Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hugetlbpage.c
Go to the documentation of this file.
1 /*
2  * PPC Huge TLB Page Support for Kernel.
3  *
4  * Copyright (C) 2003 David Gibson, IBM Corporation.
5  * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
6  *
7  * Based on the IA-32 version:
8  * Copyright (C) 2002, Rohit Seth <[email protected]>
9  */
10 
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
24 
25 #define PAGE_SHIFT_64K 16
26 #define PAGE_SHIFT_16M 24
27 #define PAGE_SHIFT_16G 34
28 
29 unsigned int HPAGE_SHIFT;
30 
31 /*
32  * Tracks gpages after the device tree is scanned and before the
33  * huge_boot_pages list is ready. On non-Freescale implementations, this is
34  * just used to track 16G pages and so is a single array. FSL-based
35  * implementations may have more than one gpage size, so we need multiple
36  * arrays
37  */
38 #ifdef CONFIG_PPC_FSL_BOOK3E
39 #define MAX_NUMBER_GPAGES 128
40 struct psize_gpages {
41  u64 gpage_list[MAX_NUMBER_GPAGES];
42  unsigned int nr_gpages;
43 };
44 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
45 #else
46 #define MAX_NUMBER_GPAGES 1024
47 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
48 static unsigned nr_gpages;
49 #endif
50 
51 static inline int shift_to_mmu_psize(unsigned int shift)
52 {
53  int psize;
54 
55  for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
56  if (mmu_psize_defs[psize].shift == shift)
57  return psize;
58  return -1;
59 }
60 
61 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
62 {
63  if (mmu_psize_defs[mmu_psize].shift)
64  return mmu_psize_defs[mmu_psize].shift;
65  BUG();
66 }
67 
68 #define hugepd_none(hpd) ((hpd).pd == 0)
69 
70 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
71 {
72  pgd_t *pg;
73  pud_t *pu;
74  pmd_t *pm;
75  hugepd_t *hpdp = NULL;
76  unsigned pdshift = PGDIR_SHIFT;
77 
78  if (shift)
79  *shift = 0;
80 
81  pg = pgdir + pgd_index(ea);
82  if (is_hugepd(pg)) {
83  hpdp = (hugepd_t *)pg;
84  } else if (!pgd_none(*pg)) {
85  pdshift = PUD_SHIFT;
86  pu = pud_offset(pg, ea);
87  if (is_hugepd(pu))
88  hpdp = (hugepd_t *)pu;
89  else if (!pud_none(*pu)) {
90  pdshift = PMD_SHIFT;
91  pm = pmd_offset(pu, ea);
92  if (is_hugepd(pm))
93  hpdp = (hugepd_t *)pm;
94  else if (!pmd_none(*pm)) {
95  return pte_offset_kernel(pm, ea);
96  }
97  }
98  }
99 
100  if (!hpdp)
101  return NULL;
102 
103  if (shift)
104  *shift = hugepd_shift(*hpdp);
105  return hugepte_offset(hpdp, ea, pdshift);
106 }
108 
109 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
110 {
111  return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
112 }
113 
114 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
115  unsigned long address, unsigned pdshift, unsigned pshift)
116 {
117  struct kmem_cache *cachep;
118  pte_t *new;
119 
120 #ifdef CONFIG_PPC_FSL_BOOK3E
121  int i;
122  int num_hugepd = 1 << (pshift - pdshift);
123  cachep = hugepte_cache;
124 #else
125  cachep = PGT_CACHE(pdshift - pshift);
126 #endif
127 
128  new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
129 
130  BUG_ON(pshift > HUGEPD_SHIFT_MASK);
131  BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
132 
133  if (! new)
134  return -ENOMEM;
135 
136  spin_lock(&mm->page_table_lock);
137 #ifdef CONFIG_PPC_FSL_BOOK3E
138  /*
139  * We have multiple higher-level entries that point to the same
140  * actual pte location. Fill in each as we go and backtrack on error.
141  * We need all of these so the DTLB pgtable walk code can find the
142  * right higher-level entry without knowing if it's a hugepage or not.
143  */
144  for (i = 0; i < num_hugepd; i++, hpdp++) {
145  if (unlikely(!hugepd_none(*hpdp)))
146  break;
147  else
148  hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
149  }
150  /* If we bailed from the for loop early, an error occurred, clean up */
151  if (i < num_hugepd) {
152  for (i = i - 1 ; i >= 0; i--, hpdp--)
153  hpdp->pd = 0;
154  kmem_cache_free(cachep, new);
155  }
156 #else
157  if (!hugepd_none(*hpdp))
158  kmem_cache_free(cachep, new);
159  else
160  hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
161 #endif
162  spin_unlock(&mm->page_table_lock);
163  return 0;
164 }
165 
166 /*
167  * These macros define how to determine which level of the page table holds
168  * the hpdp.
169  */
170 #ifdef CONFIG_PPC_FSL_BOOK3E
171 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
172 #define HUGEPD_PUD_SHIFT PUD_SHIFT
173 #else
174 #define HUGEPD_PGD_SHIFT PUD_SHIFT
175 #define HUGEPD_PUD_SHIFT PMD_SHIFT
176 #endif
177 
178 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
179 {
180  pgd_t *pg;
181  pud_t *pu;
182  pmd_t *pm;
183  hugepd_t *hpdp = NULL;
184  unsigned pshift = __ffs(sz);
185  unsigned pdshift = PGDIR_SHIFT;
186 
187  addr &= ~(sz-1);
188 
189  pg = pgd_offset(mm, addr);
190 
191  if (pshift >= HUGEPD_PGD_SHIFT) {
192  hpdp = (hugepd_t *)pg;
193  } else {
194  pdshift = PUD_SHIFT;
195  pu = pud_alloc(mm, pg, addr);
196  if (pshift >= HUGEPD_PUD_SHIFT) {
197  hpdp = (hugepd_t *)pu;
198  } else {
199  pdshift = PMD_SHIFT;
200  pm = pmd_alloc(mm, pu, addr);
201  hpdp = (hugepd_t *)pm;
202  }
203  }
204 
205  if (!hpdp)
206  return NULL;
207 
208  BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
209 
210  if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
211  return NULL;
212 
213  return hugepte_offset(hpdp, addr, pdshift);
214 }
215 
216 #ifdef CONFIG_PPC_FSL_BOOK3E
217 /* Build list of addresses of gigantic pages. This function is used in early
218  * boot before the buddy or bootmem allocator is setup.
219  */
220 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
221 {
222  unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
223  int i;
224 
225  if (addr == 0)
226  return;
227 
228  gpage_freearray[idx].nr_gpages = number_of_pages;
229 
230  for (i = 0; i < number_of_pages; i++) {
231  gpage_freearray[idx].gpage_list[i] = addr;
232  addr += page_size;
233  }
234 }
235 
236 /*
237  * Moves the gigantic page addresses from the temporary list to the
238  * huge_boot_pages list.
239  */
241 {
242  struct huge_bootmem_page *m;
243  int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT);
244  int nr_gpages = gpage_freearray[idx].nr_gpages;
245 
246  if (nr_gpages == 0)
247  return 0;
248 
249 #ifdef CONFIG_HIGHMEM
250  /*
251  * If gpages can be in highmem we can't use the trick of storing the
252  * data structure in the page; allocate space for this
253  */
254  m = alloc_bootmem(sizeof(struct huge_bootmem_page));
255  m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
256 #else
257  m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
258 #endif
259 
260  list_add(&m->list, &huge_boot_pages);
261  gpage_freearray[idx].nr_gpages = nr_gpages;
262  gpage_freearray[idx].gpage_list[nr_gpages] = 0;
263  m->hstate = hstate;
264 
265  return 1;
266 }
267 /*
268  * Scan the command line hugepagesz= options for gigantic pages; store those in
269  * a list that we use to allocate the memory once all options are parsed.
270  */
271 
272 unsigned long gpage_npages[MMU_PAGE_COUNT];
273 
274 static int __init do_gpage_early_setup(char *param, char *val,
275  const char *unused)
276 {
277  static phys_addr_t size;
278  unsigned long npages;
279 
280  /*
281  * The hugepagesz and hugepages cmdline options are interleaved. We
282  * use the size variable to keep track of whether or not this was done
283  * properly and skip over instances where it is incorrect. Other
284  * command-line parsing code will issue warnings, so we don't need to.
285  *
286  */
287  if ((strcmp(param, "default_hugepagesz") == 0) ||
288  (strcmp(param, "hugepagesz") == 0)) {
289  size = memparse(val, NULL);
290  } else if (strcmp(param, "hugepages") == 0) {
291  if (size != 0) {
292  if (sscanf(val, "%lu", &npages) <= 0)
293  npages = 0;
294  gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
295  size = 0;
296  }
297  }
298  return 0;
299 }
300 
301 
302 /*
303  * This function allocates physical space for pages that are larger than the
304  * buddy allocator can handle. We want to allocate these in highmem because
305  * the amount of lowmem is limited. This means that this function MUST be
306  * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
307  * allocate to grab highmem.
308  */
309 void __init reserve_hugetlb_gpages(void)
310 {
311  static __initdata char cmdline[COMMAND_LINE_SIZE];
313  int i;
314 
316  parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
317  &do_gpage_early_setup);
318 
319  /*
320  * Walk gpage list in reverse, allocating larger page sizes first.
321  * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
322  * When we reach the point in the list where pages are no longer
323  * considered gpages, we're done.
324  */
325  for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
326  if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
327  continue;
328  else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
329  break;
330 
331  size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
332  base = memblock_alloc_base(size * gpage_npages[i], size,
333  MEMBLOCK_ALLOC_ANYWHERE);
334  add_gpage(base, size, gpage_npages[i]);
335  }
336 }
337 
338 #else /* !PPC_FSL_BOOK3E */
339 
340 /* Build list of addresses of gigantic pages. This function is used in early
341  * boot before the buddy or bootmem allocator is setup.
342  */
343 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
344 {
345  if (!addr)
346  return;
347  while (number_of_pages > 0) {
348  gpage_freearray[nr_gpages] = addr;
349  nr_gpages++;
350  number_of_pages--;
351  addr += page_size;
352  }
353 }
354 
355 /* Moves the gigantic page addresses from the temporary list to the
356  * huge_boot_pages list.
357  */
358 int alloc_bootmem_huge_page(struct hstate *hstate)
359 {
360  struct huge_bootmem_page *m;
361  if (nr_gpages == 0)
362  return 0;
363  m = phys_to_virt(gpage_freearray[--nr_gpages]);
364  gpage_freearray[nr_gpages] = 0;
365  list_add(&m->list, &huge_boot_pages);
366  m->hstate = hstate;
367  return 1;
368 }
369 #endif
370 
371 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
372 {
373  return 0;
374 }
375 
376 #ifdef CONFIG_PPC_FSL_BOOK3E
377 #define HUGEPD_FREELIST_SIZE \
378  ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
379 
380 struct hugepd_freelist {
381  struct rcu_head rcu;
382  unsigned int index;
383  void *ptes[0];
384 };
385 
386 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
387 
388 static void hugepd_free_rcu_callback(struct rcu_head *head)
389 {
390  struct hugepd_freelist *batch =
391  container_of(head, struct hugepd_freelist, rcu);
392  unsigned int i;
393 
394  for (i = 0; i < batch->index; i++)
395  kmem_cache_free(hugepte_cache, batch->ptes[i]);
396 
397  free_page((unsigned long)batch);
398 }
399 
400 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
401 {
402  struct hugepd_freelist **batchp;
403 
404  batchp = &__get_cpu_var(hugepd_freelist_cur);
405 
406  if (atomic_read(&tlb->mm->mm_users) < 2 ||
407  cpumask_equal(mm_cpumask(tlb->mm),
409  kmem_cache_free(hugepte_cache, hugepte);
410  return;
411  }
412 
413  if (*batchp == NULL) {
414  *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
415  (*batchp)->index = 0;
416  }
417 
418  (*batchp)->ptes[(*batchp)->index++] = hugepte;
419  if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
420  call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
421  *batchp = NULL;
422  }
423 }
424 #endif
425 
426 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
427  unsigned long start, unsigned long end,
428  unsigned long floor, unsigned long ceiling)
429 {
430  pte_t *hugepte = hugepd_page(*hpdp);
431  int i;
432 
433  unsigned long pdmask = ~((1UL << pdshift) - 1);
434  unsigned int num_hugepd = 1;
435 
436 #ifdef CONFIG_PPC_FSL_BOOK3E
437  /* Note: On fsl the hpdp may be the first of several */
438  num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
439 #else
440  unsigned int shift = hugepd_shift(*hpdp);
441 #endif
442 
443  start &= pdmask;
444  if (start < floor)
445  return;
446  if (ceiling) {
447  ceiling &= pdmask;
448  if (! ceiling)
449  return;
450  }
451  if (end - 1 > ceiling - 1)
452  return;
453 
454  for (i = 0; i < num_hugepd; i++, hpdp++)
455  hpdp->pd = 0;
456 
457  tlb->need_flush = 1;
458 
459 #ifdef CONFIG_PPC_FSL_BOOK3E
460  hugepd_free(tlb, hugepte);
461 #else
462  pgtable_free_tlb(tlb, hugepte, pdshift - shift);
463 #endif
464 }
465 
466 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
467  unsigned long addr, unsigned long end,
468  unsigned long floor, unsigned long ceiling)
469 {
470  pmd_t *pmd;
471  unsigned long next;
472  unsigned long start;
473 
474  start = addr;
475  do {
476  pmd = pmd_offset(pud, addr);
477  next = pmd_addr_end(addr, end);
478  if (pmd_none(*pmd))
479  continue;
480 #ifdef CONFIG_PPC_FSL_BOOK3E
481  /*
482  * Increment next by the size of the huge mapping since
483  * there may be more than one entry at this level for a
484  * single hugepage, but all of them point to
485  * the same kmem cache that holds the hugepte.
486  */
487  next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
488 #endif
489  free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
490  addr, next, floor, ceiling);
491  } while (addr = next, addr != end);
492 
493  start &= PUD_MASK;
494  if (start < floor)
495  return;
496  if (ceiling) {
497  ceiling &= PUD_MASK;
498  if (!ceiling)
499  return;
500  }
501  if (end - 1 > ceiling - 1)
502  return;
503 
504  pmd = pmd_offset(pud, start);
505  pud_clear(pud);
506  pmd_free_tlb(tlb, pmd, start);
507 }
508 
509 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
510  unsigned long addr, unsigned long end,
511  unsigned long floor, unsigned long ceiling)
512 {
513  pud_t *pud;
514  unsigned long next;
515  unsigned long start;
516 
517  start = addr;
518  do {
519  pud = pud_offset(pgd, addr);
520  next = pud_addr_end(addr, end);
521  if (!is_hugepd(pud)) {
522  if (pud_none_or_clear_bad(pud))
523  continue;
524  hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
525  ceiling);
526  } else {
527 #ifdef CONFIG_PPC_FSL_BOOK3E
528  /*
529  * Increment next by the size of the huge mapping since
530  * there may be more than one entry at this level for a
531  * single hugepage, but all of them point to
532  * the same kmem cache that holds the hugepte.
533  */
534  next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
535 #endif
536  free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
537  addr, next, floor, ceiling);
538  }
539  } while (addr = next, addr != end);
540 
541  start &= PGDIR_MASK;
542  if (start < floor)
543  return;
544  if (ceiling) {
545  ceiling &= PGDIR_MASK;
546  if (!ceiling)
547  return;
548  }
549  if (end - 1 > ceiling - 1)
550  return;
551 
552  pud = pud_offset(pgd, start);
553  pgd_clear(pgd);
554  pud_free_tlb(tlb, pud, start);
555 }
556 
557 /*
558  * This function frees user-level page tables of a process.
559  *
560  * Must be called with pagetable lock held.
561  */
563  unsigned long addr, unsigned long end,
564  unsigned long floor, unsigned long ceiling)
565 {
566  pgd_t *pgd;
567  unsigned long next;
568 
569  /*
570  * Because there are a number of different possible pagetable
571  * layouts for hugepage ranges, we limit knowledge of how
572  * things should be laid out to the allocation path
573  * (huge_pte_alloc(), above). Everything else works out the
574  * structure as it goes from information in the hugepd
575  * pointers. That means that we can't here use the
576  * optimization used in the normal page free_pgd_range(), of
577  * checking whether we're actually covering a large enough
578  * range to have to do anything at the top level of the walk
579  * instead of at the bottom.
580  *
581  * To make sense of this, you should probably go read the big
582  * block comment at the top of the normal free_pgd_range(),
583  * too.
584  */
585 
586  do {
587  next = pgd_addr_end(addr, end);
588  pgd = pgd_offset(tlb->mm, addr);
589  if (!is_hugepd(pgd)) {
590  if (pgd_none_or_clear_bad(pgd))
591  continue;
592  hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
593  } else {
594 #ifdef CONFIG_PPC_FSL_BOOK3E
595  /*
596  * Increment next by the size of the huge mapping since
597  * there may be more than one entry at the pgd level
598  * for a single hugepage, but all of them point to the
599  * same kmem cache that holds the hugepte.
600  */
601  next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
602 #endif
603  free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
604  addr, next, floor, ceiling);
605  }
606  } while (addr = next, addr != end);
607 }
608 
609 struct page *
610 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
611 {
612  pte_t *ptep;
613  struct page *page;
614  unsigned shift;
615  unsigned long mask;
616 
617  ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
618 
619  /* Verify it is a huge page else bail. */
620  if (!ptep || !shift)
621  return ERR_PTR(-EINVAL);
622 
623  mask = (1UL << shift) - 1;
624  page = pte_page(*ptep);
625  if (page)
626  page += (address & mask) / PAGE_SIZE;
627 
628  return page;
629 }
630 
631 int pmd_huge(pmd_t pmd)
632 {
633  return 0;
634 }
635 
636 int pud_huge(pud_t pud)
637 {
638  return 0;
639 }
640 
641 struct page *
642 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
643  pmd_t *pmd, int write)
644 {
645  BUG();
646  return NULL;
647 }
648 
649 static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
650  unsigned long end, int write, struct page **pages, int *nr)
651 {
652  unsigned long mask;
653  unsigned long pte_end;
654  struct page *head, *page, *tail;
655  pte_t pte;
656  int refs;
657 
658  pte_end = (addr + sz) & ~(sz-1);
659  if (pte_end < end)
660  end = pte_end;
661 
662  pte = *ptep;
663  mask = _PAGE_PRESENT | _PAGE_USER;
664  if (write)
665  mask |= _PAGE_RW;
666 
667  if ((pte_val(pte) & mask) != mask)
668  return 0;
669 
670  /* hugepages are never "special" */
671  VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
672 
673  refs = 0;
674  head = pte_page(pte);
675 
676  page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
677  tail = page;
678  do {
679  VM_BUG_ON(compound_head(page) != head);
680  pages[*nr] = page;
681  (*nr)++;
682  page++;
683  refs++;
684  } while (addr += PAGE_SIZE, addr != end);
685 
686  if (!page_cache_add_speculative(head, refs)) {
687  *nr -= refs;
688  return 0;
689  }
690 
691  if (unlikely(pte_val(pte) != pte_val(*ptep))) {
692  /* Could be optimized better */
693  *nr -= refs;
694  while (refs--)
695  put_page(head);
696  return 0;
697  }
698 
699  /*
700  * Any tail page need their mapcount reference taken before we
701  * return.
702  */
703  while (refs--) {
704  if (PageTail(tail))
705  get_huge_page_tail(tail);
706  tail++;
707  }
708 
709  return 1;
710 }
711 
712 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
713  unsigned long sz)
714 {
715  unsigned long __boundary = (addr + sz) & ~(sz-1);
716  return (__boundary - 1 < end - 1) ? __boundary : end;
717 }
718 
719 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
720  unsigned long addr, unsigned long end,
721  int write, struct page **pages, int *nr)
722 {
723  pte_t *ptep;
724  unsigned long sz = 1UL << hugepd_shift(*hugepd);
725  unsigned long next;
726 
727  ptep = hugepte_offset(hugepd, addr, pdshift);
728  do {
729  next = hugepte_addr_end(addr, end, sz);
730  if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
731  return 0;
732  } while (ptep++, addr = next, addr != end);
733 
734  return 1;
735 }
736 
737 #ifdef CONFIG_PPC_MM_SLICES
738 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
739  unsigned long len, unsigned long pgoff,
740  unsigned long flags)
741 {
742  struct hstate *hstate = hstate_file(file);
743  int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
744 
745  return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
746 }
747 #endif
748 
749 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
750 {
751 #ifdef CONFIG_PPC_MM_SLICES
752  unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
753 
754  return 1UL << mmu_psize_to_shift(psize);
755 #else
756  if (!is_vm_hugetlb_page(vma))
757  return PAGE_SIZE;
758 
759  return huge_page_size(hstate_vma(vma));
760 #endif
761 }
762 
763 static inline bool is_power_of_4(unsigned long x)
764 {
765  if (is_power_of_2(x))
766  return (__ilog2(x) % 2) ? false : true;
767  return false;
768 }
769 
770 static int __init add_huge_page_size(unsigned long long size)
771 {
772  int shift = __ffs(size);
773  int mmu_psize;
774 
775  /* Check that it is a page size supported by the hardware and
776  * that it fits within pagetable and slice limits. */
777 #ifdef CONFIG_PPC_FSL_BOOK3E
778  if ((size < PAGE_SIZE) || !is_power_of_4(size))
779  return -EINVAL;
780 #else
781  if (!is_power_of_2(size)
782  || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
783  return -EINVAL;
784 #endif
785 
786  if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
787  return -EINVAL;
788 
789 #ifdef CONFIG_SPU_FS_64K_LS
790  /* Disable support for 64K huge pages when 64K SPU local store
791  * support is enabled as the current implementation conflicts.
792  */
793  if (shift == PAGE_SHIFT_64K)
794  return -EINVAL;
795 #endif /* CONFIG_SPU_FS_64K_LS */
796 
797  BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
798 
799  /* Return if huge page size has already been setup */
800  if (size_to_hstate(size))
801  return 0;
802 
804 
805  return 0;
806 }
807 
808 static int __init hugepage_setup_sz(char *str)
809 {
810  unsigned long long size;
811 
812  size = memparse(str, &str);
813 
814  if (add_huge_page_size(size) != 0)
815  printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
816 
817  return 1;
818 }
819 __setup("hugepagesz=", hugepage_setup_sz);
820 
821 #ifdef CONFIG_PPC_FSL_BOOK3E
822 struct kmem_cache *hugepte_cache;
823 static int __init hugetlbpage_init(void)
824 {
825  int psize;
826 
827  for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
828  unsigned shift;
829 
830  if (!mmu_psize_defs[psize].shift)
831  continue;
832 
833  shift = mmu_psize_to_shift(psize);
834 
835  /* Don't treat normal page sizes as huge... */
836  if (shift != PAGE_SHIFT)
837  if (add_huge_page_size(1ULL << shift) < 0)
838  continue;
839  }
840 
841  /*
842  * Create a kmem cache for hugeptes. The bottom bits in the pte have
843  * size information encoded in them, so align them to allow this
844  */
845  hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
846  HUGEPD_SHIFT_MASK + 1, 0, NULL);
847  if (hugepte_cache == NULL)
848  panic("%s: Unable to create kmem cache for hugeptes\n",
849  __func__);
850 
851  /* Default hpage size = 4M */
852  if (mmu_psize_defs[MMU_PAGE_4M].shift)
853  HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
854  else
855  panic("%s: Unable to set default huge page size\n", __func__);
856 
857 
858  return 0;
859 }
860 #else
861 static int __init hugetlbpage_init(void)
862 {
863  int psize;
864 
865  if (!mmu_has_feature(MMU_FTR_16M_PAGE))
866  return -ENODEV;
867 
868  for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
869  unsigned shift;
870  unsigned pdshift;
871 
872  if (!mmu_psize_defs[psize].shift)
873  continue;
874 
875  shift = mmu_psize_to_shift(psize);
876 
877  if (add_huge_page_size(1ULL << shift) < 0)
878  continue;
879 
880  if (shift < PMD_SHIFT)
881  pdshift = PMD_SHIFT;
882  else if (shift < PUD_SHIFT)
883  pdshift = PUD_SHIFT;
884  else
885  pdshift = PGDIR_SHIFT;
886 
887  pgtable_cache_add(pdshift - shift, NULL);
888  if (!PGT_CACHE(pdshift - shift))
889  panic("hugetlbpage_init(): could not create "
890  "pgtable cache for %d bit pagesize\n", shift);
891  }
892 
893  /* Set default large page size. Currently, we pick 16M or 1M
894  * depending on what is available
895  */
896  if (mmu_psize_defs[MMU_PAGE_16M].shift)
897  HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
898  else if (mmu_psize_defs[MMU_PAGE_1M].shift)
899  HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
900 
901  return 0;
902 }
903 #endif
904 module_init(hugetlbpage_init);
905 
906 void flush_dcache_icache_hugepage(struct page *page)
907 {
908  int i;
909  void *start;
910 
911  BUG_ON(!PageCompound(page));
912 
913  for (i = 0; i < (1UL << compound_order(page)); i++) {
914  if (!PageHighMem(page)) {
915  __flush_dcache_icache(page_address(page+i));
916  } else {
917  start = kmap_atomic(page+i);
918  __flush_dcache_icache(start);
919  kunmap_atomic(start);
920  }
921  }
922 }