Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
s5h1420.c
Go to the documentation of this file.
1 /*
2  * Driver for
3  * Samsung S5H1420 and
4  * PnpNetwork PN1010 QPSK Demodulator
5  *
6  * Copyright (C) 2005 Andrew de Quincey <[email protected]>
7  * Copyright (C) 2005-8 Patrick Boettcher <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation; either version 2 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  *
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23  */
24 
25 #include <linux/kernel.h>
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/slab.h>
30 #include <linux/delay.h>
31 #include <linux/jiffies.h>
32 #include <asm/div64.h>
33 
34 #include <linux/i2c.h>
35 
36 
37 #include "dvb_frontend.h"
38 #include "s5h1420.h"
39 #include "s5h1420_priv.h"
40 
41 #define TONE_FREQ 22000
42 
43 struct s5h1420_state {
44  struct i2c_adapter* i2c;
45  const struct s5h1420_config* config;
46 
49 
51 
57 
58  /* FIXME: ugly workaround for flexcop's incapable i2c-controller
59  * it does not support repeated-start, workaround: write addr-1
60  * and then read
61  */
62  u8 shadow[256];
63 };
64 
65 static u32 s5h1420_getsymbolrate(struct s5h1420_state* state);
66 static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
67  struct dvb_frontend_tune_settings* fesettings);
68 
69 
70 static int debug;
71 module_param(debug, int, 0644);
72 MODULE_PARM_DESC(debug, "enable debugging");
73 
74 #define dprintk(x...) do { \
75  if (debug) \
76  printk(KERN_DEBUG "S5H1420: " x); \
77 } while (0)
78 
79 static u8 s5h1420_readreg(struct s5h1420_state *state, u8 reg)
80 {
81  int ret;
82  u8 b[2];
83  struct i2c_msg msg[] = {
84  { .addr = state->config->demod_address, .flags = 0, .buf = b, .len = 2 },
85  { .addr = state->config->demod_address, .flags = 0, .buf = &reg, .len = 1 },
86  { .addr = state->config->demod_address, .flags = I2C_M_RD, .buf = b, .len = 1 },
87  };
88 
89  b[0] = (reg - 1) & 0xff;
90  b[1] = state->shadow[(reg - 1) & 0xff];
91 
92  if (state->config->repeated_start_workaround) {
93  ret = i2c_transfer(state->i2c, msg, 3);
94  if (ret != 3)
95  return ret;
96  } else {
97  ret = i2c_transfer(state->i2c, &msg[1], 1);
98  if (ret != 1)
99  return ret;
100  ret = i2c_transfer(state->i2c, &msg[2], 1);
101  if (ret != 1)
102  return ret;
103  }
104 
105  /* dprintk("rd(%02x): %02x %02x\n", state->config->demod_address, reg, b[0]); */
106 
107  return b[0];
108 }
109 
110 static int s5h1420_writereg (struct s5h1420_state* state, u8 reg, u8 data)
111 {
112  u8 buf[] = { reg, data };
113  struct i2c_msg msg = { .addr = state->config->demod_address, .flags = 0, .buf = buf, .len = 2 };
114  int err;
115 
116  /* dprintk("wr(%02x): %02x %02x\n", state->config->demod_address, reg, data); */
117  err = i2c_transfer(state->i2c, &msg, 1);
118  if (err != 1) {
119  dprintk("%s: writereg error (err == %i, reg == 0x%02x, data == 0x%02x)\n", __func__, err, reg, data);
120  return -EREMOTEIO;
121  }
122  state->shadow[reg] = data;
123 
124  return 0;
125 }
126 
127 static int s5h1420_set_voltage (struct dvb_frontend* fe, fe_sec_voltage_t voltage)
128 {
129  struct s5h1420_state* state = fe->demodulator_priv;
130 
131  dprintk("enter %s\n", __func__);
132 
133  switch(voltage) {
134  case SEC_VOLTAGE_13:
135  s5h1420_writereg(state, 0x3c,
136  (s5h1420_readreg(state, 0x3c) & 0xfe) | 0x02);
137  break;
138 
139  case SEC_VOLTAGE_18:
140  s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) | 0x03);
141  break;
142 
143  case SEC_VOLTAGE_OFF:
144  s5h1420_writereg(state, 0x3c, s5h1420_readreg(state, 0x3c) & 0xfd);
145  break;
146  }
147 
148  dprintk("leave %s\n", __func__);
149  return 0;
150 }
151 
152 static int s5h1420_set_tone (struct dvb_frontend* fe, fe_sec_tone_mode_t tone)
153 {
154  struct s5h1420_state* state = fe->demodulator_priv;
155 
156  dprintk("enter %s\n", __func__);
157  switch(tone) {
158  case SEC_TONE_ON:
159  s5h1420_writereg(state, 0x3b,
160  (s5h1420_readreg(state, 0x3b) & 0x74) | 0x08);
161  break;
162 
163  case SEC_TONE_OFF:
164  s5h1420_writereg(state, 0x3b,
165  (s5h1420_readreg(state, 0x3b) & 0x74) | 0x01);
166  break;
167  }
168  dprintk("leave %s\n", __func__);
169 
170  return 0;
171 }
172 
173 static int s5h1420_send_master_cmd (struct dvb_frontend* fe,
174  struct dvb_diseqc_master_cmd* cmd)
175 {
176  struct s5h1420_state* state = fe->demodulator_priv;
177  u8 val;
178  int i;
179  unsigned long timeout;
180  int result = 0;
181 
182  dprintk("enter %s\n", __func__);
183  if (cmd->msg_len > 8)
184  return -EINVAL;
185 
186  /* setup for DISEQC */
187  val = s5h1420_readreg(state, 0x3b);
188  s5h1420_writereg(state, 0x3b, 0x02);
189  msleep(15);
190 
191  /* write the DISEQC command bytes */
192  for(i=0; i< cmd->msg_len; i++) {
193  s5h1420_writereg(state, 0x3d + i, cmd->msg[i]);
194  }
195 
196  /* kick off transmission */
197  s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) |
198  ((cmd->msg_len-1) << 4) | 0x08);
199 
200  /* wait for transmission to complete */
201  timeout = jiffies + ((100*HZ) / 1000);
202  while(time_before(jiffies, timeout)) {
203  if (!(s5h1420_readreg(state, 0x3b) & 0x08))
204  break;
205 
206  msleep(5);
207  }
208  if (time_after(jiffies, timeout))
209  result = -ETIMEDOUT;
210 
211  /* restore original settings */
212  s5h1420_writereg(state, 0x3b, val);
213  msleep(15);
214  dprintk("leave %s\n", __func__);
215  return result;
216 }
217 
218 static int s5h1420_recv_slave_reply (struct dvb_frontend* fe,
219  struct dvb_diseqc_slave_reply* reply)
220 {
221  struct s5h1420_state* state = fe->demodulator_priv;
222  u8 val;
223  int i;
224  int length;
225  unsigned long timeout;
226  int result = 0;
227 
228  /* setup for DISEQC receive */
229  val = s5h1420_readreg(state, 0x3b);
230  s5h1420_writereg(state, 0x3b, 0x82); /* FIXME: guess - do we need to set DIS_RDY(0x08) in receive mode? */
231  msleep(15);
232 
233  /* wait for reception to complete */
234  timeout = jiffies + ((reply->timeout*HZ) / 1000);
235  while(time_before(jiffies, timeout)) {
236  if (!(s5h1420_readreg(state, 0x3b) & 0x80)) /* FIXME: do we test DIS_RDY(0x08) or RCV_EN(0x80)? */
237  break;
238 
239  msleep(5);
240  }
241  if (time_after(jiffies, timeout)) {
242  result = -ETIMEDOUT;
243  goto exit;
244  }
245 
246  /* check error flag - FIXME: not sure what this does - docs do not describe
247  * beyond "error flag for diseqc receive data :( */
248  if (s5h1420_readreg(state, 0x49)) {
249  result = -EIO;
250  goto exit;
251  }
252 
253  /* check length */
254  length = (s5h1420_readreg(state, 0x3b) & 0x70) >> 4;
255  if (length > sizeof(reply->msg)) {
256  result = -EOVERFLOW;
257  goto exit;
258  }
259  reply->msg_len = length;
260 
261  /* extract data */
262  for(i=0; i< length; i++) {
263  reply->msg[i] = s5h1420_readreg(state, 0x3d + i);
264  }
265 
266 exit:
267  /* restore original settings */
268  s5h1420_writereg(state, 0x3b, val);
269  msleep(15);
270  return result;
271 }
272 
273 static int s5h1420_send_burst (struct dvb_frontend* fe, fe_sec_mini_cmd_t minicmd)
274 {
275  struct s5h1420_state* state = fe->demodulator_priv;
276  u8 val;
277  int result = 0;
278  unsigned long timeout;
279 
280  /* setup for tone burst */
281  val = s5h1420_readreg(state, 0x3b);
282  s5h1420_writereg(state, 0x3b, (s5h1420_readreg(state, 0x3b) & 0x70) | 0x01);
283 
284  /* set value for B position if requested */
285  if (minicmd == SEC_MINI_B) {
286  s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x04);
287  }
288  msleep(15);
289 
290  /* start transmission */
291  s5h1420_writereg(state, 0x3b, s5h1420_readreg(state, 0x3b) | 0x08);
292 
293  /* wait for transmission to complete */
294  timeout = jiffies + ((100*HZ) / 1000);
295  while(time_before(jiffies, timeout)) {
296  if (!(s5h1420_readreg(state, 0x3b) & 0x08))
297  break;
298 
299  msleep(5);
300  }
301  if (time_after(jiffies, timeout))
302  result = -ETIMEDOUT;
303 
304  /* restore original settings */
305  s5h1420_writereg(state, 0x3b, val);
306  msleep(15);
307  return result;
308 }
309 
310 static fe_status_t s5h1420_get_status_bits(struct s5h1420_state* state)
311 {
312  u8 val;
313  fe_status_t status = 0;
314 
315  val = s5h1420_readreg(state, 0x14);
316  if (val & 0x02)
317  status |= FE_HAS_SIGNAL;
318  if (val & 0x01)
319  status |= FE_HAS_CARRIER;
320  val = s5h1420_readreg(state, 0x36);
321  if (val & 0x01)
322  status |= FE_HAS_VITERBI;
323  if (val & 0x20)
324  status |= FE_HAS_SYNC;
326  status |= FE_HAS_LOCK;
327 
328  return status;
329 }
330 
331 static int s5h1420_read_status(struct dvb_frontend* fe, fe_status_t* status)
332 {
333  struct s5h1420_state* state = fe->demodulator_priv;
334  u8 val;
335 
336  dprintk("enter %s\n", __func__);
337 
338  if (status == NULL)
339  return -EINVAL;
340 
341  /* determine lock state */
342  *status = s5h1420_get_status_bits(state);
343 
344  /* fix for FEC 5/6 inversion issue - if it doesn't quite lock, invert
345  the inversion, wait a bit and check again */
346  if (*status == (FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI)) {
347  val = s5h1420_readreg(state, Vit10);
348  if ((val & 0x07) == 0x03) {
349  if (val & 0x08)
350  s5h1420_writereg(state, Vit09, 0x13);
351  else
352  s5h1420_writereg(state, Vit09, 0x1b);
353 
354  /* wait a bit then update lock status */
355  mdelay(200);
356  *status = s5h1420_get_status_bits(state);
357  }
358  }
359 
360  /* perform post lock setup */
361  if ((*status & FE_HAS_LOCK) && !state->postlocked) {
362 
363  /* calculate the data rate */
364  u32 tmp = s5h1420_getsymbolrate(state);
365  switch (s5h1420_readreg(state, Vit10) & 0x07) {
366  case 0: tmp = (tmp * 2 * 1) / 2; break;
367  case 1: tmp = (tmp * 2 * 2) / 3; break;
368  case 2: tmp = (tmp * 2 * 3) / 4; break;
369  case 3: tmp = (tmp * 2 * 5) / 6; break;
370  case 4: tmp = (tmp * 2 * 6) / 7; break;
371  case 5: tmp = (tmp * 2 * 7) / 8; break;
372  }
373 
374  if (tmp == 0) {
375  printk(KERN_ERR "s5h1420: avoided division by 0\n");
376  tmp = 1;
377  }
378  tmp = state->fclk / tmp;
379 
380 
381  /* set the MPEG_CLK_INTL for the calculated data rate */
382  if (tmp < 2)
383  val = 0x00;
384  else if (tmp < 5)
385  val = 0x01;
386  else if (tmp < 9)
387  val = 0x02;
388  else if (tmp < 13)
389  val = 0x03;
390  else if (tmp < 17)
391  val = 0x04;
392  else if (tmp < 25)
393  val = 0x05;
394  else if (tmp < 33)
395  val = 0x06;
396  else
397  val = 0x07;
398  dprintk("for MPEG_CLK_INTL %d %x\n", tmp, val);
399 
400  s5h1420_writereg(state, FEC01, 0x18);
401  s5h1420_writereg(state, FEC01, 0x10);
402  s5h1420_writereg(state, FEC01, val);
403 
404  /* Enable "MPEG_Out" */
405  val = s5h1420_readreg(state, Mpeg02);
406  s5h1420_writereg(state, Mpeg02, val | (1 << 6));
407 
408  /* kicker disable */
409  val = s5h1420_readreg(state, QPSK01) & 0x7f;
410  s5h1420_writereg(state, QPSK01, val);
411 
412  /* DC freeze TODO it was never activated by default or it can stay activated */
413 
414  if (s5h1420_getsymbolrate(state) >= 20000000) {
415  s5h1420_writereg(state, Loop04, 0x8a);
416  s5h1420_writereg(state, Loop05, 0x6a);
417  } else {
418  s5h1420_writereg(state, Loop04, 0x58);
419  s5h1420_writereg(state, Loop05, 0x27);
420  }
421 
422  /* post-lock processing has been done! */
423  state->postlocked = 1;
424  }
425 
426  dprintk("leave %s\n", __func__);
427 
428  return 0;
429 }
430 
431 static int s5h1420_read_ber(struct dvb_frontend* fe, u32* ber)
432 {
433  struct s5h1420_state* state = fe->demodulator_priv;
434 
435  s5h1420_writereg(state, 0x46, 0x1d);
436  mdelay(25);
437 
438  *ber = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
439 
440  return 0;
441 }
442 
443 static int s5h1420_read_signal_strength(struct dvb_frontend* fe, u16* strength)
444 {
445  struct s5h1420_state* state = fe->demodulator_priv;
446 
447  u8 val = s5h1420_readreg(state, 0x15);
448 
449  *strength = (u16) ((val << 8) | val);
450 
451  return 0;
452 }
453 
454 static int s5h1420_read_ucblocks(struct dvb_frontend* fe, u32* ucblocks)
455 {
456  struct s5h1420_state* state = fe->demodulator_priv;
457 
458  s5h1420_writereg(state, 0x46, 0x1f);
459  mdelay(25);
460 
461  *ucblocks = (s5h1420_readreg(state, 0x48) << 8) | s5h1420_readreg(state, 0x47);
462 
463  return 0;
464 }
465 
466 static void s5h1420_reset(struct s5h1420_state* state)
467 {
468  dprintk("%s\n", __func__);
469  s5h1420_writereg (state, 0x01, 0x08);
470  s5h1420_writereg (state, 0x01, 0x00);
471  udelay(10);
472 }
473 
474 static void s5h1420_setsymbolrate(struct s5h1420_state* state,
475  struct dtv_frontend_properties *p)
476 {
477  u8 v;
478  u64 val;
479 
480  dprintk("enter %s\n", __func__);
481 
482  val = ((u64) p->symbol_rate / 1000ULL) * (1ULL<<24);
483  if (p->symbol_rate < 29000000)
484  val *= 2;
485  do_div(val, (state->fclk / 1000));
486 
487  dprintk("symbol rate register: %06llx\n", (unsigned long long)val);
488 
489  v = s5h1420_readreg(state, Loop01);
490  s5h1420_writereg(state, Loop01, v & 0x7f);
491  s5h1420_writereg(state, Tnco01, val >> 16);
492  s5h1420_writereg(state, Tnco02, val >> 8);
493  s5h1420_writereg(state, Tnco03, val & 0xff);
494  s5h1420_writereg(state, Loop01, v | 0x80);
495  dprintk("leave %s\n", __func__);
496 }
497 
498 static u32 s5h1420_getsymbolrate(struct s5h1420_state* state)
499 {
500  return state->symbol_rate;
501 }
502 
503 static void s5h1420_setfreqoffset(struct s5h1420_state* state, int freqoffset)
504 {
505  int val;
506  u8 v;
507 
508  dprintk("enter %s\n", __func__);
509 
510  /* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
511  * divide fclk by 1000000 to get the correct value. */
512  val = -(int) ((freqoffset * (1<<24)) / (state->fclk / 1000000));
513 
514  dprintk("phase rotator/freqoffset: %d %06x\n", freqoffset, val);
515 
516  v = s5h1420_readreg(state, Loop01);
517  s5h1420_writereg(state, Loop01, v & 0xbf);
518  s5h1420_writereg(state, Pnco01, val >> 16);
519  s5h1420_writereg(state, Pnco02, val >> 8);
520  s5h1420_writereg(state, Pnco03, val & 0xff);
521  s5h1420_writereg(state, Loop01, v | 0x40);
522  dprintk("leave %s\n", __func__);
523 }
524 
525 static int s5h1420_getfreqoffset(struct s5h1420_state* state)
526 {
527  int val;
528 
529  s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) | 0x08);
530  val = s5h1420_readreg(state, 0x0e) << 16;
531  val |= s5h1420_readreg(state, 0x0f) << 8;
532  val |= s5h1420_readreg(state, 0x10);
533  s5h1420_writereg(state, 0x06, s5h1420_readreg(state, 0x06) & 0xf7);
534 
535  if (val & 0x800000)
536  val |= 0xff000000;
537 
538  /* remember freqoffset is in kHz, but the chip wants the offset in Hz, so
539  * divide fclk by 1000000 to get the correct value. */
540  val = (((-val) * (state->fclk/1000000)) / (1<<24));
541 
542  return val;
543 }
544 
545 static void s5h1420_setfec_inversion(struct s5h1420_state* state,
546  struct dtv_frontend_properties *p)
547 {
548  u8 inversion = 0;
549  u8 vit08, vit09;
550 
551  dprintk("enter %s\n", __func__);
552 
553  if (p->inversion == INVERSION_OFF)
554  inversion = state->config->invert ? 0x08 : 0;
555  else if (p->inversion == INVERSION_ON)
556  inversion = state->config->invert ? 0 : 0x08;
557 
558  if ((p->fec_inner == FEC_AUTO) || (p->inversion == INVERSION_AUTO)) {
559  vit08 = 0x3f;
560  vit09 = 0;
561  } else {
562  switch (p->fec_inner) {
563  case FEC_1_2:
564  vit08 = 0x01; vit09 = 0x10;
565  break;
566 
567  case FEC_2_3:
568  vit08 = 0x02; vit09 = 0x11;
569  break;
570 
571  case FEC_3_4:
572  vit08 = 0x04; vit09 = 0x12;
573  break;
574 
575  case FEC_5_6:
576  vit08 = 0x08; vit09 = 0x13;
577  break;
578 
579  case FEC_6_7:
580  vit08 = 0x10; vit09 = 0x14;
581  break;
582 
583  case FEC_7_8:
584  vit08 = 0x20; vit09 = 0x15;
585  break;
586 
587  default:
588  return;
589  }
590  }
591  vit09 |= inversion;
592  dprintk("fec: %02x %02x\n", vit08, vit09);
593  s5h1420_writereg(state, Vit08, vit08);
594  s5h1420_writereg(state, Vit09, vit09);
595  dprintk("leave %s\n", __func__);
596 }
597 
598 static fe_code_rate_t s5h1420_getfec(struct s5h1420_state* state)
599 {
600  switch(s5h1420_readreg(state, 0x32) & 0x07) {
601  case 0:
602  return FEC_1_2;
603 
604  case 1:
605  return FEC_2_3;
606 
607  case 2:
608  return FEC_3_4;
609 
610  case 3:
611  return FEC_5_6;
612 
613  case 4:
614  return FEC_6_7;
615 
616  case 5:
617  return FEC_7_8;
618  }
619 
620  return FEC_NONE;
621 }
622 
623 static fe_spectral_inversion_t s5h1420_getinversion(struct s5h1420_state* state)
624 {
625  if (s5h1420_readreg(state, 0x32) & 0x08)
626  return INVERSION_ON;
627 
628  return INVERSION_OFF;
629 }
630 
631 static int s5h1420_set_frontend(struct dvb_frontend *fe)
632 {
634  struct s5h1420_state* state = fe->demodulator_priv;
635  int frequency_delta;
636  struct dvb_frontend_tune_settings fesettings;
637 
638  dprintk("enter %s\n", __func__);
639 
640  /* check if we should do a fast-tune */
641  s5h1420_get_tune_settings(fe, &fesettings);
642  frequency_delta = p->frequency - state->tunedfreq;
643  if ((frequency_delta > -fesettings.max_drift) &&
644  (frequency_delta < fesettings.max_drift) &&
645  (frequency_delta != 0) &&
646  (state->fec_inner == p->fec_inner) &&
647  (state->symbol_rate == p->symbol_rate)) {
648 
649  if (fe->ops.tuner_ops.set_params) {
650  fe->ops.tuner_ops.set_params(fe);
651  if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
652  }
653  if (fe->ops.tuner_ops.get_frequency) {
654  u32 tmp;
655  fe->ops.tuner_ops.get_frequency(fe, &tmp);
656  if (fe->ops.i2c_gate_ctrl) fe->ops.i2c_gate_ctrl(fe, 0);
657  s5h1420_setfreqoffset(state, p->frequency - tmp);
658  } else {
659  s5h1420_setfreqoffset(state, 0);
660  }
661  dprintk("simple tune\n");
662  return 0;
663  }
664  dprintk("tuning demod\n");
665 
666  /* first of all, software reset */
667  s5h1420_reset(state);
668 
669  /* set s5h1420 fclk PLL according to desired symbol rate */
670  if (p->symbol_rate > 33000000)
671  state->fclk = 80000000;
672  else if (p->symbol_rate > 28500000)
673  state->fclk = 59000000;
674  else if (p->symbol_rate > 25000000)
675  state->fclk = 86000000;
676  else if (p->symbol_rate > 1900000)
677  state->fclk = 88000000;
678  else
679  state->fclk = 44000000;
680 
681  dprintk("pll01: %d, ToneFreq: %d\n", state->fclk/1000000 - 8, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
682  s5h1420_writereg(state, PLL01, state->fclk/1000000 - 8);
683  s5h1420_writereg(state, PLL02, 0x40);
684  s5h1420_writereg(state, DiS01, (state->fclk + (TONE_FREQ * 32) - 1) / (TONE_FREQ * 32));
685 
686  /* TODO DC offset removal, config parameter ? */
687  if (p->symbol_rate > 29000000)
688  s5h1420_writereg(state, QPSK01, 0xae | 0x10);
689  else
690  s5h1420_writereg(state, QPSK01, 0xac | 0x10);
691 
692  /* set misc registers */
693  s5h1420_writereg(state, CON_1, 0x00);
694  s5h1420_writereg(state, QPSK02, 0x00);
695  s5h1420_writereg(state, Pre01, 0xb0);
696 
697  s5h1420_writereg(state, Loop01, 0xF0);
698  s5h1420_writereg(state, Loop02, 0x2a); /* e7 for s5h1420 */
699  s5h1420_writereg(state, Loop03, 0x79); /* 78 for s5h1420 */
700  if (p->symbol_rate > 20000000)
701  s5h1420_writereg(state, Loop04, 0x79);
702  else
703  s5h1420_writereg(state, Loop04, 0x58);
704  s5h1420_writereg(state, Loop05, 0x6b);
705 
706  if (p->symbol_rate >= 8000000)
707  s5h1420_writereg(state, Post01, (0 << 6) | 0x10);
708  else if (p->symbol_rate >= 4000000)
709  s5h1420_writereg(state, Post01, (1 << 6) | 0x10);
710  else
711  s5h1420_writereg(state, Post01, (3 << 6) | 0x10);
712 
713  s5h1420_writereg(state, Monitor12, 0x00); /* unfreeze DC compensation */
714 
715  s5h1420_writereg(state, Sync01, 0x33);
716  s5h1420_writereg(state, Mpeg01, state->config->cdclk_polarity);
717  s5h1420_writereg(state, Mpeg02, 0x3d); /* Parallel output more, disabled -> enabled later */
718  s5h1420_writereg(state, Err01, 0x03); /* 0x1d for s5h1420 */
719 
720  s5h1420_writereg(state, Vit06, 0x6e); /* 0x8e for s5h1420 */
721  s5h1420_writereg(state, DiS03, 0x00);
722  s5h1420_writereg(state, Rf01, 0x61); /* Tuner i2c address - for the gate controller */
723 
724  /* set tuner PLL */
725  if (fe->ops.tuner_ops.set_params) {
726  fe->ops.tuner_ops.set_params(fe);
727  if (fe->ops.i2c_gate_ctrl)
728  fe->ops.i2c_gate_ctrl(fe, 0);
729  s5h1420_setfreqoffset(state, 0);
730  }
731 
732  /* set the reset of the parameters */
733  s5h1420_setsymbolrate(state, p);
734  s5h1420_setfec_inversion(state, p);
735 
736  /* start QPSK */
737  s5h1420_writereg(state, QPSK01, s5h1420_readreg(state, QPSK01) | 1);
738 
739  state->fec_inner = p->fec_inner;
740  state->symbol_rate = p->symbol_rate;
741  state->postlocked = 0;
742  state->tunedfreq = p->frequency;
743 
744  dprintk("leave %s\n", __func__);
745  return 0;
746 }
747 
748 static int s5h1420_get_frontend(struct dvb_frontend* fe)
749 {
751  struct s5h1420_state* state = fe->demodulator_priv;
752 
753  p->frequency = state->tunedfreq + s5h1420_getfreqoffset(state);
754  p->inversion = s5h1420_getinversion(state);
755  p->symbol_rate = s5h1420_getsymbolrate(state);
756  p->fec_inner = s5h1420_getfec(state);
757 
758  return 0;
759 }
760 
761 static int s5h1420_get_tune_settings(struct dvb_frontend* fe,
762  struct dvb_frontend_tune_settings* fesettings)
763 {
765  if (p->symbol_rate > 20000000) {
766  fesettings->min_delay_ms = 50;
767  fesettings->step_size = 2000;
768  fesettings->max_drift = 8000;
769  } else if (p->symbol_rate > 12000000) {
770  fesettings->min_delay_ms = 100;
771  fesettings->step_size = 1500;
772  fesettings->max_drift = 9000;
773  } else if (p->symbol_rate > 8000000) {
774  fesettings->min_delay_ms = 100;
775  fesettings->step_size = 1000;
776  fesettings->max_drift = 8000;
777  } else if (p->symbol_rate > 4000000) {
778  fesettings->min_delay_ms = 100;
779  fesettings->step_size = 500;
780  fesettings->max_drift = 7000;
781  } else if (p->symbol_rate > 2000000) {
782  fesettings->min_delay_ms = 200;
783  fesettings->step_size = (p->symbol_rate / 8000);
784  fesettings->max_drift = 14 * fesettings->step_size;
785  } else {
786  fesettings->min_delay_ms = 200;
787  fesettings->step_size = (p->symbol_rate / 8000);
788  fesettings->max_drift = 18 * fesettings->step_size;
789  }
790 
791  return 0;
792 }
793 
794 static int s5h1420_i2c_gate_ctrl(struct dvb_frontend* fe, int enable)
795 {
796  struct s5h1420_state* state = fe->demodulator_priv;
797 
798  if (enable)
799  return s5h1420_writereg(state, 0x02, state->CON_1_val | 1);
800  else
801  return s5h1420_writereg(state, 0x02, state->CON_1_val & 0xfe);
802 }
803 
804 static int s5h1420_init (struct dvb_frontend* fe)
805 {
806  struct s5h1420_state* state = fe->demodulator_priv;
807 
808  /* disable power down and do reset */
809  state->CON_1_val = state->config->serial_mpeg << 4;
810  s5h1420_writereg(state, 0x02, state->CON_1_val);
811  msleep(10);
812  s5h1420_reset(state);
813 
814  return 0;
815 }
816 
817 static int s5h1420_sleep(struct dvb_frontend* fe)
818 {
819  struct s5h1420_state* state = fe->demodulator_priv;
820  state->CON_1_val = 0x12;
821  return s5h1420_writereg(state, 0x02, state->CON_1_val);
822 }
823 
824 static void s5h1420_release(struct dvb_frontend* fe)
825 {
826  struct s5h1420_state* state = fe->demodulator_priv;
828  kfree(state);
829 }
830 
831 static u32 s5h1420_tuner_i2c_func(struct i2c_adapter *adapter)
832 {
833  return I2C_FUNC_I2C;
834 }
835 
836 static int s5h1420_tuner_i2c_tuner_xfer(struct i2c_adapter *i2c_adap, struct i2c_msg msg[], int num)
837 {
838  struct s5h1420_state *state = i2c_get_adapdata(i2c_adap);
839  struct i2c_msg m[1 + num];
840  u8 tx_open[2] = { CON_1, state->CON_1_val | 1 }; /* repeater stops once there was a stop condition */
841 
842  memset(m, 0, sizeof(struct i2c_msg) * (1 + num));
843 
844  m[0].addr = state->config->demod_address;
845  m[0].buf = tx_open;
846  m[0].len = 2;
847 
848  memcpy(&m[1], msg, sizeof(struct i2c_msg) * num);
849 
850  return i2c_transfer(state->i2c, m, 1+num) == 1 + num ? num : -EIO;
851 }
852 
853 static struct i2c_algorithm s5h1420_tuner_i2c_algo = {
854  .master_xfer = s5h1420_tuner_i2c_tuner_xfer,
855  .functionality = s5h1420_tuner_i2c_func,
856 };
857 
859 {
860  struct s5h1420_state *state = fe->demodulator_priv;
861  return &state->tuner_i2c_adapter;
862 }
864 
865 static struct dvb_frontend_ops s5h1420_ops;
866 
868  struct i2c_adapter *i2c)
869 {
870  /* allocate memory for the internal state */
871  struct s5h1420_state *state = kzalloc(sizeof(struct s5h1420_state), GFP_KERNEL);
872  u8 i;
873 
874  if (state == NULL)
875  goto error;
876 
877  /* setup the state */
878  state->config = config;
879  state->i2c = i2c;
880  state->postlocked = 0;
881  state->fclk = 88000000;
882  state->tunedfreq = 0;
883  state->fec_inner = FEC_NONE;
884  state->symbol_rate = 0;
885 
886  /* check if the demod is there + identify it */
887  i = s5h1420_readreg(state, ID01);
888  if (i != 0x03)
889  goto error;
890 
891  memset(state->shadow, 0xff, sizeof(state->shadow));
892 
893  for (i = 0; i < 0x50; i++)
894  state->shadow[i] = s5h1420_readreg(state, i);
895 
896  /* create dvb_frontend */
897  memcpy(&state->frontend.ops, &s5h1420_ops, sizeof(struct dvb_frontend_ops));
898  state->frontend.demodulator_priv = state;
899 
900  /* create tuner i2c adapter */
901  strlcpy(state->tuner_i2c_adapter.name, "S5H1420-PN1010 tuner I2C bus",
902  sizeof(state->tuner_i2c_adapter.name));
903  state->tuner_i2c_adapter.algo = &s5h1420_tuner_i2c_algo;
904  state->tuner_i2c_adapter.algo_data = NULL;
905  i2c_set_adapdata(&state->tuner_i2c_adapter, state);
906  if (i2c_add_adapter(&state->tuner_i2c_adapter) < 0) {
907  printk(KERN_ERR "S5H1420/PN1010: tuner i2c bus could not be initialized\n");
908  goto error;
909  }
910 
911  return &state->frontend;
912 
913 error:
914  kfree(state);
915  return NULL;
916 }
918 
919 static struct dvb_frontend_ops s5h1420_ops = {
920  .delsys = { SYS_DVBS },
921  .info = {
922  .name = "Samsung S5H1420/PnpNetwork PN1010 DVB-S",
923  .frequency_min = 950000,
924  .frequency_max = 2150000,
925  .frequency_stepsize = 125, /* kHz for QPSK frontends */
926  .frequency_tolerance = 29500,
927  .symbol_rate_min = 1000000,
928  .symbol_rate_max = 45000000,
929  /* .symbol_rate_tolerance = ???,*/
930  .caps = FE_CAN_INVERSION_AUTO |
934  },
935 
936  .release = s5h1420_release,
937 
938  .init = s5h1420_init,
939  .sleep = s5h1420_sleep,
940  .i2c_gate_ctrl = s5h1420_i2c_gate_ctrl,
941 
942  .set_frontend = s5h1420_set_frontend,
943  .get_frontend = s5h1420_get_frontend,
944  .get_tune_settings = s5h1420_get_tune_settings,
945 
946  .read_status = s5h1420_read_status,
947  .read_ber = s5h1420_read_ber,
948  .read_signal_strength = s5h1420_read_signal_strength,
949  .read_ucblocks = s5h1420_read_ucblocks,
950 
951  .diseqc_send_master_cmd = s5h1420_send_master_cmd,
952  .diseqc_recv_slave_reply = s5h1420_recv_slave_reply,
953  .diseqc_send_burst = s5h1420_send_burst,
954  .set_tone = s5h1420_set_tone,
955  .set_voltage = s5h1420_set_voltage,
956 };
957 
958 MODULE_DESCRIPTION("Samsung S5H1420/PnpNetwork PN1010 DVB-S Demodulator driver");
959 MODULE_AUTHOR("Andrew de Quincey, Patrick Boettcher");
960 MODULE_LICENSE("GPL");