY;
402  res = invalidate_partition(disk, 0);
403  if (res)
404  return res;
405 
406  disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
407  while ((part = disk_part_iter_next(&piter)))
408  delete_partition(disk, part->partno);
409  disk_part_iter_exit(&piter);
410 
411  return 0;
412 }
413 
414 int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
415 {
416  struct parsed_partitions *state = NULL;
417  struct hd_struct *part;
418  int p, highest, res;
419 rescan:
420  if (state && !IS_ERR(state)) {
421  kfree(state);
422  state = NULL;
423  }
424 
425  res = drop_partitions(disk, bdev);
426  if (res)
427  return res;
428 
429  if (disk->fops->revalidate_disk)
430  disk->fops->revalidate_disk(disk);
431  check_disk_size_change(disk, bdev);
432  bdev->bd_invalidated = 0;
433  if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
434  return 0;
435  if (IS_ERR(state)) {
436  /*
437  * I/O error reading the partition table. If any
438  * partition code tried to read beyond EOD, retry
439  * after unlocking native capacity.
440  */
441  if (PTR_ERR(state) == -ENOSPC) {
442  printk(KERN_WARNING "%s: partition table beyond EOD, ",
443  disk->disk_name);
444  if (disk_unlock_native_capacity(disk))
445  goto rescan;
446  }
447  return -EIO;
448  }
449  /*
450  * If any partition code tried to read beyond EOD, try
451  * unlocking native capacity even if partition table is
452  * successfully read as we could be missing some partitions.
453  */
454  if (state->access_beyond_eod) {
456  "%s: partition table partially beyond EOD, ",
457  disk->disk_name);
458  if (disk_unlock_native_capacity(disk))
459  goto rescan;
460  }
461 
462  /* tell userspace that the media / partition table may have changed */
463  kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
464 
465  /* Detect the highest partition number and preallocate
466  * disk->part_tbl. This is an optimization and not strictly
467  * necessary.
468  */
469  for (p = 1, highest = 0; p < state->limit; p++)
470  if (state->parts[p].size)
471  highest = p;
472 
473  disk_expand_part_tbl(disk, highest);
474 
475  /* add partitions */
476  for (p = 1; p < state->limit; p++) {
477  sector_t size, from;
478  struct partition_meta_info *info = NULL;
479 
480  size = state->parts[p].size;
481  if (!size)
482  continue;
483 
484  from = state->parts[p].from;
485  if (from >= get_capacity(disk)) {
487  "%s: p%d start %llu is beyond EOD, ",
488  disk->disk_name, p, (unsigned long long) from);
489  if (disk_unlock_native_capacity(disk))
490  goto rescan;
491  continue;
492  }
493 
494  if (from + size > get_capacity(disk)) {
496  "%s: p%d size %llu extends beyond EOD, ",
497  disk->disk_name, p, (unsigned long long) size);
498 
499  if (disk_unlock_native_capacity(disk)) {
500  /* free state and restart */
501  goto rescan;
502  } else {
503  /*
504  * we can not ignore partitions of broken tables
505  * created by for example camera firmware, but
506  * we limit them to the end of the disk to avoid
507  * creating invalid block devices
508  */
509  size = get_capacity(disk) - from;
510  }
511  }
512 
513  if (state->parts[p].has_info)
514  info = &state->parts[p].info;
515  part = add_partition(disk, p, from, size,
516  state->parts[p].flags,
517  &state->parts[p].info);
518  if (IS_ERR(part)) {
519  printk(KERN_ERR " %s: p%d could not be added: %ld\n",
520  disk->disk_name, p, -PTR_ERR(part));
521  continue;
522  }
523 #ifdef CONFIG_BLK_DEV_MD
524  if (state->parts[p].flags & ADDPART_FLAG_RAID)
525  md_autodetect_dev(part_to_dev(part)->devt);
526 #endif
527  }
528  kfree(state);
529  return 0;
530 }
531 
532 int invalidate_partitions(struct gendisk *disk, struct block_device *bdev)
533 {
534  int res;
535 
536  if (!bdev->bd_invalidated)
537  return 0;
538 
539  res = drop_partitions(disk, bdev);
540  if (res)
541  return res;
542 
543  set_capacity(disk, 0);
544  check_disk_size_change(disk, bdev);
545  bdev->bd_invalidated = 0;
546  /* tell userspace that the media / partition table may have changed */
547  kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
548 
549  return 0;
550 }
551 
552 unsigned char *read_dev_sector(struct block_device *bdev, sector_t n, Sector *p)
553 {
554  struct address_space *mapping = bdev->bd_inode->i_mapping;
555  struct page *page;
556 
557  page = read_mapping_page(mapping, (pgoff_t)(n >> (PAGE_CACHE_SHIFT-9)),
558  NULL);
559  if (!IS_ERR(page)) {
560  if (PageError(page))
561  goto fail;
562  p->v = page;
563  return (unsigned char *)page_address(page) + ((n & ((1 << (PAGE_CACHE_SHIFT - 9)) - 1)) << 9);
564 fail:
565  page_cache_release(page);
566  }
567  p->v = NULL;
568  return NULL;
569 }
570