Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
readahead.c
Go to the documentation of this file.
1 /*
2  * mm/readahead.c - address_space-level file readahead.
3  *
4  * Copyright (C) 2002, Linus Torvalds
5  *
6  * 09Apr2002 Andrew Morton
7  * Initial version.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/fs.h>
12 #include <linux/gfp.h>
13 #include <linux/mm.h>
14 #include <linux/export.h>
15 #include <linux/blkdev.h>
16 #include <linux/backing-dev.h>
18 #include <linux/pagevec.h>
19 #include <linux/pagemap.h>
20 #include <linux/syscalls.h>
21 #include <linux/file.h>
22 
23 /*
24  * Initialise a struct file's readahead state. Assumes that the caller has
25  * memset *ra to zero.
26  */
27 void
29 {
30  ra->ra_pages = mapping->backing_dev_info->ra_pages;
31  ra->prev_pos = -1;
32 }
34 
35 #define list_to_page(head) (list_entry((head)->prev, struct page, lru))
36 
37 /*
38  * see if a page needs releasing upon read_cache_pages() failure
39  * - the caller of read_cache_pages() may have set PG_private or PG_fscache
40  * before calling, such as the NFS fs marking pages that are cached locally
41  * on disk, thus we need to give the fs a chance to clean up in the event of
42  * an error
43  */
44 static void read_cache_pages_invalidate_page(struct address_space *mapping,
45  struct page *page)
46 {
47  if (page_has_private(page)) {
48  if (!trylock_page(page))
49  BUG();
50  page->mapping = mapping;
51  do_invalidatepage(page, 0);
52  page->mapping = NULL;
53  unlock_page(page);
54  }
55  page_cache_release(page);
56 }
57 
58 /*
59  * release a list of pages, invalidating them first if need be
60  */
61 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
62  struct list_head *pages)
63 {
64  struct page *victim;
65 
66  while (!list_empty(pages)) {
67  victim = list_to_page(pages);
68  list_del(&victim->lru);
69  read_cache_pages_invalidate_page(mapping, victim);
70  }
71 }
72 
83 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
84  int (*filler)(void *, struct page *), void *data)
85 {
86  struct page *page;
87  int ret = 0;
88 
89  while (!list_empty(pages)) {
90  page = list_to_page(pages);
91  list_del(&page->lru);
92  if (add_to_page_cache_lru(page, mapping,
93  page->index, GFP_KERNEL)) {
94  read_cache_pages_invalidate_page(mapping, page);
95  continue;
96  }
97  page_cache_release(page);
98 
99  ret = filler(data, page);
100  if (unlikely(ret)) {
101  read_cache_pages_invalidate_pages(mapping, pages);
102  break;
103  }
104  task_io_account_read(PAGE_CACHE_SIZE);
105  }
106  return ret;
107 }
108 
110 
111 static int read_pages(struct address_space *mapping, struct file *filp,
112  struct list_head *pages, unsigned nr_pages)
113 {
114  struct blk_plug plug;
115  unsigned page_idx;
116  int ret;
117 
118  blk_start_plug(&plug);
119 
120  if (mapping->a_ops->readpages) {
121  ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
122  /* Clean up the remaining pages */
123  put_pages_list(pages);
124  goto out;
125  }
126 
127  for (page_idx = 0; page_idx < nr_pages; page_idx++) {
128  struct page *page = list_to_page(pages);
129  list_del(&page->lru);
130  if (!add_to_page_cache_lru(page, mapping,
131  page->index, GFP_KERNEL)) {
132  mapping->a_ops->readpage(filp, page);
133  }
134  page_cache_release(page);
135  }
136  ret = 0;
137 
138 out:
139  blk_finish_plug(&plug);
140 
141  return ret;
142 }
143 
144 /*
145  * __do_page_cache_readahead() actually reads a chunk of disk. It allocates all
146  * the pages first, then submits them all for I/O. This avoids the very bad
147  * behaviour which would occur if page allocations are causing VM writeback.
148  * We really don't want to intermingle reads and writes like that.
149  *
150  * Returns the number of pages requested, or the maximum amount of I/O allowed.
151  */
152 static int
153 __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
154  pgoff_t offset, unsigned long nr_to_read,
155  unsigned long lookahead_size)
156 {
157  struct inode *inode = mapping->host;
158  struct page *page;
159  unsigned long end_index; /* The last page we want to read */
160  LIST_HEAD(page_pool);
161  int page_idx;
162  int ret = 0;
163  loff_t isize = i_size_read(inode);
164 
165  if (isize == 0)
166  goto out;
167 
168  end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
169 
170  /*
171  * Preallocate as many pages as we will need.
172  */
173  for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
174  pgoff_t page_offset = offset + page_idx;
175 
176  if (page_offset > end_index)
177  break;
178 
179  rcu_read_lock();
180  page = radix_tree_lookup(&mapping->page_tree, page_offset);
181  rcu_read_unlock();
182  if (page)
183  continue;
184 
185  page = page_cache_alloc_readahead(mapping);
186  if (!page)
187  break;
188  page->index = page_offset;
189  list_add(&page->lru, &page_pool);
190  if (page_idx == nr_to_read - lookahead_size)
191  SetPageReadahead(page);
192  ret++;
193  }
194 
195  /*
196  * Now start the IO. We ignore I/O errors - if the page is not
197  * uptodate then the caller will launch readpage again, and
198  * will then handle the error.
199  */
200  if (ret)
201  read_pages(mapping, filp, &page_pool, ret);
202  BUG_ON(!list_empty(&page_pool));
203 out:
204  return ret;
205 }
206 
207 /*
208  * Chunk the readahead into 2 megabyte units, so that we don't pin too much
209  * memory at once.
210  */
211 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
212  pgoff_t offset, unsigned long nr_to_read)
213 {
214  int ret = 0;
215 
216  if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
217  return -EINVAL;
218 
219  nr_to_read = max_sane_readahead(nr_to_read);
220  while (nr_to_read) {
221  int err;
222 
223  unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_CACHE_SIZE;
224 
225  if (this_chunk > nr_to_read)
226  this_chunk = nr_to_read;
227  err = __do_page_cache_readahead(mapping, filp,
228  offset, this_chunk, 0);
229  if (err < 0) {
230  ret = err;
231  break;
232  }
233  ret += err;
234  offset += this_chunk;
235  nr_to_read -= this_chunk;
236  }
237  return ret;
238 }
239 
240 /*
241  * Given a desired number of PAGE_CACHE_SIZE readahead pages, return a
242  * sensible upper limit.
243  */
244 unsigned long max_sane_readahead(unsigned long nr)
245 {
248 }
249 
250 /*
251  * Submit IO for the read-ahead request in file_ra_state.
252  */
253 unsigned long ra_submit(struct file_ra_state *ra,
254  struct address_space *mapping, struct file *filp)
255 {
256  int actual;
257 
258  actual = __do_page_cache_readahead(mapping, filp,
259  ra->start, ra->size, ra->async_size);
260 
261  return actual;
262 }
263 
264 /*
265  * Set the initial window size, round to next power of 2 and square
266  * for small size, x 4 for medium, and x 2 for large
267  * for 128k (32 page) max ra
268  * 1-8 page = 32k initial, > 8 page = 128k initial
269  */
270 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
271 {
272  unsigned long newsize = roundup_pow_of_two(size);
273 
274  if (newsize <= max / 32)
275  newsize = newsize * 4;
276  else if (newsize <= max / 4)
277  newsize = newsize * 2;
278  else
279  newsize = max;
280 
281  return newsize;
282 }
283 
284 /*
285  * Get the previous window size, ramp it up, and
286  * return it as the new window size.
287  */
288 static unsigned long get_next_ra_size(struct file_ra_state *ra,
289  unsigned long max)
290 {
291  unsigned long cur = ra->size;
292  unsigned long newsize;
293 
294  if (cur < max / 16)
295  newsize = 4 * cur;
296  else
297  newsize = 2 * cur;
298 
299  return min(newsize, max);
300 }
301 
302 /*
303  * On-demand readahead design.
304  *
305  * The fields in struct file_ra_state represent the most-recently-executed
306  * readahead attempt:
307  *
308  * |<----- async_size ---------|
309  * |------------------- size -------------------->|
310  * |==================#===========================|
311  * ^start ^page marked with PG_readahead
312  *
313  * To overlap application thinking time and disk I/O time, we do
314  * `readahead pipelining': Do not wait until the application consumed all
315  * readahead pages and stalled on the missing page at readahead_index;
316  * Instead, submit an asynchronous readahead I/O as soon as there are
317  * only async_size pages left in the readahead window. Normally async_size
318  * will be equal to size, for maximum pipelining.
319  *
320  * In interleaved sequential reads, concurrent streams on the same fd can
321  * be invalidating each other's readahead state. So we flag the new readahead
322  * page at (start+size-async_size) with PG_readahead, and use it as readahead
323  * indicator. The flag won't be set on already cached pages, to avoid the
324  * readahead-for-nothing fuss, saving pointless page cache lookups.
325  *
326  * prev_pos tracks the last visited byte in the _previous_ read request.
327  * It should be maintained by the caller, and will be used for detecting
328  * small random reads. Note that the readahead algorithm checks loosely
329  * for sequential patterns. Hence interleaved reads might be served as
330  * sequential ones.
331  *
332  * There is a special-case: if the first page which the application tries to
333  * read happens to be the first page of the file, it is assumed that a linear
334  * read is about to happen and the window is immediately set to the initial size
335  * based on I/O request size and the max_readahead.
336  *
337  * The code ramps up the readahead size aggressively at first, but slow down as
338  * it approaches max_readhead.
339  */
340 
341 /*
342  * Count contiguously cached pages from @offset-1 to @offset-@max,
343  * this count is a conservative estimation of
344  * - length of the sequential read sequence, or
345  * - thrashing threshold in memory tight systems
346  */
347 static pgoff_t count_history_pages(struct address_space *mapping,
348  struct file_ra_state *ra,
349  pgoff_t offset, unsigned long max)
350 {
351  pgoff_t head;
352 
353  rcu_read_lock();
354  head = radix_tree_prev_hole(&mapping->page_tree, offset - 1, max);
355  rcu_read_unlock();
356 
357  return offset - 1 - head;
358 }
359 
360 /*
361  * page cache context based read-ahead
362  */
363 static int try_context_readahead(struct address_space *mapping,
364  struct file_ra_state *ra,
365  pgoff_t offset,
366  unsigned long req_size,
367  unsigned long max)
368 {
369  pgoff_t size;
370 
371  size = count_history_pages(mapping, ra, offset, max);
372 
373  /*
374  * no history pages:
375  * it could be a random read
376  */
377  if (!size)
378  return 0;
379 
380  /*
381  * starts from beginning of file:
382  * it is a strong indication of long-run stream (or whole-file-read)
383  */
384  if (size >= offset)
385  size *= 2;
386 
387  ra->start = offset;
388  ra->size = get_init_ra_size(size + req_size, max);
389  ra->async_size = ra->size;
390 
391  return 1;
392 }
393 
394 /*
395  * A minimal readahead algorithm for trivial sequential/random reads.
396  */
397 static unsigned long
398 ondemand_readahead(struct address_space *mapping,
399  struct file_ra_state *ra, struct file *filp,
400  bool hit_readahead_marker, pgoff_t offset,
401  unsigned long req_size)
402 {
403  unsigned long max = max_sane_readahead(ra->ra_pages);
404 
405  /*
406  * start of file
407  */
408  if (!offset)
409  goto initial_readahead;
410 
411  /*
412  * It's the expected callback offset, assume sequential access.
413  * Ramp up sizes, and push forward the readahead window.
414  */
415  if ((offset == (ra->start + ra->size - ra->async_size) ||
416  offset == (ra->start + ra->size))) {
417  ra->start += ra->size;
418  ra->size = get_next_ra_size(ra, max);
419  ra->async_size = ra->size;
420  goto readit;
421  }
422 
423  /*
424  * Hit a marked page without valid readahead state.
425  * E.g. interleaved reads.
426  * Query the pagecache for async_size, which normally equals to
427  * readahead size. Ramp it up and use it as the new readahead size.
428  */
429  if (hit_readahead_marker) {
430  pgoff_t start;
431 
432  rcu_read_lock();
433  start = radix_tree_next_hole(&mapping->page_tree, offset+1,max);
434  rcu_read_unlock();
435 
436  if (!start || start - offset > max)
437  return 0;
438 
439  ra->start = start;
440  ra->size = start - offset; /* old async_size */
441  ra->size += req_size;
442  ra->size = get_next_ra_size(ra, max);
443  ra->async_size = ra->size;
444  goto readit;
445  }
446 
447  /*
448  * oversize read
449  */
450  if (req_size > max)
451  goto initial_readahead;
452 
453  /*
454  * sequential cache miss
455  */
456  if (offset - (ra->prev_pos >> PAGE_CACHE_SHIFT) <= 1UL)
457  goto initial_readahead;
458 
459  /*
460  * Query the page cache and look for the traces(cached history pages)
461  * that a sequential stream would leave behind.
462  */
463  if (try_context_readahead(mapping, ra, offset, req_size, max))
464  goto readit;
465 
466  /*
467  * standalone, small random read
468  * Read as is, and do not pollute the readahead state.
469  */
470  return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
471 
472 initial_readahead:
473  ra->start = offset;
474  ra->size = get_init_ra_size(req_size, max);
475  ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
476 
477 readit:
478  /*
479  * Will this read hit the readahead marker made by itself?
480  * If so, trigger the readahead marker hit now, and merge
481  * the resulted next readahead window into the current one.
482  */
483  if (offset == ra->start && ra->size == ra->async_size) {
484  ra->async_size = get_next_ra_size(ra, max);
485  ra->size += ra->async_size;
486  }
487 
488  return ra_submit(ra, mapping, filp);
489 }
490 
506  struct file_ra_state *ra, struct file *filp,
507  pgoff_t offset, unsigned long req_size)
508 {
509  /* no read-ahead */
510  if (!ra->ra_pages)
511  return;
512 
513  /* be dumb */
514  if (filp && (filp->f_mode & FMODE_RANDOM)) {
515  force_page_cache_readahead(mapping, filp, offset, req_size);
516  return;
517  }
518 
519  /* do read-ahead */
520  ondemand_readahead(mapping, ra, filp, false, offset, req_size);
521 }
523 
539 void
541  struct file_ra_state *ra, struct file *filp,
542  struct page *page, pgoff_t offset,
543  unsigned long req_size)
544 {
545  /* no read-ahead */
546  if (!ra->ra_pages)
547  return;
548 
549  /*
550  * Same bit is used for PG_readahead and PG_reclaim.
551  */
552  if (PageWriteback(page))
553  return;
554 
555  ClearPageReadahead(page);
556 
557  /*
558  * Defer asynchronous read-ahead on IO congestion.
559  */
560  if (bdi_read_congested(mapping->backing_dev_info))
561  return;
562 
563  /* do read-ahead */
564  ondemand_readahead(mapping, ra, filp, true, offset, req_size);
565 }
567 
568 static ssize_t
569 do_readahead(struct address_space *mapping, struct file *filp,
570  pgoff_t index, unsigned long nr)
571 {
572  if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
573  return -EINVAL;
574 
575  force_page_cache_readahead(mapping, filp, index, nr);
576  return 0;
577 }
578 
579 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
580 {
581  ssize_t ret;
582  struct fd f;
583 
584  ret = -EBADF;
585  f = fdget(fd);
586  if (f.file) {
587  if (f.file->f_mode & FMODE_READ) {
588  struct address_space *mapping = f.file->f_mapping;
589  pgoff_t start = offset >> PAGE_CACHE_SHIFT;
590  pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
591  unsigned long len = end - start + 1;
592  ret = do_readahead(mapping, f.file, start, len);
593  }
594  fdput(f);
595  }
596  return ret;
597 }
598 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
599 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
600 {
601  return SYSC_readahead((int) fd, offset, (size_t) count);
602 }
603 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
604 #endif