Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
perf_event_intel_lbr.c
Go to the documentation of this file.
1 #include <linux/perf_event.h>
2 #include <linux/types.h>
3 
4 #include <asm/perf_event.h>
5 #include <asm/msr.h>
6 #include <asm/insn.h>
7 
8 #include "perf_event.h"
9 
10 enum {
11  LBR_FORMAT_32 = 0x00,
15 };
16 
17 /*
18  * Intel LBR_SELECT bits
19  * Intel Vol3a, April 2011, Section 16.7 Table 16-10
20  *
21  * Hardware branch filter (not available on all CPUs)
22  */
23 #define LBR_KERNEL_BIT 0 /* do not capture at ring0 */
24 #define LBR_USER_BIT 1 /* do not capture at ring > 0 */
25 #define LBR_JCC_BIT 2 /* do not capture conditional branches */
26 #define LBR_REL_CALL_BIT 3 /* do not capture relative calls */
27 #define LBR_IND_CALL_BIT 4 /* do not capture indirect calls */
28 #define LBR_RETURN_BIT 5 /* do not capture near returns */
29 #define LBR_IND_JMP_BIT 6 /* do not capture indirect jumps */
30 #define LBR_REL_JMP_BIT 7 /* do not capture relative jumps */
31 #define LBR_FAR_BIT 8 /* do not capture far branches */
32 
33 #define LBR_KERNEL (1 << LBR_KERNEL_BIT)
34 #define LBR_USER (1 << LBR_USER_BIT)
35 #define LBR_JCC (1 << LBR_JCC_BIT)
36 #define LBR_REL_CALL (1 << LBR_REL_CALL_BIT)
37 #define LBR_IND_CALL (1 << LBR_IND_CALL_BIT)
38 #define LBR_RETURN (1 << LBR_RETURN_BIT)
39 #define LBR_REL_JMP (1 << LBR_REL_JMP_BIT)
40 #define LBR_IND_JMP (1 << LBR_IND_JMP_BIT)
41 #define LBR_FAR (1 << LBR_FAR_BIT)
42 
43 #define LBR_PLM (LBR_KERNEL | LBR_USER)
44 
45 #define LBR_SEL_MASK 0x1ff /* valid bits in LBR_SELECT */
46 #define LBR_NOT_SUPP -1 /* LBR filter not supported */
47 #define LBR_IGN 0 /* ignored */
48 
49 #define LBR_ANY \
50  (LBR_JCC |\
51  LBR_REL_CALL |\
52  LBR_IND_CALL |\
53  LBR_RETURN |\
54  LBR_REL_JMP |\
55  LBR_IND_JMP |\
56  LBR_FAR)
57 
58 #define LBR_FROM_FLAG_MISPRED (1ULL << 63)
59 
60 #define for_each_branch_sample_type(x) \
61  for ((x) = PERF_SAMPLE_BRANCH_USER; \
62  (x) < PERF_SAMPLE_BRANCH_MAX; (x) <<= 1)
63 
64 /*
65  * x86control flow change classification
66  * x86control flow changes include branches, interrupts, traps, faults
67  */
68 enum {
69  X86_BR_NONE = 0, /* unknown */
70 
71  X86_BR_USER = 1 << 0, /* branch target is user */
72  X86_BR_KERNEL = 1 << 1, /* branch target is kernel */
73 
74  X86_BR_CALL = 1 << 2, /* call */
75  X86_BR_RET = 1 << 3, /* return */
76  X86_BR_SYSCALL = 1 << 4, /* syscall */
77  X86_BR_SYSRET = 1 << 5, /* syscall return */
78  X86_BR_INT = 1 << 6, /* sw interrupt */
79  X86_BR_IRET = 1 << 7, /* return from interrupt */
80  X86_BR_JCC = 1 << 8, /* conditional */
81  X86_BR_JMP = 1 << 9, /* jump */
82  X86_BR_IRQ = 1 << 10,/* hw interrupt or trap or fault */
83  X86_BR_IND_CALL = 1 << 11,/* indirect calls */
84 };
85 
86 #define X86_BR_PLM (X86_BR_USER | X86_BR_KERNEL)
87 
88 #define X86_BR_ANY \
89  (X86_BR_CALL |\
90  X86_BR_RET |\
91  X86_BR_SYSCALL |\
92  X86_BR_SYSRET |\
93  X86_BR_INT |\
94  X86_BR_IRET |\
95  X86_BR_JCC |\
96  X86_BR_JMP |\
97  X86_BR_IRQ |\
98  X86_BR_IND_CALL)
99 
100 #define X86_BR_ALL (X86_BR_PLM | X86_BR_ANY)
101 
102 #define X86_BR_ANY_CALL \
103  (X86_BR_CALL |\
104  X86_BR_IND_CALL |\
105  X86_BR_SYSCALL |\
106  X86_BR_IRQ |\
107  X86_BR_INT)
108 
109 static void intel_pmu_lbr_filter(struct cpu_hw_events *cpuc);
110 
111 /*
112  * We only support LBR implementations that have FREEZE_LBRS_ON_PMI
113  * otherwise it becomes near impossible to get a reliable stack.
114  */
115 
116 static void __intel_pmu_lbr_enable(void)
117 {
118  u64 debugctl;
119  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
120 
121  if (cpuc->lbr_sel)
122  wrmsrl(MSR_LBR_SELECT, cpuc->lbr_sel->config);
123 
124  rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
126  wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
127 }
128 
129 static void __intel_pmu_lbr_disable(void)
130 {
131  u64 debugctl;
132 
133  rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
135  wrmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
136 }
137 
138 static void intel_pmu_lbr_reset_32(void)
139 {
140  int i;
141 
142  for (i = 0; i < x86_pmu.lbr_nr; i++)
143  wrmsrl(x86_pmu.lbr_from + i, 0);
144 }
145 
146 static void intel_pmu_lbr_reset_64(void)
147 {
148  int i;
149 
150  for (i = 0; i < x86_pmu.lbr_nr; i++) {
151  wrmsrl(x86_pmu.lbr_from + i, 0);
152  wrmsrl(x86_pmu.lbr_to + i, 0);
153  }
154 }
155 
157 {
158  if (!x86_pmu.lbr_nr)
159  return;
160 
162  intel_pmu_lbr_reset_32();
163  else
164  intel_pmu_lbr_reset_64();
165 }
166 
168 {
169  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
170 
171  if (!x86_pmu.lbr_nr)
172  return;
173 
174  /*
175  * Reset the LBR stack if we changed task context to
176  * avoid data leaks.
177  */
178  if (event->ctx->task && cpuc->lbr_context != event->ctx) {
180  cpuc->lbr_context = event->ctx;
181  }
182  cpuc->br_sel = event->hw.branch_reg.reg;
183 
184  cpuc->lbr_users++;
185 }
186 
188 {
189  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
190 
191  if (!x86_pmu.lbr_nr)
192  return;
193 
194  cpuc->lbr_users--;
195  WARN_ON_ONCE(cpuc->lbr_users < 0);
196 
197  if (cpuc->enabled && !cpuc->lbr_users) {
198  __intel_pmu_lbr_disable();
199  /* avoid stale pointer */
200  cpuc->lbr_context = NULL;
201  }
202 }
203 
205 {
206  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
207 
208  if (cpuc->lbr_users)
209  __intel_pmu_lbr_enable();
210 }
211 
213 {
214  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
215 
216  if (cpuc->lbr_users)
217  __intel_pmu_lbr_disable();
218 }
219 
220 /*
221  * TOS = most recently recorded branch
222  */
223 static inline u64 intel_pmu_lbr_tos(void)
224 {
225  u64 tos;
226 
227  rdmsrl(x86_pmu.lbr_tos, tos);
228 
229  return tos;
230 }
231 
232 static void intel_pmu_lbr_read_32(struct cpu_hw_events *cpuc)
233 {
234  unsigned long mask = x86_pmu.lbr_nr - 1;
235  u64 tos = intel_pmu_lbr_tos();
236  int i;
237 
238  for (i = 0; i < x86_pmu.lbr_nr; i++) {
239  unsigned long lbr_idx = (tos - i) & mask;
240  union {
241  struct {
242  u32 from;
243  u32 to;
244  };
245  u64 lbr;
246  } msr_lastbranch;
247 
248  rdmsrl(x86_pmu.lbr_from + lbr_idx, msr_lastbranch.lbr);
249 
250  cpuc->lbr_entries[i].from = msr_lastbranch.from;
251  cpuc->lbr_entries[i].to = msr_lastbranch.to;
252  cpuc->lbr_entries[i].mispred = 0;
253  cpuc->lbr_entries[i].predicted = 0;
254  cpuc->lbr_entries[i].reserved = 0;
255  }
256  cpuc->lbr_stack.nr = i;
257 }
258 
259 /*
260  * Due to lack of segmentation in Linux the effective address (offset)
261  * is the same as the linear address, allowing us to merge the LIP and EIP
262  * LBR formats.
263  */
264 static void intel_pmu_lbr_read_64(struct cpu_hw_events *cpuc)
265 {
266  unsigned long mask = x86_pmu.lbr_nr - 1;
267  int lbr_format = x86_pmu.intel_cap.lbr_format;
268  u64 tos = intel_pmu_lbr_tos();
269  int i;
270 
271  for (i = 0; i < x86_pmu.lbr_nr; i++) {
272  unsigned long lbr_idx = (tos - i) & mask;
273  u64 from, to, mis = 0, pred = 0;
274 
275  rdmsrl(x86_pmu.lbr_from + lbr_idx, from);
276  rdmsrl(x86_pmu.lbr_to + lbr_idx, to);
277 
278  if (lbr_format == LBR_FORMAT_EIP_FLAGS) {
279  mis = !!(from & LBR_FROM_FLAG_MISPRED);
280  pred = !mis;
281  from = (u64)((((s64)from) << 1) >> 1);
282  }
283 
284  cpuc->lbr_entries[i].from = from;
285  cpuc->lbr_entries[i].to = to;
286  cpuc->lbr_entries[i].mispred = mis;
287  cpuc->lbr_entries[i].predicted = pred;
288  cpuc->lbr_entries[i].reserved = 0;
289  }
290  cpuc->lbr_stack.nr = i;
291 }
292 
294 {
295  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
296 
297  if (!cpuc->lbr_users)
298  return;
299 
301  intel_pmu_lbr_read_32(cpuc);
302  else
303  intel_pmu_lbr_read_64(cpuc);
304 
305  intel_pmu_lbr_filter(cpuc);
306 }
307 
308 /*
309  * SW filter is used:
310  * - in case there is no HW filter
311  * - in case the HW filter has errata or limitations
312  */
313 static void intel_pmu_setup_sw_lbr_filter(struct perf_event *event)
314 {
315  u64 br_type = event->attr.branch_sample_type;
316  int mask = 0;
317 
318  if (br_type & PERF_SAMPLE_BRANCH_USER)
319  mask |= X86_BR_USER;
320 
321  if (br_type & PERF_SAMPLE_BRANCH_KERNEL)
322  mask |= X86_BR_KERNEL;
323 
324  /* we ignore BRANCH_HV here */
325 
326  if (br_type & PERF_SAMPLE_BRANCH_ANY)
327  mask |= X86_BR_ANY;
328 
329  if (br_type & PERF_SAMPLE_BRANCH_ANY_CALL)
330  mask |= X86_BR_ANY_CALL;
331 
332  if (br_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
334 
335  if (br_type & PERF_SAMPLE_BRANCH_IND_CALL)
336  mask |= X86_BR_IND_CALL;
337  /*
338  * stash actual user request into reg, it may
339  * be used by fixup code for some CPU
340  */
341  event->hw.branch_reg.reg = mask;
342 }
343 
344 /*
345  * setup the HW LBR filter
346  * Used only when available, may not be enough to disambiguate
347  * all branches, may need the help of the SW filter
348  */
349 static int intel_pmu_setup_hw_lbr_filter(struct perf_event *event)
350 {
351  struct hw_perf_event_extra *reg;
352  u64 br_type = event->attr.branch_sample_type;
353  u64 mask = 0, m;
354  u64 v;
355 
357  if (!(br_type & m))
358  continue;
359 
360  v = x86_pmu.lbr_sel_map[m];
361  if (v == LBR_NOT_SUPP)
362  return -EOPNOTSUPP;
363 
364  if (v != LBR_IGN)
365  mask |= v;
366  }
367  reg = &event->hw.branch_reg;
368  reg->idx = EXTRA_REG_LBR;
369 
370  /* LBR_SELECT operates in suppress mode so invert mask */
371  reg->config = ~mask & x86_pmu.lbr_sel_mask;
372 
373  return 0;
374 }
375 
377 {
378  int ret = 0;
379 
380  /*
381  * no LBR on this PMU
382  */
383  if (!x86_pmu.lbr_nr)
384  return -EOPNOTSUPP;
385 
386  /*
387  * setup SW LBR filter
388  */
389  intel_pmu_setup_sw_lbr_filter(event);
390 
391  /*
392  * setup HW LBR filter, if any
393  */
394  if (x86_pmu.lbr_sel_map)
395  ret = intel_pmu_setup_hw_lbr_filter(event);
396 
397  return ret;
398 }
399 
400 /*
401  * return the type of control flow change at address "from"
402  * intruction is not necessarily a branch (in case of interrupt).
403  *
404  * The branch type returned also includes the priv level of the
405  * target of the control flow change (X86_BR_USER, X86_BR_KERNEL).
406  *
407  * If a branch type is unknown OR the instruction cannot be
408  * decoded (e.g., text page not present), then X86_BR_NONE is
409  * returned.
410  */
411 static int branch_type(unsigned long from, unsigned long to)
412 {
413  struct insn insn;
414  void *addr;
415  int bytes, size = MAX_INSN_SIZE;
416  int ret = X86_BR_NONE;
417  int ext, to_plm, from_plm;
419  int is64 = 0;
420 
421  to_plm = kernel_ip(to) ? X86_BR_KERNEL : X86_BR_USER;
422  from_plm = kernel_ip(from) ? X86_BR_KERNEL : X86_BR_USER;
423 
424  /*
425  * maybe zero if lbr did not fill up after a reset by the time
426  * we get a PMU interrupt
427  */
428  if (from == 0 || to == 0)
429  return X86_BR_NONE;
430 
431  if (from_plm == X86_BR_USER) {
432  /*
433  * can happen if measuring at the user level only
434  * and we interrupt in a kernel thread, e.g., idle.
435  */
436  if (!current->mm)
437  return X86_BR_NONE;
438 
439  /* may fail if text not present */
440  bytes = copy_from_user_nmi(buf, (void __user *)from, size);
441  if (bytes != size)
442  return X86_BR_NONE;
443 
444  addr = buf;
445  } else
446  addr = (void *)from;
447 
448  /*
449  * decoder needs to know the ABI especially
450  * on 64-bit systems running 32-bit apps
451  */
452 #ifdef CONFIG_X86_64
453  is64 = kernel_ip((unsigned long)addr) || !test_thread_flag(TIF_IA32);
454 #endif
455  insn_init(&insn, addr, is64);
457 
458  switch (insn.opcode.bytes[0]) {
459  case 0xf:
460  switch (insn.opcode.bytes[1]) {
461  case 0x05: /* syscall */
462  case 0x34: /* sysenter */
463  ret = X86_BR_SYSCALL;
464  break;
465  case 0x07: /* sysret */
466  case 0x35: /* sysexit */
467  ret = X86_BR_SYSRET;
468  break;
469  case 0x80 ... 0x8f: /* conditional */
470  ret = X86_BR_JCC;
471  break;
472  default:
473  ret = X86_BR_NONE;
474  }
475  break;
476  case 0x70 ... 0x7f: /* conditional */
477  ret = X86_BR_JCC;
478  break;
479  case 0xc2: /* near ret */
480  case 0xc3: /* near ret */
481  case 0xca: /* far ret */
482  case 0xcb: /* far ret */
483  ret = X86_BR_RET;
484  break;
485  case 0xcf: /* iret */
486  ret = X86_BR_IRET;
487  break;
488  case 0xcc ... 0xce: /* int */
489  ret = X86_BR_INT;
490  break;
491  case 0xe8: /* call near rel */
492  case 0x9a: /* call far absolute */
493  ret = X86_BR_CALL;
494  break;
495  case 0xe0 ... 0xe3: /* loop jmp */
496  ret = X86_BR_JCC;
497  break;
498  case 0xe9 ... 0xeb: /* jmp */
499  ret = X86_BR_JMP;
500  break;
501  case 0xff: /* call near absolute, call far absolute ind */
503  ext = (insn.modrm.bytes[0] >> 3) & 0x7;
504  switch (ext) {
505  case 2: /* near ind call */
506  case 3: /* far ind call */
507  ret = X86_BR_IND_CALL;
508  break;
509  case 4:
510  case 5:
511  ret = X86_BR_JMP;
512  break;
513  }
514  break;
515  default:
516  ret = X86_BR_NONE;
517  }
518  /*
519  * interrupts, traps, faults (and thus ring transition) may
520  * occur on any instructions. Thus, to classify them correctly,
521  * we need to first look at the from and to priv levels. If they
522  * are different and to is in the kernel, then it indicates
523  * a ring transition. If the from instruction is not a ring
524  * transition instr (syscall, systenter, int), then it means
525  * it was a irq, trap or fault.
526  *
527  * we have no way of detecting kernel to kernel faults.
528  */
529  if (from_plm == X86_BR_USER && to_plm == X86_BR_KERNEL
530  && ret != X86_BR_SYSCALL && ret != X86_BR_INT)
531  ret = X86_BR_IRQ;
532 
533  /*
534  * branch priv level determined by target as
535  * is done by HW when LBR_SELECT is implemented
536  */
537  if (ret != X86_BR_NONE)
538  ret |= to_plm;
539 
540  return ret;
541 }
542 
543 /*
544  * implement actual branch filter based on user demand.
545  * Hardware may not exactly satisfy that request, thus
546  * we need to inspect opcodes. Mismatched branches are
547  * discarded. Therefore, the number of branches returned
548  * in PERF_SAMPLE_BRANCH_STACK sample may vary.
549  */
550 static void
551 intel_pmu_lbr_filter(struct cpu_hw_events *cpuc)
552 {
553  u64 from, to;
554  int br_sel = cpuc->br_sel;
555  int i, j, type;
556  bool compress = false;
557 
558  /* if sampling all branches, then nothing to filter */
559  if ((br_sel & X86_BR_ALL) == X86_BR_ALL)
560  return;
561 
562  for (i = 0; i < cpuc->lbr_stack.nr; i++) {
563 
564  from = cpuc->lbr_entries[i].from;
565  to = cpuc->lbr_entries[i].to;
566 
567  type = branch_type(from, to);
568 
569  /* if type does not correspond, then discard */
570  if (type == X86_BR_NONE || (br_sel & type) != type) {
571  cpuc->lbr_entries[i].from = 0;
572  compress = true;
573  }
574  }
575 
576  if (!compress)
577  return;
578 
579  /* remove all entries with from=0 */
580  for (i = 0; i < cpuc->lbr_stack.nr; ) {
581  if (!cpuc->lbr_entries[i].from) {
582  j = i;
583  while (++j < cpuc->lbr_stack.nr)
584  cpuc->lbr_entries[j-1] = cpuc->lbr_entries[j];
585  cpuc->lbr_stack.nr--;
586  if (!cpuc->lbr_entries[i].from)
587  continue;
588  }
589  i++;
590  }
591 }
592 
593 /*
594  * Map interface branch filters onto LBR filters
595  */
596 static const int nhm_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX] = {
602  | LBR_IND_JMP | LBR_FAR,
603  /*
604  * NHM/WSM erratum: must include REL_JMP+IND_JMP to get CALL branches
605  */
608  /*
609  * NHM/WSM erratum: must include IND_JMP to capture IND_CALL
610  */
612 };
613 
614 static const int snb_lbr_sel_map[PERF_SAMPLE_BRANCH_MAX] = {
621  | LBR_FAR,
623 };
624 
625 /* core */
627 {
628  x86_pmu.lbr_nr = 4;
632 
633  /*
634  * SW branch filter usage:
635  * - compensate for lack of HW filter
636  */
637  pr_cont("4-deep LBR, ");
638 }
639 
640 /* nehalem/westmere */
642 {
643  x86_pmu.lbr_nr = 16;
647 
649  x86_pmu.lbr_sel_map = nhm_lbr_sel_map;
650 
651  /*
652  * SW branch filter usage:
653  * - workaround LBR_SEL errata (see above)
654  * - support syscall, sysret capture.
655  * That requires LBR_FAR but that means far
656  * jmp need to be filtered out
657  */
658  pr_cont("16-deep LBR, ");
659 }
660 
661 /* sandy bridge */
663 {
664  x86_pmu.lbr_nr = 16;
668 
670  x86_pmu.lbr_sel_map = snb_lbr_sel_map;
671 
672  /*
673  * SW branch filter usage:
674  * - support syscall, sysret capture.
675  * That requires LBR_FAR but that means far
676  * jmp need to be filtered out
677  */
678  pr_cont("16-deep LBR, ");
679 }
680 
681 /* atom */
683 {
684  /*
685  * only models starting at stepping 10 seems
686  * to have an operational LBR which can freeze
687  * on PMU interrupt
688  */
689  if (boot_cpu_data.x86_model == 28
690  && boot_cpu_data.x86_mask < 10) {
691  pr_cont("LBR disabled due to erratum");
692  return;
693  }
694 
695  x86_pmu.lbr_nr = 8;
699 
700  /*
701  * SW branch filter usage:
702  * - compensate for lack of HW filter
703  */
704  pr_cont("8-deep LBR, ");
705 }