Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
reada.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2011 STRATO. All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include <linux/workqueue.h>
26 #include "ctree.h"
27 #include "volumes.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 
31 #undef DEBUG
32 
33 /*
34  * This is the implementation for the generic read ahead framework.
35  *
36  * To trigger a readahead, btrfs_reada_add must be called. It will start
37  * a read ahead for the given range [start, end) on tree root. The returned
38  * handle can either be used to wait on the readahead to finish
39  * (btrfs_reada_wait), or to send it to the background (btrfs_reada_detach).
40  *
41  * The read ahead works as follows:
42  * On btrfs_reada_add, the root of the tree is inserted into a radix_tree.
43  * reada_start_machine will then search for extents to prefetch and trigger
44  * some reads. When a read finishes for a node, all contained node/leaf
45  * pointers that lie in the given range will also be enqueued. The reads will
46  * be triggered in sequential order, thus giving a big win over a naive
47  * enumeration. It will also make use of multi-device layouts. Each disk
48  * will have its on read pointer and all disks will by utilized in parallel.
49  * Also will no two disks read both sides of a mirror simultaneously, as this
50  * would waste seeking capacity. Instead both disks will read different parts
51  * of the filesystem.
52  * Any number of readaheads can be started in parallel. The read order will be
53  * determined globally, i.e. 2 parallel readaheads will normally finish faster
54  * than the 2 started one after another.
55  */
56 
57 #define MAX_IN_FLIGHT 6
58 
59 struct reada_extctl {
60  struct list_head list;
61  struct reada_control *rc;
63 };
64 
65 struct reada_extent {
67  struct btrfs_key top;
69  int err;
70  struct list_head extctl;
71  int refcnt;
74  int nzones;
76 };
77 
78 struct reada_zone {
82  struct list_head list;
84  int locked;
86  struct btrfs_device *devs[BTRFS_MAX_MIRRORS]; /* full list, incl
87  * self */
88  int ndevs;
89  struct kref refcnt;
90 };
91 
93  struct btrfs_work work;
95 };
96 
97 static void reada_extent_put(struct btrfs_fs_info *, struct reada_extent *);
98 static void reada_control_release(struct kref *kref);
99 static void reada_zone_release(struct kref *kref);
100 static void reada_start_machine(struct btrfs_fs_info *fs_info);
101 static void __reada_start_machine(struct btrfs_fs_info *fs_info);
102 
103 static int reada_add_block(struct reada_control *rc, u64 logical,
104  struct btrfs_key *top, int level, u64 generation);
105 
106 /* recurses */
107 /* in case of err, eb might be NULL */
108 static int __readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
109  u64 start, int err)
110 {
111  int level = 0;
112  int nritems;
113  int i;
114  u64 bytenr;
115  u64 generation;
116  struct reada_extent *re;
117  struct btrfs_fs_info *fs_info = root->fs_info;
118  struct list_head list;
119  unsigned long index = start >> PAGE_CACHE_SHIFT;
120  struct btrfs_device *for_dev;
121 
122  if (eb)
123  level = btrfs_header_level(eb);
124 
125  /* find extent */
126  spin_lock(&fs_info->reada_lock);
127  re = radix_tree_lookup(&fs_info->reada_tree, index);
128  if (re)
129  re->refcnt++;
130  spin_unlock(&fs_info->reada_lock);
131 
132  if (!re)
133  return -1;
134 
135  spin_lock(&re->lock);
136  /*
137  * just take the full list from the extent. afterwards we
138  * don't need the lock anymore
139  */
140  list_replace_init(&re->extctl, &list);
141  for_dev = re->scheduled_for;
142  re->scheduled_for = NULL;
143  spin_unlock(&re->lock);
144 
145  if (err == 0) {
146  nritems = level ? btrfs_header_nritems(eb) : 0;
147  generation = btrfs_header_generation(eb);
148  /*
149  * FIXME: currently we just set nritems to 0 if this is a leaf,
150  * effectively ignoring the content. In a next step we could
151  * trigger more readahead depending from the content, e.g.
152  * fetch the checksums for the extents in the leaf.
153  */
154  } else {
155  /*
156  * this is the error case, the extent buffer has not been
157  * read correctly. We won't access anything from it and
158  * just cleanup our data structures. Effectively this will
159  * cut the branch below this node from read ahead.
160  */
161  nritems = 0;
162  generation = 0;
163  }
164 
165  for (i = 0; i < nritems; i++) {
166  struct reada_extctl *rec;
167  u64 n_gen;
168  struct btrfs_key key;
169  struct btrfs_key next_key;
170 
171  btrfs_node_key_to_cpu(eb, &key, i);
172  if (i + 1 < nritems)
173  btrfs_node_key_to_cpu(eb, &next_key, i + 1);
174  else
175  next_key = re->top;
176  bytenr = btrfs_node_blockptr(eb, i);
177  n_gen = btrfs_node_ptr_generation(eb, i);
178 
179  list_for_each_entry(rec, &list, list) {
180  struct reada_control *rc = rec->rc;
181 
182  /*
183  * if the generation doesn't match, just ignore this
184  * extctl. This will probably cut off a branch from
185  * prefetch. Alternatively one could start a new (sub-)
186  * prefetch for this branch, starting again from root.
187  * FIXME: move the generation check out of this loop
188  */
189 #ifdef DEBUG
190  if (rec->generation != generation) {
191  printk(KERN_DEBUG "generation mismatch for "
192  "(%llu,%d,%llu) %llu != %llu\n",
193  key.objectid, key.type, key.offset,
194  rec->generation, generation);
195  }
196 #endif
197  if (rec->generation == generation &&
198  btrfs_comp_cpu_keys(&key, &rc->key_end) < 0 &&
199  btrfs_comp_cpu_keys(&next_key, &rc->key_start) > 0)
200  reada_add_block(rc, bytenr, &next_key,
201  level - 1, n_gen);
202  }
203  }
204  /*
205  * free extctl records
206  */
207  while (!list_empty(&list)) {
208  struct reada_control *rc;
209  struct reada_extctl *rec;
210 
211  rec = list_first_entry(&list, struct reada_extctl, list);
212  list_del(&rec->list);
213  rc = rec->rc;
214  kfree(rec);
215 
216  kref_get(&rc->refcnt);
217  if (atomic_dec_and_test(&rc->elems)) {
218  kref_put(&rc->refcnt, reada_control_release);
219  wake_up(&rc->wait);
220  }
221  kref_put(&rc->refcnt, reada_control_release);
222 
223  reada_extent_put(fs_info, re); /* one ref for each entry */
224  }
225  reada_extent_put(fs_info, re); /* our ref */
226  if (for_dev)
227  atomic_dec(&for_dev->reada_in_flight);
228 
229  return 0;
230 }
231 
232 /*
233  * start is passed separately in case eb in NULL, which may be the case with
234  * failed I/O
235  */
236 int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
237  u64 start, int err)
238 {
239  int ret;
240 
241  ret = __readahead_hook(root, eb, start, err);
242 
243  reada_start_machine(root->fs_info);
244 
245  return ret;
246 }
247 
248 static struct reada_zone *reada_find_zone(struct btrfs_fs_info *fs_info,
249  struct btrfs_device *dev, u64 logical,
250  struct btrfs_bio *bbio)
251 {
252  int ret;
253  struct reada_zone *zone;
255  u64 start;
256  u64 end;
257  int i;
258 
259  zone = NULL;
260  spin_lock(&fs_info->reada_lock);
261  ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
262  logical >> PAGE_CACHE_SHIFT, 1);
263  if (ret == 1)
264  kref_get(&zone->refcnt);
265  spin_unlock(&fs_info->reada_lock);
266 
267  if (ret == 1) {
268  if (logical >= zone->start && logical < zone->end)
269  return zone;
270  spin_lock(&fs_info->reada_lock);
271  kref_put(&zone->refcnt, reada_zone_release);
272  spin_unlock(&fs_info->reada_lock);
273  }
274 
275  cache = btrfs_lookup_block_group(fs_info, logical);
276  if (!cache)
277  return NULL;
278 
279  start = cache->key.objectid;
280  end = start + cache->key.offset - 1;
281  btrfs_put_block_group(cache);
282 
283  zone = kzalloc(sizeof(*zone), GFP_NOFS);
284  if (!zone)
285  return NULL;
286 
287  zone->start = start;
288  zone->end = end;
289  INIT_LIST_HEAD(&zone->list);
290  spin_lock_init(&zone->lock);
291  zone->locked = 0;
292  kref_init(&zone->refcnt);
293  zone->elems = 0;
294  zone->device = dev; /* our device always sits at index 0 */
295  for (i = 0; i < bbio->num_stripes; ++i) {
296  /* bounds have already been checked */
297  zone->devs[i] = bbio->stripes[i].dev;
298  }
299  zone->ndevs = bbio->num_stripes;
300 
301  spin_lock(&fs_info->reada_lock);
302  ret = radix_tree_insert(&dev->reada_zones,
303  (unsigned long)(zone->end >> PAGE_CACHE_SHIFT),
304  zone);
305 
306  if (ret == -EEXIST) {
307  kfree(zone);
308  ret = radix_tree_gang_lookup(&dev->reada_zones, (void **)&zone,
309  logical >> PAGE_CACHE_SHIFT, 1);
310  if (ret == 1)
311  kref_get(&zone->refcnt);
312  }
313  spin_unlock(&fs_info->reada_lock);
314 
315  return zone;
316 }
317 
318 static struct reada_extent *reada_find_extent(struct btrfs_root *root,
319  u64 logical,
320  struct btrfs_key *top, int level)
321 {
322  int ret;
323  struct reada_extent *re = NULL;
324  struct reada_extent *re_exist = NULL;
325  struct btrfs_fs_info *fs_info = root->fs_info;
326  struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
327  struct btrfs_bio *bbio = NULL;
328  struct btrfs_device *dev;
329  struct btrfs_device *prev_dev;
330  u32 blocksize;
331  u64 length;
332  int nzones = 0;
333  int i;
334  unsigned long index = logical >> PAGE_CACHE_SHIFT;
335 
336  spin_lock(&fs_info->reada_lock);
337  re = radix_tree_lookup(&fs_info->reada_tree, index);
338  if (re)
339  re->refcnt++;
340  spin_unlock(&fs_info->reada_lock);
341 
342  if (re)
343  return re;
344 
345  re = kzalloc(sizeof(*re), GFP_NOFS);
346  if (!re)
347  return NULL;
348 
349  blocksize = btrfs_level_size(root, level);
350  re->logical = logical;
351  re->blocksize = blocksize;
352  re->top = *top;
353  INIT_LIST_HEAD(&re->extctl);
354  spin_lock_init(&re->lock);
355  re->refcnt = 1;
356 
357  /*
358  * map block
359  */
360  length = blocksize;
361  ret = btrfs_map_block(map_tree, REQ_WRITE, logical, &length, &bbio, 0);
362  if (ret || !bbio || length < blocksize)
363  goto error;
364 
365  if (bbio->num_stripes > BTRFS_MAX_MIRRORS) {
366  printk(KERN_ERR "btrfs readahead: more than %d copies not "
367  "supported", BTRFS_MAX_MIRRORS);
368  goto error;
369  }
370 
371  for (nzones = 0; nzones < bbio->num_stripes; ++nzones) {
372  struct reada_zone *zone;
373 
374  dev = bbio->stripes[nzones].dev;
375  zone = reada_find_zone(fs_info, dev, logical, bbio);
376  if (!zone)
377  break;
378 
379  re->zones[nzones] = zone;
380  spin_lock(&zone->lock);
381  if (!zone->elems)
382  kref_get(&zone->refcnt);
383  ++zone->elems;
384  spin_unlock(&zone->lock);
385  spin_lock(&fs_info->reada_lock);
386  kref_put(&zone->refcnt, reada_zone_release);
387  spin_unlock(&fs_info->reada_lock);
388  }
389  re->nzones = nzones;
390  if (nzones == 0) {
391  /* not a single zone found, error and out */
392  goto error;
393  }
394 
395  /* insert extent in reada_tree + all per-device trees, all or nothing */
396  spin_lock(&fs_info->reada_lock);
397  ret = radix_tree_insert(&fs_info->reada_tree, index, re);
398  if (ret == -EEXIST) {
399  re_exist = radix_tree_lookup(&fs_info->reada_tree, index);
400  BUG_ON(!re_exist);
401  re_exist->refcnt++;
402  spin_unlock(&fs_info->reada_lock);
403  goto error;
404  }
405  if (ret) {
406  spin_unlock(&fs_info->reada_lock);
407  goto error;
408  }
409  prev_dev = NULL;
410  for (i = 0; i < nzones; ++i) {
411  dev = bbio->stripes[i].dev;
412  if (dev == prev_dev) {
413  /*
414  * in case of DUP, just add the first zone. As both
415  * are on the same device, there's nothing to gain
416  * from adding both.
417  * Also, it wouldn't work, as the tree is per device
418  * and adding would fail with EEXIST
419  */
420  continue;
421  }
422  prev_dev = dev;
423  ret = radix_tree_insert(&dev->reada_extents, index, re);
424  if (ret) {
425  while (--i >= 0) {
426  dev = bbio->stripes[i].dev;
427  BUG_ON(dev == NULL);
428  radix_tree_delete(&dev->reada_extents, index);
429  }
430  BUG_ON(fs_info == NULL);
431  radix_tree_delete(&fs_info->reada_tree, index);
432  spin_unlock(&fs_info->reada_lock);
433  goto error;
434  }
435  }
436  spin_unlock(&fs_info->reada_lock);
437 
438  kfree(bbio);
439  return re;
440 
441 error:
442  while (nzones) {
443  struct reada_zone *zone;
444 
445  --nzones;
446  zone = re->zones[nzones];
447  kref_get(&zone->refcnt);
448  spin_lock(&zone->lock);
449  --zone->elems;
450  if (zone->elems == 0) {
451  /*
452  * no fs_info->reada_lock needed, as this can't be
453  * the last ref
454  */
455  kref_put(&zone->refcnt, reada_zone_release);
456  }
457  spin_unlock(&zone->lock);
458 
459  spin_lock(&fs_info->reada_lock);
460  kref_put(&zone->refcnt, reada_zone_release);
461  spin_unlock(&fs_info->reada_lock);
462  }
463  kfree(bbio);
464  kfree(re);
465  return re_exist;
466 }
467 
468 static void reada_extent_put(struct btrfs_fs_info *fs_info,
469  struct reada_extent *re)
470 {
471  int i;
472  unsigned long index = re->logical >> PAGE_CACHE_SHIFT;
473 
474  spin_lock(&fs_info->reada_lock);
475  if (--re->refcnt) {
476  spin_unlock(&fs_info->reada_lock);
477  return;
478  }
479 
480  radix_tree_delete(&fs_info->reada_tree, index);
481  for (i = 0; i < re->nzones; ++i) {
482  struct reada_zone *zone = re->zones[i];
483 
484  radix_tree_delete(&zone->device->reada_extents, index);
485  }
486 
487  spin_unlock(&fs_info->reada_lock);
488 
489  for (i = 0; i < re->nzones; ++i) {
490  struct reada_zone *zone = re->zones[i];
491 
492  kref_get(&zone->refcnt);
493  spin_lock(&zone->lock);
494  --zone->elems;
495  if (zone->elems == 0) {
496  /* no fs_info->reada_lock needed, as this can't be
497  * the last ref */
498  kref_put(&zone->refcnt, reada_zone_release);
499  }
500  spin_unlock(&zone->lock);
501 
502  spin_lock(&fs_info->reada_lock);
503  kref_put(&zone->refcnt, reada_zone_release);
504  spin_unlock(&fs_info->reada_lock);
505  }
506  if (re->scheduled_for)
507  atomic_dec(&re->scheduled_for->reada_in_flight);
508 
509  kfree(re);
510 }
511 
512 static void reada_zone_release(struct kref *kref)
513 {
514  struct reada_zone *zone = container_of(kref, struct reada_zone, refcnt);
515 
516  radix_tree_delete(&zone->device->reada_zones,
517  zone->end >> PAGE_CACHE_SHIFT);
518 
519  kfree(zone);
520 }
521 
522 static void reada_control_release(struct kref *kref)
523 {
524  struct reada_control *rc = container_of(kref, struct reada_control,
525  refcnt);
526 
527  kfree(rc);
528 }
529 
530 static int reada_add_block(struct reada_control *rc, u64 logical,
531  struct btrfs_key *top, int level, u64 generation)
532 {
533  struct btrfs_root *root = rc->root;
534  struct reada_extent *re;
535  struct reada_extctl *rec;
536 
537  re = reada_find_extent(root, logical, top, level); /* takes one ref */
538  if (!re)
539  return -1;
540 
541  rec = kzalloc(sizeof(*rec), GFP_NOFS);
542  if (!rec) {
543  reada_extent_put(root->fs_info, re);
544  return -1;
545  }
546 
547  rec->rc = rc;
548  rec->generation = generation;
549  atomic_inc(&rc->elems);
550 
551  spin_lock(&re->lock);
552  list_add_tail(&rec->list, &re->extctl);
553  spin_unlock(&re->lock);
554 
555  /* leave the ref on the extent */
556 
557  return 0;
558 }
559 
560 /*
561  * called with fs_info->reada_lock held
562  */
563 static void reada_peer_zones_set_lock(struct reada_zone *zone, int lock)
564 {
565  int i;
566  unsigned long index = zone->end >> PAGE_CACHE_SHIFT;
567 
568  for (i = 0; i < zone->ndevs; ++i) {
569  struct reada_zone *peer;
570  peer = radix_tree_lookup(&zone->devs[i]->reada_zones, index);
571  if (peer && peer->device != zone->device)
572  peer->locked = lock;
573  }
574 }
575 
576 /*
577  * called with fs_info->reada_lock held
578  */
579 static int reada_pick_zone(struct btrfs_device *dev)
580 {
581  struct reada_zone *top_zone = NULL;
582  struct reada_zone *top_locked_zone = NULL;
583  u64 top_elems = 0;
584  u64 top_locked_elems = 0;
585  unsigned long index = 0;
586  int ret;
587 
588  if (dev->reada_curr_zone) {
589  reada_peer_zones_set_lock(dev->reada_curr_zone, 0);
590  kref_put(&dev->reada_curr_zone->refcnt, reada_zone_release);
591  dev->reada_curr_zone = NULL;
592  }
593  /* pick the zone with the most elements */
594  while (1) {
595  struct reada_zone *zone;
596 
598  (void **)&zone, index, 1);
599  if (ret == 0)
600  break;
601  index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
602  if (zone->locked) {
603  if (zone->elems > top_locked_elems) {
604  top_locked_elems = zone->elems;
605  top_locked_zone = zone;
606  }
607  } else {
608  if (zone->elems > top_elems) {
609  top_elems = zone->elems;
610  top_zone = zone;
611  }
612  }
613  }
614  if (top_zone)
615  dev->reada_curr_zone = top_zone;
616  else if (top_locked_zone)
617  dev->reada_curr_zone = top_locked_zone;
618  else
619  return 0;
620 
621  dev->reada_next = dev->reada_curr_zone->start;
622  kref_get(&dev->reada_curr_zone->refcnt);
623  reada_peer_zones_set_lock(dev->reada_curr_zone, 1);
624 
625  return 1;
626 }
627 
628 static int reada_start_machine_dev(struct btrfs_fs_info *fs_info,
629  struct btrfs_device *dev)
630 {
631  struct reada_extent *re = NULL;
632  int mirror_num = 0;
633  struct extent_buffer *eb = NULL;
634  u64 logical;
635  u32 blocksize;
636  int ret;
637  int i;
638  int need_kick = 0;
639 
640  spin_lock(&fs_info->reada_lock);
641  if (dev->reada_curr_zone == NULL) {
642  ret = reada_pick_zone(dev);
643  if (!ret) {
644  spin_unlock(&fs_info->reada_lock);
645  return 0;
646  }
647  }
648  /*
649  * FIXME currently we issue the reads one extent at a time. If we have
650  * a contiguous block of extents, we could also coagulate them or use
651  * plugging to speed things up
652  */
653  ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
654  dev->reada_next >> PAGE_CACHE_SHIFT, 1);
655  if (ret == 0 || re->logical >= dev->reada_curr_zone->end) {
656  ret = reada_pick_zone(dev);
657  if (!ret) {
658  spin_unlock(&fs_info->reada_lock);
659  return 0;
660  }
661  re = NULL;
662  ret = radix_tree_gang_lookup(&dev->reada_extents, (void **)&re,
663  dev->reada_next >> PAGE_CACHE_SHIFT, 1);
664  }
665  if (ret == 0) {
666  spin_unlock(&fs_info->reada_lock);
667  return 0;
668  }
669  dev->reada_next = re->logical + re->blocksize;
670  re->refcnt++;
671 
672  spin_unlock(&fs_info->reada_lock);
673 
674  /*
675  * find mirror num
676  */
677  for (i = 0; i < re->nzones; ++i) {
678  if (re->zones[i]->device == dev) {
679  mirror_num = i + 1;
680  break;
681  }
682  }
683  logical = re->logical;
684  blocksize = re->blocksize;
685 
686  spin_lock(&re->lock);
687  if (re->scheduled_for == NULL) {
688  re->scheduled_for = dev;
689  need_kick = 1;
690  }
691  spin_unlock(&re->lock);
692 
693  reada_extent_put(fs_info, re);
694 
695  if (!need_kick)
696  return 0;
697 
699  ret = reada_tree_block_flagged(fs_info->extent_root, logical, blocksize,
700  mirror_num, &eb);
701  if (ret)
702  __readahead_hook(fs_info->extent_root, NULL, logical, ret);
703  else if (eb)
704  __readahead_hook(fs_info->extent_root, eb, eb->start, ret);
705 
706  if (eb)
707  free_extent_buffer(eb);
708 
709  return 1;
710 
711 }
712 
713 static void reada_start_machine_worker(struct btrfs_work *work)
714 {
715  struct reada_machine_work *rmw;
716  struct btrfs_fs_info *fs_info;
717  int old_ioprio;
718 
719  rmw = container_of(work, struct reada_machine_work, work);
720  fs_info = rmw->fs_info;
721 
722  kfree(rmw);
723 
724  old_ioprio = IOPRIO_PRIO_VALUE(task_nice_ioclass(current),
725  task_nice_ioprio(current));
727  __reada_start_machine(fs_info);
728  set_task_ioprio(current, old_ioprio);
729 }
730 
731 static void __reada_start_machine(struct btrfs_fs_info *fs_info)
732 {
733  struct btrfs_device *device;
734  struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
735  u64 enqueued;
736  u64 total = 0;
737  int i;
738 
739  do {
740  enqueued = 0;
741  list_for_each_entry(device, &fs_devices->devices, dev_list) {
742  if (atomic_read(&device->reada_in_flight) <
744  enqueued += reada_start_machine_dev(fs_info,
745  device);
746  }
747  total += enqueued;
748  } while (enqueued && total < 10000);
749 
750  if (enqueued == 0)
751  return;
752 
753  /*
754  * If everything is already in the cache, this is effectively single
755  * threaded. To a) not hold the caller for too long and b) to utilize
756  * more cores, we broke the loop above after 10000 iterations and now
757  * enqueue to workers to finish it. This will distribute the load to
758  * the cores.
759  */
760  for (i = 0; i < 2; ++i)
761  reada_start_machine(fs_info);
762 }
763 
764 static void reada_start_machine(struct btrfs_fs_info *fs_info)
765 {
766  struct reada_machine_work *rmw;
767 
768  rmw = kzalloc(sizeof(*rmw), GFP_NOFS);
769  if (!rmw) {
770  /* FIXME we cannot handle this properly right now */
771  BUG();
772  }
773  rmw->work.func = reada_start_machine_worker;
774  rmw->fs_info = fs_info;
775 
776  btrfs_queue_worker(&fs_info->readahead_workers, &rmw->work);
777 }
778 
779 #ifdef DEBUG
780 static void dump_devs(struct btrfs_fs_info *fs_info, int all)
781 {
782  struct btrfs_device *device;
783  struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
784  unsigned long index;
785  int ret;
786  int i;
787  int j;
788  int cnt;
789 
790  spin_lock(&fs_info->reada_lock);
791  list_for_each_entry(device, &fs_devices->devices, dev_list) {
792  printk(KERN_DEBUG "dev %lld has %d in flight\n", device->devid,
793  atomic_read(&device->reada_in_flight));
794  index = 0;
795  while (1) {
796  struct reada_zone *zone;
797  ret = radix_tree_gang_lookup(&device->reada_zones,
798  (void **)&zone, index, 1);
799  if (ret == 0)
800  break;
801  printk(KERN_DEBUG " zone %llu-%llu elems %llu locked "
802  "%d devs", zone->start, zone->end, zone->elems,
803  zone->locked);
804  for (j = 0; j < zone->ndevs; ++j) {
805  printk(KERN_CONT " %lld",
806  zone->devs[j]->devid);
807  }
808  if (device->reada_curr_zone == zone)
809  printk(KERN_CONT " curr off %llu",
810  device->reada_next - zone->start);
811  printk(KERN_CONT "\n");
812  index = (zone->end >> PAGE_CACHE_SHIFT) + 1;
813  }
814  cnt = 0;
815  index = 0;
816  while (all) {
817  struct reada_extent *re = NULL;
818 
819  ret = radix_tree_gang_lookup(&device->reada_extents,
820  (void **)&re, index, 1);
821  if (ret == 0)
822  break;
824  " re: logical %llu size %u empty %d for %lld",
825  re->logical, re->blocksize,
826  list_empty(&re->extctl), re->scheduled_for ?
827  re->scheduled_for->devid : -1);
828 
829  for (i = 0; i < re->nzones; ++i) {
830  printk(KERN_CONT " zone %llu-%llu devs",
831  re->zones[i]->start,
832  re->zones[i]->end);
833  for (j = 0; j < re->zones[i]->ndevs; ++j) {
834  printk(KERN_CONT " %lld",
835  re->zones[i]->devs[j]->devid);
836  }
837  }
838  printk(KERN_CONT "\n");
839  index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
840  if (++cnt > 15)
841  break;
842  }
843  }
844 
845  index = 0;
846  cnt = 0;
847  while (all) {
848  struct reada_extent *re = NULL;
849 
850  ret = radix_tree_gang_lookup(&fs_info->reada_tree, (void **)&re,
851  index, 1);
852  if (ret == 0)
853  break;
854  if (!re->scheduled_for) {
855  index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
856  continue;
857  }
859  "re: logical %llu size %u list empty %d for %lld",
860  re->logical, re->blocksize, list_empty(&re->extctl),
861  re->scheduled_for ? re->scheduled_for->devid : -1);
862  for (i = 0; i < re->nzones; ++i) {
863  printk(KERN_CONT " zone %llu-%llu devs",
864  re->zones[i]->start,
865  re->zones[i]->end);
866  for (i = 0; i < re->nzones; ++i) {
867  printk(KERN_CONT " zone %llu-%llu devs",
868  re->zones[i]->start,
869  re->zones[i]->end);
870  for (j = 0; j < re->zones[i]->ndevs; ++j) {
871  printk(KERN_CONT " %lld",
872  re->zones[i]->devs[j]->devid);
873  }
874  }
875  }
876  printk(KERN_CONT "\n");
877  index = (re->logical >> PAGE_CACHE_SHIFT) + 1;
878  }
879  spin_unlock(&fs_info->reada_lock);
880 }
881 #endif
882 
883 /*
884  * interface
885  */
887  struct btrfs_key *key_start, struct btrfs_key *key_end)
888 {
889  struct reada_control *rc;
890  u64 start;
891  u64 generation;
892  int level;
893  struct extent_buffer *node;
894  static struct btrfs_key max_key = {
895  .objectid = (u64)-1,
896  .type = (u8)-1,
897  .offset = (u64)-1
898  };
899 
900  rc = kzalloc(sizeof(*rc), GFP_NOFS);
901  if (!rc)
902  return ERR_PTR(-ENOMEM);
903 
904  rc->root = root;
905  rc->key_start = *key_start;
906  rc->key_end = *key_end;
907  atomic_set(&rc->elems, 0);
909  kref_init(&rc->refcnt);
910  kref_get(&rc->refcnt); /* one ref for having elements */
911 
912  node = btrfs_root_node(root);
913  start = node->start;
914  level = btrfs_header_level(node);
915  generation = btrfs_header_generation(node);
916  free_extent_buffer(node);
917 
918  reada_add_block(rc, start, &max_key, level, generation);
919 
920  reada_start_machine(root->fs_info);
921 
922  return rc;
923 }
924 
925 #ifdef DEBUG
926 int btrfs_reada_wait(void *handle)
927 {
928  struct reada_control *rc = handle;
929 
930  while (atomic_read(&rc->elems)) {
931  wait_event_timeout(rc->wait, atomic_read(&rc->elems) == 0,
932  5 * HZ);
933  dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
934  }
935 
936  dump_devs(rc->root->fs_info, rc->elems < 10 ? 1 : 0);
937 
938  kref_put(&rc->refcnt, reada_control_release);
939 
940  return 0;
941 }
942 #else
943 int btrfs_reada_wait(void *handle)
944 {
945  struct reada_control *rc = handle;
946 
947  while (atomic_read(&rc->elems)) {
948  wait_event(rc->wait, atomic_read(&rc->elems) == 0);
949  }
950 
951  kref_put(&rc->refcnt, reada_control_release);
952 
953  return 0;
954 }
955 #endif
956 
957 void btrfs_reada_detach(void *handle)
958 {
959  struct reada_control *rc = handle;
960 
961  kref_put(&rc->refcnt, reada_control_release);
962 }