Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
rmap.c
Go to the documentation of this file.
1 /*
2  * mm/rmap.c - physical to virtual reverse mappings
3  *
4  * Copyright 2001, Rik van Riel <[email protected]>
5  * Released under the General Public License (GPL).
6  *
7  * Simple, low overhead reverse mapping scheme.
8  * Please try to keep this thing as modular as possible.
9  *
10  * Provides methods for unmapping each kind of mapped page:
11  * the anon methods track anonymous pages, and
12  * the file methods track pages belonging to an inode.
13  *
14  * Original design by Rik van Riel <[email protected]> 2001
15  * File methods by Dave McCracken <[email protected]> 2003, 2004
16  * Anonymous methods by Andrea Arcangeli <[email protected]> 2004
17  * Contributions by Hugh Dickins 2003, 2004
18  */
19 
20 /*
21  * Lock ordering in mm:
22  *
23  * inode->i_mutex (while writing or truncating, not reading or faulting)
24  * mm->mmap_sem
25  * page->flags PG_locked (lock_page)
26  * mapping->i_mmap_mutex
27  * anon_vma->mutex
28  * mm->page_table_lock or pte_lock
29  * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30  * swap_lock (in swap_duplicate, swap_info_get)
31  * mmlist_lock (in mmput, drain_mmlist and others)
32  * mapping->private_lock (in __set_page_dirty_buffers)
33  * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34  * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35  * sb_lock (within inode_lock in fs/fs-writeback.c)
36  * mapping->tree_lock (widely used, in set_page_dirty,
37  * in arch-dependent flush_dcache_mmap_lock,
38  * within bdi.wb->list_lock in __sync_single_inode)
39  *
40  * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
41  * ->tasklist_lock
42  * pte map lock
43  */
44 
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
60 
61 #include <asm/tlbflush.h>
62 
63 #include "internal.h"
64 
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
67 
68 static inline struct anon_vma *anon_vma_alloc(void)
69 {
70  struct anon_vma *anon_vma;
71 
72  anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73  if (anon_vma) {
74  atomic_set(&anon_vma->refcount, 1);
75  /*
76  * Initialise the anon_vma root to point to itself. If called
77  * from fork, the root will be reset to the parents anon_vma.
78  */
79  anon_vma->root = anon_vma;
80  }
81 
82  return anon_vma;
83 }
84 
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
86 {
87  VM_BUG_ON(atomic_read(&anon_vma->refcount));
88 
89  /*
90  * Synchronize against page_lock_anon_vma() such that
91  * we can safely hold the lock without the anon_vma getting
92  * freed.
93  *
94  * Relies on the full mb implied by the atomic_dec_and_test() from
95  * put_anon_vma() against the acquire barrier implied by
96  * mutex_trylock() from page_lock_anon_vma(). This orders:
97  *
98  * page_lock_anon_vma() VS put_anon_vma()
99  * mutex_trylock() atomic_dec_and_test()
100  * LOCK MB
101  * atomic_read() mutex_is_locked()
102  *
103  * LOCK should suffice since the actual taking of the lock must
104  * happen _before_ what follows.
105  */
106  if (mutex_is_locked(&anon_vma->root->mutex)) {
107  anon_vma_lock(anon_vma);
108  anon_vma_unlock(anon_vma);
109  }
110 
111  kmem_cache_free(anon_vma_cachep, anon_vma);
112 }
113 
114 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
115 {
116  return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
117 }
118 
119 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
120 {
121  kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
122 }
123 
124 static void anon_vma_chain_link(struct vm_area_struct *vma,
125  struct anon_vma_chain *avc,
126  struct anon_vma *anon_vma)
127 {
128  avc->vma = vma;
129  avc->anon_vma = anon_vma;
130  list_add(&avc->same_vma, &vma->anon_vma_chain);
131  anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
132 }
133 
162 {
163  struct anon_vma *anon_vma = vma->anon_vma;
164  struct anon_vma_chain *avc;
165 
166  might_sleep();
167  if (unlikely(!anon_vma)) {
168  struct mm_struct *mm = vma->vm_mm;
169  struct anon_vma *allocated;
170 
171  avc = anon_vma_chain_alloc(GFP_KERNEL);
172  if (!avc)
173  goto out_enomem;
174 
175  anon_vma = find_mergeable_anon_vma(vma);
176  allocated = NULL;
177  if (!anon_vma) {
178  anon_vma = anon_vma_alloc();
179  if (unlikely(!anon_vma))
180  goto out_enomem_free_avc;
181  allocated = anon_vma;
182  }
183 
184  anon_vma_lock(anon_vma);
185  /* page_table_lock to protect against threads */
186  spin_lock(&mm->page_table_lock);
187  if (likely(!vma->anon_vma)) {
188  vma->anon_vma = anon_vma;
189  anon_vma_chain_link(vma, avc, anon_vma);
190  allocated = NULL;
191  avc = NULL;
192  }
193  spin_unlock(&mm->page_table_lock);
194  anon_vma_unlock(anon_vma);
195 
196  if (unlikely(allocated))
197  put_anon_vma(allocated);
198  if (unlikely(avc))
199  anon_vma_chain_free(avc);
200  }
201  return 0;
202 
203  out_enomem_free_avc:
204  anon_vma_chain_free(avc);
205  out_enomem:
206  return -ENOMEM;
207 }
208 
209 /*
210  * This is a useful helper function for locking the anon_vma root as
211  * we traverse the vma->anon_vma_chain, looping over anon_vma's that
212  * have the same vma.
213  *
214  * Such anon_vma's should have the same root, so you'd expect to see
215  * just a single mutex_lock for the whole traversal.
216  */
217 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
218 {
219  struct anon_vma *new_root = anon_vma->root;
220  if (new_root != root) {
221  if (WARN_ON_ONCE(root))
222  mutex_unlock(&root->mutex);
223  root = new_root;
224  mutex_lock(&root->mutex);
225  }
226  return root;
227 }
228 
229 static inline void unlock_anon_vma_root(struct anon_vma *root)
230 {
231  if (root)
232  mutex_unlock(&root->mutex);
233 }
234 
235 /*
236  * Attach the anon_vmas from src to dst.
237  * Returns 0 on success, -ENOMEM on failure.
238  */
240 {
241  struct anon_vma_chain *avc, *pavc;
242  struct anon_vma *root = NULL;
243 
244  list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
245  struct anon_vma *anon_vma;
246 
247  avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
248  if (unlikely(!avc)) {
249  unlock_anon_vma_root(root);
250  root = NULL;
251  avc = anon_vma_chain_alloc(GFP_KERNEL);
252  if (!avc)
253  goto enomem_failure;
254  }
255  anon_vma = pavc->anon_vma;
256  root = lock_anon_vma_root(root, anon_vma);
257  anon_vma_chain_link(dst, avc, anon_vma);
258  }
259  unlock_anon_vma_root(root);
260  return 0;
261 
262  enomem_failure:
263  unlink_anon_vmas(dst);
264  return -ENOMEM;
265 }
266 
267 /*
268  * Attach vma to its own anon_vma, as well as to the anon_vmas that
269  * the corresponding VMA in the parent process is attached to.
270  * Returns 0 on success, non-zero on failure.
271  */
272 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
273 {
274  struct anon_vma_chain *avc;
275  struct anon_vma *anon_vma;
276 
277  /* Don't bother if the parent process has no anon_vma here. */
278  if (!pvma->anon_vma)
279  return 0;
280 
281  /*
282  * First, attach the new VMA to the parent VMA's anon_vmas,
283  * so rmap can find non-COWed pages in child processes.
284  */
285  if (anon_vma_clone(vma, pvma))
286  return -ENOMEM;
287 
288  /* Then add our own anon_vma. */
289  anon_vma = anon_vma_alloc();
290  if (!anon_vma)
291  goto out_error;
292  avc = anon_vma_chain_alloc(GFP_KERNEL);
293  if (!avc)
294  goto out_error_free_anon_vma;
295 
296  /*
297  * The root anon_vma's spinlock is the lock actually used when we
298  * lock any of the anon_vmas in this anon_vma tree.
299  */
300  anon_vma->root = pvma->anon_vma->root;
301  /*
302  * With refcounts, an anon_vma can stay around longer than the
303  * process it belongs to. The root anon_vma needs to be pinned until
304  * this anon_vma is freed, because the lock lives in the root.
305  */
306  get_anon_vma(anon_vma->root);
307  /* Mark this anon_vma as the one where our new (COWed) pages go. */
308  vma->anon_vma = anon_vma;
309  anon_vma_lock(anon_vma);
310  anon_vma_chain_link(vma, avc, anon_vma);
311  anon_vma_unlock(anon_vma);
312 
313  return 0;
314 
315  out_error_free_anon_vma:
316  put_anon_vma(anon_vma);
317  out_error:
318  unlink_anon_vmas(vma);
319  return -ENOMEM;
320 }
321 
323 {
324  struct anon_vma_chain *avc, *next;
325  struct anon_vma *root = NULL;
326 
327  /*
328  * Unlink each anon_vma chained to the VMA. This list is ordered
329  * from newest to oldest, ensuring the root anon_vma gets freed last.
330  */
331  list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
332  struct anon_vma *anon_vma = avc->anon_vma;
333 
334  root = lock_anon_vma_root(root, anon_vma);
335  anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
336 
337  /*
338  * Leave empty anon_vmas on the list - we'll need
339  * to free them outside the lock.
340  */
341  if (RB_EMPTY_ROOT(&anon_vma->rb_root))
342  continue;
343 
344  list_del(&avc->same_vma);
345  anon_vma_chain_free(avc);
346  }
347  unlock_anon_vma_root(root);
348 
349  /*
350  * Iterate the list once more, it now only contains empty and unlinked
351  * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352  * needing to acquire the anon_vma->root->mutex.
353  */
354  list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
355  struct anon_vma *anon_vma = avc->anon_vma;
356 
357  put_anon_vma(anon_vma);
358 
359  list_del(&avc->same_vma);
360  anon_vma_chain_free(avc);
361  }
362 }
363 
364 static void anon_vma_ctor(void *data)
365 {
366  struct anon_vma *anon_vma = data;
367 
368  mutex_init(&anon_vma->mutex);
369  atomic_set(&anon_vma->refcount, 0);
370  anon_vma->rb_root = RB_ROOT;
371 }
372 
374 {
375  anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
376  0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
377  anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
378 }
379 
380 /*
381  * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
382  *
383  * Since there is no serialization what so ever against page_remove_rmap()
384  * the best this function can do is return a locked anon_vma that might
385  * have been relevant to this page.
386  *
387  * The page might have been remapped to a different anon_vma or the anon_vma
388  * returned may already be freed (and even reused).
389  *
390  * In case it was remapped to a different anon_vma, the new anon_vma will be a
391  * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392  * ensure that any anon_vma obtained from the page will still be valid for as
393  * long as we observe page_mapped() [ hence all those page_mapped() tests ].
394  *
395  * All users of this function must be very careful when walking the anon_vma
396  * chain and verify that the page in question is indeed mapped in it
397  * [ something equivalent to page_mapped_in_vma() ].
398  *
399  * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400  * that the anon_vma pointer from page->mapping is valid if there is a
401  * mapcount, we can dereference the anon_vma after observing those.
402  */
403 struct anon_vma *page_get_anon_vma(struct page *page)
404 {
405  struct anon_vma *anon_vma = NULL;
406  unsigned long anon_mapping;
407 
408  rcu_read_lock();
409  anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
410  if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
411  goto out;
412  if (!page_mapped(page))
413  goto out;
414 
415  anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
416  if (!atomic_inc_not_zero(&anon_vma->refcount)) {
417  anon_vma = NULL;
418  goto out;
419  }
420 
421  /*
422  * If this page is still mapped, then its anon_vma cannot have been
423  * freed. But if it has been unmapped, we have no security against the
424  * anon_vma structure being freed and reused (for another anon_vma:
425  * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426  * above cannot corrupt).
427  */
428  if (!page_mapped(page)) {
429  put_anon_vma(anon_vma);
430  anon_vma = NULL;
431  }
432 out:
433  rcu_read_unlock();
434 
435  return anon_vma;
436 }
437 
438 /*
439  * Similar to page_get_anon_vma() except it locks the anon_vma.
440  *
441  * Its a little more complex as it tries to keep the fast path to a single
442  * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443  * reference like with page_get_anon_vma() and then block on the mutex.
444  */
445 struct anon_vma *page_lock_anon_vma(struct page *page)
446 {
447  struct anon_vma *anon_vma = NULL;
448  struct anon_vma *root_anon_vma;
449  unsigned long anon_mapping;
450 
451  rcu_read_lock();
452  anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
453  if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
454  goto out;
455  if (!page_mapped(page))
456  goto out;
457 
458  anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
459  root_anon_vma = ACCESS_ONCE(anon_vma->root);
460  if (mutex_trylock(&root_anon_vma->mutex)) {
461  /*
462  * If the page is still mapped, then this anon_vma is still
463  * its anon_vma, and holding the mutex ensures that it will
464  * not go away, see anon_vma_free().
465  */
466  if (!page_mapped(page)) {
467  mutex_unlock(&root_anon_vma->mutex);
468  anon_vma = NULL;
469  }
470  goto out;
471  }
472 
473  /* trylock failed, we got to sleep */
474  if (!atomic_inc_not_zero(&anon_vma->refcount)) {
475  anon_vma = NULL;
476  goto out;
477  }
478 
479  if (!page_mapped(page)) {
480  put_anon_vma(anon_vma);
481  anon_vma = NULL;
482  goto out;
483  }
484 
485  /* we pinned the anon_vma, its safe to sleep */
486  rcu_read_unlock();
487  anon_vma_lock(anon_vma);
488 
489  if (atomic_dec_and_test(&anon_vma->refcount)) {
490  /*
491  * Oops, we held the last refcount, release the lock
492  * and bail -- can't simply use put_anon_vma() because
493  * we'll deadlock on the anon_vma_lock() recursion.
494  */
495  anon_vma_unlock(anon_vma);
496  __put_anon_vma(anon_vma);
497  anon_vma = NULL;
498  }
499 
500  return anon_vma;
501 
502 out:
503  rcu_read_unlock();
504  return anon_vma;
505 }
506 
507 void page_unlock_anon_vma(struct anon_vma *anon_vma)
508 {
509  anon_vma_unlock(anon_vma);
510 }
511 
512 /*
513  * At what user virtual address is page expected in @vma?
514  */
515 static inline unsigned long
516 __vma_address(struct page *page, struct vm_area_struct *vma)
517 {
518  pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
519 
520  if (unlikely(is_vm_hugetlb_page(vma)))
521  pgoff = page->index << huge_page_order(page_hstate(page));
522 
523  return vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
524 }
525 
526 inline unsigned long
527 vma_address(struct page *page, struct vm_area_struct *vma)
528 {
529  unsigned long address = __vma_address(page, vma);
530 
531  /* page should be within @vma mapping range */
532  VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
533 
534  return address;
535 }
536 
537 /*
538  * At what user virtual address is page expected in vma?
539  * Caller should check the page is actually part of the vma.
540  */
541 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
542 {
543  unsigned long address;
544  if (PageAnon(page)) {
545  struct anon_vma *page__anon_vma = page_anon_vma(page);
546  /*
547  * Note: swapoff's unuse_vma() is more efficient with this
548  * check, and needs it to match anon_vma when KSM is active.
549  */
550  if (!vma->anon_vma || !page__anon_vma ||
551  vma->anon_vma->root != page__anon_vma->root)
552  return -EFAULT;
553  } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
554  if (!vma->vm_file ||
555  vma->vm_file->f_mapping != page->mapping)
556  return -EFAULT;
557  } else
558  return -EFAULT;
559  address = __vma_address(page, vma);
560  if (unlikely(address < vma->vm_start || address >= vma->vm_end))
561  return -EFAULT;
562  return address;
563 }
564 
565 /*
566  * Check that @page is mapped at @address into @mm.
567  *
568  * If @sync is false, page_check_address may perform a racy check to avoid
569  * the page table lock when the pte is not present (helpful when reclaiming
570  * highly shared pages).
571  *
572  * On success returns with pte mapped and locked.
573  */
574 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
575  unsigned long address, spinlock_t **ptlp, int sync)
576 {
577  pgd_t *pgd;
578  pud_t *pud;
579  pmd_t *pmd;
580  pte_t *pte;
581  spinlock_t *ptl;
582 
583  if (unlikely(PageHuge(page))) {
584  pte = huge_pte_offset(mm, address);
585  ptl = &mm->page_table_lock;
586  goto check;
587  }
588 
589  pgd = pgd_offset(mm, address);
590  if (!pgd_present(*pgd))
591  return NULL;
592 
593  pud = pud_offset(pgd, address);
594  if (!pud_present(*pud))
595  return NULL;
596 
597  pmd = pmd_offset(pud, address);
598  if (!pmd_present(*pmd))
599  return NULL;
600  if (pmd_trans_huge(*pmd))
601  return NULL;
602 
603  pte = pte_offset_map(pmd, address);
604  /* Make a quick check before getting the lock */
605  if (!sync && !pte_present(*pte)) {
606  pte_unmap(pte);
607  return NULL;
608  }
609 
610  ptl = pte_lockptr(mm, pmd);
611 check:
612  spin_lock(ptl);
613  if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
614  *ptlp = ptl;
615  return pte;
616  }
617  pte_unmap_unlock(pte, ptl);
618  return NULL;
619 }
620 
630 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
631 {
632  unsigned long address;
633  pte_t *pte;
634  spinlock_t *ptl;
635 
636  address = __vma_address(page, vma);
637  if (unlikely(address < vma->vm_start || address >= vma->vm_end))
638  return 0;
639  pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
640  if (!pte) /* the page is not in this mm */
641  return 0;
642  pte_unmap_unlock(pte, ptl);
643 
644  return 1;
645 }
646 
647 /*
648  * Subfunctions of page_referenced: page_referenced_one called
649  * repeatedly from either page_referenced_anon or page_referenced_file.
650  */
651 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
652  unsigned long address, unsigned int *mapcount,
653  unsigned long *vm_flags)
654 {
655  struct mm_struct *mm = vma->vm_mm;
656  int referenced = 0;
657 
658  if (unlikely(PageTransHuge(page))) {
659  pmd_t *pmd;
660 
661  spin_lock(&mm->page_table_lock);
662  /*
663  * rmap might return false positives; we must filter
664  * these out using page_check_address_pmd().
665  */
666  pmd = page_check_address_pmd(page, mm, address,
668  if (!pmd) {
669  spin_unlock(&mm->page_table_lock);
670  goto out;
671  }
672 
673  if (vma->vm_flags & VM_LOCKED) {
674  spin_unlock(&mm->page_table_lock);
675  *mapcount = 0; /* break early from loop */
676  *vm_flags |= VM_LOCKED;
677  goto out;
678  }
679 
680  /* go ahead even if the pmd is pmd_trans_splitting() */
681  if (pmdp_clear_flush_young_notify(vma, address, pmd))
682  referenced++;
683  spin_unlock(&mm->page_table_lock);
684  } else {
685  pte_t *pte;
686  spinlock_t *ptl;
687 
688  /*
689  * rmap might return false positives; we must filter
690  * these out using page_check_address().
691  */
692  pte = page_check_address(page, mm, address, &ptl, 0);
693  if (!pte)
694  goto out;
695 
696  if (vma->vm_flags & VM_LOCKED) {
697  pte_unmap_unlock(pte, ptl);
698  *mapcount = 0; /* break early from loop */
699  *vm_flags |= VM_LOCKED;
700  goto out;
701  }
702 
703  if (ptep_clear_flush_young_notify(vma, address, pte)) {
704  /*
705  * Don't treat a reference through a sequentially read
706  * mapping as such. If the page has been used in
707  * another mapping, we will catch it; if this other
708  * mapping is already gone, the unmap path will have
709  * set PG_referenced or activated the page.
710  */
711  if (likely(!VM_SequentialReadHint(vma)))
712  referenced++;
713  }
714  pte_unmap_unlock(pte, ptl);
715  }
716 
717  (*mapcount)--;
718 
719  if (referenced)
720  *vm_flags |= vma->vm_flags;
721 out:
722  return referenced;
723 }
724 
725 static int page_referenced_anon(struct page *page,
726  struct mem_cgroup *memcg,
727  unsigned long *vm_flags)
728 {
729  unsigned int mapcount;
730  struct anon_vma *anon_vma;
731  pgoff_t pgoff;
732  struct anon_vma_chain *avc;
733  int referenced = 0;
734 
735  anon_vma = page_lock_anon_vma(page);
736  if (!anon_vma)
737  return referenced;
738 
739  mapcount = page_mapcount(page);
740  pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
741  anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
742  struct vm_area_struct *vma = avc->vma;
743  unsigned long address = vma_address(page, vma);
744  /*
745  * If we are reclaiming on behalf of a cgroup, skip
746  * counting on behalf of references from different
747  * cgroups
748  */
749  if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
750  continue;
751  referenced += page_referenced_one(page, vma, address,
752  &mapcount, vm_flags);
753  if (!mapcount)
754  break;
755  }
756 
757  page_unlock_anon_vma(anon_vma);
758  return referenced;
759 }
760 
774 static int page_referenced_file(struct page *page,
775  struct mem_cgroup *memcg,
776  unsigned long *vm_flags)
777 {
778  unsigned int mapcount;
779  struct address_space *mapping = page->mapping;
780  pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
781  struct vm_area_struct *vma;
782  int referenced = 0;
783 
784  /*
785  * The caller's checks on page->mapping and !PageAnon have made
786  * sure that this is a file page: the check for page->mapping
787  * excludes the case just before it gets set on an anon page.
788  */
789  BUG_ON(PageAnon(page));
790 
791  /*
792  * The page lock not only makes sure that page->mapping cannot
793  * suddenly be NULLified by truncation, it makes sure that the
794  * structure at mapping cannot be freed and reused yet,
795  * so we can safely take mapping->i_mmap_mutex.
796  */
797  BUG_ON(!PageLocked(page));
798 
799  mutex_lock(&mapping->i_mmap_mutex);
800 
801  /*
802  * i_mmap_mutex does not stabilize mapcount at all, but mapcount
803  * is more likely to be accurate if we note it after spinning.
804  */
805  mapcount = page_mapcount(page);
806 
807  vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
808  unsigned long address = vma_address(page, vma);
809  /*
810  * If we are reclaiming on behalf of a cgroup, skip
811  * counting on behalf of references from different
812  * cgroups
813  */
814  if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
815  continue;
816  referenced += page_referenced_one(page, vma, address,
817  &mapcount, vm_flags);
818  if (!mapcount)
819  break;
820  }
821 
822  mutex_unlock(&mapping->i_mmap_mutex);
823  return referenced;
824 }
825 
836 int page_referenced(struct page *page,
837  int is_locked,
838  struct mem_cgroup *memcg,
839  unsigned long *vm_flags)
840 {
841  int referenced = 0;
842  int we_locked = 0;
843 
844  *vm_flags = 0;
845  if (page_mapped(page) && page_rmapping(page)) {
846  if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
847  we_locked = trylock_page(page);
848  if (!we_locked) {
849  referenced++;
850  goto out;
851  }
852  }
853  if (unlikely(PageKsm(page)))
854  referenced += page_referenced_ksm(page, memcg,
855  vm_flags);
856  else if (PageAnon(page))
857  referenced += page_referenced_anon(page, memcg,
858  vm_flags);
859  else if (page->mapping)
860  referenced += page_referenced_file(page, memcg,
861  vm_flags);
862  if (we_locked)
863  unlock_page(page);
864 
865  if (page_test_and_clear_young(page_to_pfn(page)))
866  referenced++;
867  }
868 out:
869  return referenced;
870 }
871 
872 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
873  unsigned long address)
874 {
875  struct mm_struct *mm = vma->vm_mm;
876  pte_t *pte;
877  spinlock_t *ptl;
878  int ret = 0;
879 
880  pte = page_check_address(page, mm, address, &ptl, 1);
881  if (!pte)
882  goto out;
883 
884  if (pte_dirty(*pte) || pte_write(*pte)) {
885  pte_t entry;
886 
887  flush_cache_page(vma, address, pte_pfn(*pte));
888  entry = ptep_clear_flush(vma, address, pte);
889  entry = pte_wrprotect(entry);
890  entry = pte_mkclean(entry);
891  set_pte_at(mm, address, pte, entry);
892  ret = 1;
893  }
894 
895  pte_unmap_unlock(pte, ptl);
896 
897  if (ret)
898  mmu_notifier_invalidate_page(mm, address);
899 out:
900  return ret;
901 }
902 
903 static int page_mkclean_file(struct address_space *mapping, struct page *page)
904 {
905  pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
906  struct vm_area_struct *vma;
907  int ret = 0;
908 
909  BUG_ON(PageAnon(page));
910 
911  mutex_lock(&mapping->i_mmap_mutex);
912  vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
913  if (vma->vm_flags & VM_SHARED) {
914  unsigned long address = vma_address(page, vma);
915  ret += page_mkclean_one(page, vma, address);
916  }
917  }
918  mutex_unlock(&mapping->i_mmap_mutex);
919  return ret;
920 }
921 
922 int page_mkclean(struct page *page)
923 {
924  int ret = 0;
925 
926  BUG_ON(!PageLocked(page));
927 
928  if (page_mapped(page)) {
929  struct address_space *mapping = page_mapping(page);
930  if (mapping)
931  ret = page_mkclean_file(mapping, page);
932  }
933 
934  return ret;
935 }
937 
949 void page_move_anon_rmap(struct page *page,
950  struct vm_area_struct *vma, unsigned long address)
951 {
952  struct anon_vma *anon_vma = vma->anon_vma;
953 
954  VM_BUG_ON(!PageLocked(page));
955  VM_BUG_ON(!anon_vma);
956  VM_BUG_ON(page->index != linear_page_index(vma, address));
957 
958  anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
959  page->mapping = (struct address_space *) anon_vma;
960 }
961 
969 static void __page_set_anon_rmap(struct page *page,
970  struct vm_area_struct *vma, unsigned long address, int exclusive)
971 {
972  struct anon_vma *anon_vma = vma->anon_vma;
973 
974  BUG_ON(!anon_vma);
975 
976  if (PageAnon(page))
977  return;
978 
979  /*
980  * If the page isn't exclusively mapped into this vma,
981  * we must use the _oldest_ possible anon_vma for the
982  * page mapping!
983  */
984  if (!exclusive)
985  anon_vma = anon_vma->root;
986 
987  anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
988  page->mapping = (struct address_space *) anon_vma;
989  page->index = linear_page_index(vma, address);
990 }
991 
998 static void __page_check_anon_rmap(struct page *page,
999  struct vm_area_struct *vma, unsigned long address)
1000 {
1001 #ifdef CONFIG_DEBUG_VM
1002  /*
1003  * The page's anon-rmap details (mapping and index) are guaranteed to
1004  * be set up correctly at this point.
1005  *
1006  * We have exclusion against page_add_anon_rmap because the caller
1007  * always holds the page locked, except if called from page_dup_rmap,
1008  * in which case the page is already known to be setup.
1009  *
1010  * We have exclusion against page_add_new_anon_rmap because those pages
1011  * are initially only visible via the pagetables, and the pte is locked
1012  * over the call to page_add_new_anon_rmap.
1013  */
1014  BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1015  BUG_ON(page->index != linear_page_index(vma, address));
1016 #endif
1017 }
1018 
1030 void page_add_anon_rmap(struct page *page,
1031  struct vm_area_struct *vma, unsigned long address)
1032 {
1033  do_page_add_anon_rmap(page, vma, address, 0);
1034 }
1035 
1036 /*
1037  * Special version of the above for do_swap_page, which often runs
1038  * into pages that are exclusively owned by the current process.
1039  * Everybody else should continue to use page_add_anon_rmap above.
1040  */
1041 void do_page_add_anon_rmap(struct page *page,
1042  struct vm_area_struct *vma, unsigned long address, int exclusive)
1043 {
1044  int first = atomic_inc_and_test(&page->_mapcount);
1045  if (first) {
1046  if (!PageTransHuge(page))
1047  __inc_zone_page_state(page, NR_ANON_PAGES);
1048  else
1049  __inc_zone_page_state(page,
1051  }
1052  if (unlikely(PageKsm(page)))
1053  return;
1054 
1055  VM_BUG_ON(!PageLocked(page));
1056  /* address might be in next vma when migration races vma_adjust */
1057  if (first)
1058  __page_set_anon_rmap(page, vma, address, exclusive);
1059  else
1060  __page_check_anon_rmap(page, vma, address);
1061 }
1062 
1073 void page_add_new_anon_rmap(struct page *page,
1074  struct vm_area_struct *vma, unsigned long address)
1075 {
1076  VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1077  SetPageSwapBacked(page);
1078  atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1079  if (!PageTransHuge(page))
1080  __inc_zone_page_state(page, NR_ANON_PAGES);
1081  else
1082  __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1083  __page_set_anon_rmap(page, vma, address, 1);
1084  if (!mlocked_vma_newpage(vma, page))
1086  else
1088 }
1089 
1096 void page_add_file_rmap(struct page *page)
1097 {
1098  bool locked;
1099  unsigned long flags;
1100 
1101  mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1102  if (atomic_inc_and_test(&page->_mapcount)) {
1103  __inc_zone_page_state(page, NR_FILE_MAPPED);
1104  mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1105  }
1106  mem_cgroup_end_update_page_stat(page, &locked, &flags);
1107 }
1108 
1115 void page_remove_rmap(struct page *page)
1116 {
1117  struct address_space *mapping = page_mapping(page);
1118  bool anon = PageAnon(page);
1119  bool locked;
1120  unsigned long flags;
1121 
1122  /*
1123  * The anon case has no mem_cgroup page_stat to update; but may
1124  * uncharge_page() below, where the lock ordering can deadlock if
1125  * we hold the lock against page_stat move: so avoid it on anon.
1126  */
1127  if (!anon)
1128  mem_cgroup_begin_update_page_stat(page, &locked, &flags);
1129 
1130  /* page still mapped by someone else? */
1131  if (!atomic_add_negative(-1, &page->_mapcount))
1132  goto out;
1133 
1134  /*
1135  * Now that the last pte has gone, s390 must transfer dirty
1136  * flag from storage key to struct page. We can usually skip
1137  * this if the page is anon, so about to be freed; but perhaps
1138  * not if it's in swapcache - there might be another pte slot
1139  * containing the swap entry, but page not yet written to swap.
1140  *
1141  * And we can skip it on file pages, so long as the filesystem
1142  * participates in dirty tracking; but need to catch shm and tmpfs
1143  * and ramfs pages which have been modified since creation by read
1144  * fault.
1145  *
1146  * Note that mapping must be decided above, before decrementing
1147  * mapcount (which luckily provides a barrier): once page is unmapped,
1148  * it could be truncated and page->mapping reset to NULL at any moment.
1149  * Note also that we are relying on page_mapping(page) to set mapping
1150  * to &swapper_space when PageSwapCache(page).
1151  */
1152  if (mapping && !mapping_cap_account_dirty(mapping) &&
1153  page_test_and_clear_dirty(page_to_pfn(page), 1))
1154  set_page_dirty(page);
1155  /*
1156  * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1157  * and not charged by memcg for now.
1158  */
1159  if (unlikely(PageHuge(page)))
1160  goto out;
1161  if (anon) {
1163  if (!PageTransHuge(page))
1164  __dec_zone_page_state(page, NR_ANON_PAGES);
1165  else
1166  __dec_zone_page_state(page,
1168  } else {
1169  __dec_zone_page_state(page, NR_FILE_MAPPED);
1170  mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1171  mem_cgroup_end_update_page_stat(page, &locked, &flags);
1172  }
1173  if (unlikely(PageMlocked(page)))
1174  clear_page_mlock(page);
1175  /*
1176  * It would be tidy to reset the PageAnon mapping here,
1177  * but that might overwrite a racing page_add_anon_rmap
1178  * which increments mapcount after us but sets mapping
1179  * before us: so leave the reset to free_hot_cold_page,
1180  * and remember that it's only reliable while mapped.
1181  * Leaving it set also helps swapoff to reinstate ptes
1182  * faster for those pages still in swapcache.
1183  */
1184  return;
1185 out:
1186  if (!anon)
1187  mem_cgroup_end_update_page_stat(page, &locked, &flags);
1188 }
1189 
1190 /*
1191  * Subfunctions of try_to_unmap: try_to_unmap_one called
1192  * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1193  */
1194 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1195  unsigned long address, enum ttu_flags flags)
1196 {
1197  struct mm_struct *mm = vma->vm_mm;
1198  pte_t *pte;
1199  pte_t pteval;
1200  spinlock_t *ptl;
1201  int ret = SWAP_AGAIN;
1202 
1203  pte = page_check_address(page, mm, address, &ptl, 0);
1204  if (!pte)
1205  goto out;
1206 
1207  /*
1208  * If the page is mlock()d, we cannot swap it out.
1209  * If it's recently referenced (perhaps page_referenced
1210  * skipped over this mm) then we should reactivate it.
1211  */
1212  if (!(flags & TTU_IGNORE_MLOCK)) {
1213  if (vma->vm_flags & VM_LOCKED)
1214  goto out_mlock;
1215 
1216  if (TTU_ACTION(flags) == TTU_MUNLOCK)
1217  goto out_unmap;
1218  }
1219  if (!(flags & TTU_IGNORE_ACCESS)) {
1220  if (ptep_clear_flush_young_notify(vma, address, pte)) {
1221  ret = SWAP_FAIL;
1222  goto out_unmap;
1223  }
1224  }
1225 
1226  /* Nuke the page table entry. */
1227  flush_cache_page(vma, address, page_to_pfn(page));
1228  pteval = ptep_clear_flush(vma, address, pte);
1229 
1230  /* Move the dirty bit to the physical page now the pte is gone. */
1231  if (pte_dirty(pteval))
1232  set_page_dirty(page);
1233 
1234  /* Update high watermark before we lower rss */
1235  update_hiwater_rss(mm);
1236 
1237  if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1238  if (PageAnon(page))
1239  dec_mm_counter(mm, MM_ANONPAGES);
1240  else
1241  dec_mm_counter(mm, MM_FILEPAGES);
1242  set_pte_at(mm, address, pte,
1243  swp_entry_to_pte(make_hwpoison_entry(page)));
1244  } else if (PageAnon(page)) {
1245  swp_entry_t entry = { .val = page_private(page) };
1246 
1247  if (PageSwapCache(page)) {
1248  /*
1249  * Store the swap location in the pte.
1250  * See handle_pte_fault() ...
1251  */
1252  if (swap_duplicate(entry) < 0) {
1253  set_pte_at(mm, address, pte, pteval);
1254  ret = SWAP_FAIL;
1255  goto out_unmap;
1256  }
1257  if (list_empty(&mm->mmlist)) {
1258  spin_lock(&mmlist_lock);
1259  if (list_empty(&mm->mmlist))
1260  list_add(&mm->mmlist, &init_mm.mmlist);
1261  spin_unlock(&mmlist_lock);
1262  }
1263  dec_mm_counter(mm, MM_ANONPAGES);
1264  inc_mm_counter(mm, MM_SWAPENTS);
1265  } else if (IS_ENABLED(CONFIG_MIGRATION)) {
1266  /*
1267  * Store the pfn of the page in a special migration
1268  * pte. do_swap_page() will wait until the migration
1269  * pte is removed and then restart fault handling.
1270  */
1271  BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1272  entry = make_migration_entry(page, pte_write(pteval));
1273  }
1274  set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1275  BUG_ON(pte_file(*pte));
1276  } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1277  (TTU_ACTION(flags) == TTU_MIGRATION)) {
1278  /* Establish migration entry for a file page */
1280  entry = make_migration_entry(page, pte_write(pteval));
1281  set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1282  } else
1283  dec_mm_counter(mm, MM_FILEPAGES);
1284 
1285  page_remove_rmap(page);
1286  page_cache_release(page);
1287 
1288 out_unmap:
1289  pte_unmap_unlock(pte, ptl);
1290  if (ret != SWAP_FAIL)
1291  mmu_notifier_invalidate_page(mm, address);
1292 out:
1293  return ret;
1294 
1295 out_mlock:
1296  pte_unmap_unlock(pte, ptl);
1297 
1298 
1299  /*
1300  * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1301  * unstable result and race. Plus, We can't wait here because
1302  * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1303  * if trylock failed, the page remain in evictable lru and later
1304  * vmscan could retry to move the page to unevictable lru if the
1305  * page is actually mlocked.
1306  */
1307  if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1308  if (vma->vm_flags & VM_LOCKED) {
1309  mlock_vma_page(page);
1310  ret = SWAP_MLOCK;
1311  }
1312  up_read(&vma->vm_mm->mmap_sem);
1313  }
1314  return ret;
1315 }
1316 
1317 /*
1318  * objrmap doesn't work for nonlinear VMAs because the assumption that
1319  * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1320  * Consequently, given a particular page and its ->index, we cannot locate the
1321  * ptes which are mapping that page without an exhaustive linear search.
1322  *
1323  * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1324  * maps the file to which the target page belongs. The ->vm_private_data field
1325  * holds the current cursor into that scan. Successive searches will circulate
1326  * around the vma's virtual address space.
1327  *
1328  * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1329  * more scanning pressure is placed against them as well. Eventually pages
1330  * will become fully unmapped and are eligible for eviction.
1331  *
1332  * For very sparsely populated VMAs this is a little inefficient - chances are
1333  * there there won't be many ptes located within the scan cluster. In this case
1334  * maybe we could scan further - to the end of the pte page, perhaps.
1335  *
1336  * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1337  * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1338  * rather than unmapping them. If we encounter the "check_page" that vmscan is
1339  * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1340  */
1341 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1342 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1343 
1344 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1345  struct vm_area_struct *vma, struct page *check_page)
1346 {
1347  struct mm_struct *mm = vma->vm_mm;
1348  pgd_t *pgd;
1349  pud_t *pud;
1350  pmd_t *pmd;
1351  pte_t *pte;
1352  pte_t pteval;
1353  spinlock_t *ptl;
1354  struct page *page;
1355  unsigned long address;
1356  unsigned long mmun_start; /* For mmu_notifiers */
1357  unsigned long mmun_end; /* For mmu_notifiers */
1358  unsigned long end;
1359  int ret = SWAP_AGAIN;
1360  int locked_vma = 0;
1361 
1362  address = (vma->vm_start + cursor) & CLUSTER_MASK;
1363  end = address + CLUSTER_SIZE;
1364  if (address < vma->vm_start)
1365  address = vma->vm_start;
1366  if (end > vma->vm_end)
1367  end = vma->vm_end;
1368 
1369  pgd = pgd_offset(mm, address);
1370  if (!pgd_present(*pgd))
1371  return ret;
1372 
1373  pud = pud_offset(pgd, address);
1374  if (!pud_present(*pud))
1375  return ret;
1376 
1377  pmd = pmd_offset(pud, address);
1378  if (!pmd_present(*pmd))
1379  return ret;
1380 
1381  mmun_start = address;
1382  mmun_end = end;
1383  mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1384 
1385  /*
1386  * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1387  * keep the sem while scanning the cluster for mlocking pages.
1388  */
1389  if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1390  locked_vma = (vma->vm_flags & VM_LOCKED);
1391  if (!locked_vma)
1392  up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1393  }
1394 
1395  pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1396 
1397  /* Update high watermark before we lower rss */
1398  update_hiwater_rss(mm);
1399 
1400  for (; address < end; pte++, address += PAGE_SIZE) {
1401  if (!pte_present(*pte))
1402  continue;
1403  page = vm_normal_page(vma, address, *pte);
1404  BUG_ON(!page || PageAnon(page));
1405 
1406  if (locked_vma) {
1407  mlock_vma_page(page); /* no-op if already mlocked */
1408  if (page == check_page)
1409  ret = SWAP_MLOCK;
1410  continue; /* don't unmap */
1411  }
1412 
1413  if (ptep_clear_flush_young_notify(vma, address, pte))
1414  continue;
1415 
1416  /* Nuke the page table entry. */
1417  flush_cache_page(vma, address, pte_pfn(*pte));
1418  pteval = ptep_clear_flush(vma, address, pte);
1419 
1420  /* If nonlinear, store the file page offset in the pte. */
1421  if (page->index != linear_page_index(vma, address))
1422  set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1423 
1424  /* Move the dirty bit to the physical page now the pte is gone. */
1425  if (pte_dirty(pteval))
1426  set_page_dirty(page);
1427 
1428  page_remove_rmap(page);
1429  page_cache_release(page);
1430  dec_mm_counter(mm, MM_FILEPAGES);
1431  (*mapcount)--;
1432  }
1433  pte_unmap_unlock(pte - 1, ptl);
1434  mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1435  if (locked_vma)
1436  up_read(&vma->vm_mm->mmap_sem);
1437  return ret;
1438 }
1439 
1441 {
1442  int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1443 
1444  if (!maybe_stack)
1445  return false;
1446 
1447  if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1448  VM_STACK_INCOMPLETE_SETUP)
1449  return true;
1450 
1451  return false;
1452 }
1453 
1470 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1471 {
1472  struct anon_vma *anon_vma;
1473  pgoff_t pgoff;
1474  struct anon_vma_chain *avc;
1475  int ret = SWAP_AGAIN;
1476 
1477  anon_vma = page_lock_anon_vma(page);
1478  if (!anon_vma)
1479  return ret;
1480 
1481  pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1482  anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1483  struct vm_area_struct *vma = avc->vma;
1484  unsigned long address;
1485 
1486  /*
1487  * During exec, a temporary VMA is setup and later moved.
1488  * The VMA is moved under the anon_vma lock but not the
1489  * page tables leading to a race where migration cannot
1490  * find the migration ptes. Rather than increasing the
1491  * locking requirements of exec(), migration skips
1492  * temporary VMAs until after exec() completes.
1493  */
1494  if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1496  continue;
1497 
1498  address = vma_address(page, vma);
1499  ret = try_to_unmap_one(page, vma, address, flags);
1500  if (ret != SWAP_AGAIN || !page_mapped(page))
1501  break;
1502  }
1503 
1504  page_unlock_anon_vma(anon_vma);
1505  return ret;
1506 }
1507 
1523 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1524 {
1525  struct address_space *mapping = page->mapping;
1526  pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1527  struct vm_area_struct *vma;
1528  int ret = SWAP_AGAIN;
1529  unsigned long cursor;
1530  unsigned long max_nl_cursor = 0;
1531  unsigned long max_nl_size = 0;
1532  unsigned int mapcount;
1533 
1534  mutex_lock(&mapping->i_mmap_mutex);
1535  vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1536  unsigned long address = vma_address(page, vma);
1537  ret = try_to_unmap_one(page, vma, address, flags);
1538  if (ret != SWAP_AGAIN || !page_mapped(page))
1539  goto out;
1540  }
1541 
1542  if (list_empty(&mapping->i_mmap_nonlinear))
1543  goto out;
1544 
1545  /*
1546  * We don't bother to try to find the munlocked page in nonlinears.
1547  * It's costly. Instead, later, page reclaim logic may call
1548  * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1549  */
1550  if (TTU_ACTION(flags) == TTU_MUNLOCK)
1551  goto out;
1552 
1553  list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1554  shared.nonlinear) {
1555  cursor = (unsigned long) vma->vm_private_data;
1556  if (cursor > max_nl_cursor)
1557  max_nl_cursor = cursor;
1558  cursor = vma->vm_end - vma->vm_start;
1559  if (cursor > max_nl_size)
1560  max_nl_size = cursor;
1561  }
1562 
1563  if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1564  ret = SWAP_FAIL;
1565  goto out;
1566  }
1567 
1568  /*
1569  * We don't try to search for this page in the nonlinear vmas,
1570  * and page_referenced wouldn't have found it anyway. Instead
1571  * just walk the nonlinear vmas trying to age and unmap some.
1572  * The mapcount of the page we came in with is irrelevant,
1573  * but even so use it as a guide to how hard we should try?
1574  */
1575  mapcount = page_mapcount(page);
1576  if (!mapcount)
1577  goto out;
1578  cond_resched();
1579 
1580  max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1581  if (max_nl_cursor == 0)
1582  max_nl_cursor = CLUSTER_SIZE;
1583 
1584  do {
1585  list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1586  shared.nonlinear) {
1587  cursor = (unsigned long) vma->vm_private_data;
1588  while ( cursor < max_nl_cursor &&
1589  cursor < vma->vm_end - vma->vm_start) {
1590  if (try_to_unmap_cluster(cursor, &mapcount,
1591  vma, page) == SWAP_MLOCK)
1592  ret = SWAP_MLOCK;
1593  cursor += CLUSTER_SIZE;
1594  vma->vm_private_data = (void *) cursor;
1595  if ((int)mapcount <= 0)
1596  goto out;
1597  }
1598  vma->vm_private_data = (void *) max_nl_cursor;
1599  }
1600  cond_resched();
1601  max_nl_cursor += CLUSTER_SIZE;
1602  } while (max_nl_cursor <= max_nl_size);
1603 
1604  /*
1605  * Don't loop forever (perhaps all the remaining pages are
1606  * in locked vmas). Reset cursor on all unreserved nonlinear
1607  * vmas, now forgetting on which ones it had fallen behind.
1608  */
1609  list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.nonlinear)
1610  vma->vm_private_data = NULL;
1611 out:
1612  mutex_unlock(&mapping->i_mmap_mutex);
1613  return ret;
1614 }
1615 
1630 int try_to_unmap(struct page *page, enum ttu_flags flags)
1631 {
1632  int ret;
1633 
1634  BUG_ON(!PageLocked(page));
1635  VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1636 
1637  if (unlikely(PageKsm(page)))
1638  ret = try_to_unmap_ksm(page, flags);
1639  else if (PageAnon(page))
1640  ret = try_to_unmap_anon(page, flags);
1641  else
1642  ret = try_to_unmap_file(page, flags);
1643  if (ret != SWAP_MLOCK && !page_mapped(page))
1644  ret = SWAP_SUCCESS;
1645  return ret;
1646 }
1647 
1663 int try_to_munlock(struct page *page)
1664 {
1665  VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1666 
1667  if (unlikely(PageKsm(page)))
1668  return try_to_unmap_ksm(page, TTU_MUNLOCK);
1669  else if (PageAnon(page))
1670  return try_to_unmap_anon(page, TTU_MUNLOCK);
1671  else
1672  return try_to_unmap_file(page, TTU_MUNLOCK);
1673 }
1674 
1675 void __put_anon_vma(struct anon_vma *anon_vma)
1676 {
1677  struct anon_vma *root = anon_vma->root;
1678 
1679  if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1680  anon_vma_free(root);
1681 
1682  anon_vma_free(anon_vma);
1683 }
1684 
1685 #ifdef CONFIG_MIGRATION
1686 /*
1687  * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1688  * Called by migrate.c to remove migration ptes, but might be used more later.
1689  */
1690 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1691  struct vm_area_struct *, unsigned long, void *), void *arg)
1692 {
1693  struct anon_vma *anon_vma;
1694  pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1695  struct anon_vma_chain *avc;
1696  int ret = SWAP_AGAIN;
1697 
1698  /*
1699  * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1700  * because that depends on page_mapped(); but not all its usages
1701  * are holding mmap_sem. Users without mmap_sem are required to
1702  * take a reference count to prevent the anon_vma disappearing
1703  */
1704  anon_vma = page_anon_vma(page);
1705  if (!anon_vma)
1706  return ret;
1707  anon_vma_lock(anon_vma);
1708  anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1709  struct vm_area_struct *vma = avc->vma;
1710  unsigned long address = vma_address(page, vma);
1711  ret = rmap_one(page, vma, address, arg);
1712  if (ret != SWAP_AGAIN)
1713  break;
1714  }
1715  anon_vma_unlock(anon_vma);
1716  return ret;
1717 }
1718 
1719 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1720  struct vm_area_struct *, unsigned long, void *), void *arg)
1721 {
1722  struct address_space *mapping = page->mapping;
1723  pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1724  struct vm_area_struct *vma;
1725  int ret = SWAP_AGAIN;
1726 
1727  if (!mapping)
1728  return ret;
1729  mutex_lock(&mapping->i_mmap_mutex);
1730  vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1731  unsigned long address = vma_address(page, vma);
1732  ret = rmap_one(page, vma, address, arg);
1733  if (ret != SWAP_AGAIN)
1734  break;
1735  }
1736  /*
1737  * No nonlinear handling: being always shared, nonlinear vmas
1738  * never contain migration ptes. Decide what to do about this
1739  * limitation to linear when we need rmap_walk() on nonlinear.
1740  */
1741  mutex_unlock(&mapping->i_mmap_mutex);
1742  return ret;
1743 }
1744 
1745 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1746  struct vm_area_struct *, unsigned long, void *), void *arg)
1747 {
1748  VM_BUG_ON(!PageLocked(page));
1749 
1750  if (unlikely(PageKsm(page)))
1751  return rmap_walk_ksm(page, rmap_one, arg);
1752  else if (PageAnon(page))
1753  return rmap_walk_anon(page, rmap_one, arg);
1754  else
1755  return rmap_walk_file(page, rmap_one, arg);
1756 }
1757 #endif /* CONFIG_MIGRATION */
1758 
1759 #ifdef CONFIG_HUGETLB_PAGE
1760 /*
1761  * The following three functions are for anonymous (private mapped) hugepages.
1762  * Unlike common anonymous pages, anonymous hugepages have no accounting code
1763  * and no lru code, because we handle hugepages differently from common pages.
1764  */
1765 static void __hugepage_set_anon_rmap(struct page *page,
1766  struct vm_area_struct *vma, unsigned long address, int exclusive)
1767 {
1768  struct anon_vma *anon_vma = vma->anon_vma;
1769 
1770  BUG_ON(!anon_vma);
1771 
1772  if (PageAnon(page))
1773  return;
1774  if (!exclusive)
1775  anon_vma = anon_vma->root;
1776 
1777  anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1778  page->mapping = (struct address_space *) anon_vma;
1779  page->index = linear_page_index(vma, address);
1780 }
1781 
1782 void hugepage_add_anon_rmap(struct page *page,
1783  struct vm_area_struct *vma, unsigned long address)
1784 {
1785  struct anon_vma *anon_vma = vma->anon_vma;
1786  int first;
1787 
1788  BUG_ON(!PageLocked(page));
1789  BUG_ON(!anon_vma);
1790  /* address might be in next vma when migration races vma_adjust */
1791  first = atomic_inc_and_test(&page->_mapcount);
1792  if (first)
1793  __hugepage_set_anon_rmap(page, vma, address, 0);
1794 }
1795 
1796 void hugepage_add_new_anon_rmap(struct page *page,
1797  struct vm_area_struct *vma, unsigned long address)
1798 {
1799  BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1800  atomic_set(&page->_mapcount, 0);
1801  __hugepage_set_anon_rmap(page, vma, address, 1);
1802 }
1803 #endif /* CONFIG_HUGETLB_PAGE */