Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
perf_event.c
Go to the documentation of this file.
1 /* Performance event support for sparc64.
2  *
3  * Copyright (C) 2009, 2010 David S. Miller <[email protected]>
4  *
5  * This code is based almost entirely upon the x86 perf event
6  * code, which is:
7  *
8  * Copyright (C) 2008 Thomas Gleixner <[email protected]>
9  * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10  * Copyright (C) 2009 Jaswinder Singh Rajput
11  * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12  * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <[email protected]>
13  */
14 
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
21 
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <linux/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
28 #include <asm/cacheflush.h>
29 
30 #include "kernel.h"
31 #include "kstack.h"
32 
33 /* Two classes of sparc64 chips currently exist. All of which have
34  * 32-bit counters which can generate overflow interrupts on the
35  * transition from 0xffffffff to 0.
36  *
37  * All chips upto and including SPARC-T3 have two performance
38  * counters. The two 32-bit counters are accessed in one go using a
39  * single 64-bit register.
40  *
41  * On these older chips both counters are controlled using a single
42  * control register. The only way to stop all sampling is to clear
43  * all of the context (user, supervisor, hypervisor) sampling enable
44  * bits. But these bits apply to both counters, thus the two counters
45  * can't be enabled/disabled individually.
46  *
47  * Furthermore, the control register on these older chips have two
48  * event fields, one for each of the two counters. It's thus nearly
49  * impossible to have one counter going while keeping the other one
50  * stopped. Therefore it is possible to get overflow interrupts for
51  * counters not currently "in use" and that condition must be checked
52  * in the overflow interrupt handler.
53  *
54  * So we use a hack, in that we program inactive counters with the
55  * "sw_count0" and "sw_count1" events. These count how many times
56  * the instruction "sethi %hi(0xfc000), %g0" is executed. It's an
57  * unusual way to encode a NOP and therefore will not trigger in
58  * normal code.
59  *
60  * Starting with SPARC-T4 we have one control register per counter.
61  * And the counters are stored in individual registers. The registers
62  * for the counters are 64-bit but only a 32-bit counter is
63  * implemented. The event selections on SPARC-T4 lack any
64  * restrictions, therefore we can elide all of the complicated
65  * conflict resolution code we have for SPARC-T3 and earlier chips.
66  */
67 
68 #define MAX_HWEVENTS 4
69 #define MAX_PCRS 4
70 #define MAX_PERIOD ((1UL << 32) - 1)
71 
72 #define PIC_UPPER_INDEX 0
73 #define PIC_LOWER_INDEX 1
74 #define PIC_NO_INDEX -1
75 
76 struct cpu_hw_events {
77  /* Number of events currently scheduled onto this cpu.
78  * This tells how many entries in the arrays below
79  * are valid.
80  */
81  int n_events;
82 
83  /* Number of new events added since the last hw_perf_disable().
84  * This works because the perf event layer always adds new
85  * events inside of a perf_{disable,enable}() sequence.
86  */
87  int n_added;
88 
89  /* Array of events current scheduled on this cpu. */
90  struct perf_event *event[MAX_HWEVENTS];
91 
92  /* Array of encoded longs, specifying the %pcr register
93  * encoding and the mask of PIC counters this even can
94  * be scheduled on. See perf_event_encode() et al.
95  */
96  unsigned long events[MAX_HWEVENTS];
97 
98  /* The current counter index assigned to an event. When the
99  * event hasn't been programmed into the cpu yet, this will
100  * hold PIC_NO_INDEX. The event->hw.idx value tells us where
101  * we ought to schedule the event.
102  */
104 
105  /* Software copy of %pcr register(s) on this cpu. */
107 
108  /* Enabled/disable state. */
109  int enabled;
110 
111  unsigned int group_flag;
112 };
113 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
114 
115 /* An event map describes the characteristics of a performance
116  * counter event. In particular it gives the encoding as well as
117  * a mask telling which counters the event can be measured on.
118  *
119  * The mask is unused on SPARC-T4 and later.
120  */
124 #define PIC_NONE 0x00
125 #define PIC_UPPER 0x01
126 #define PIC_LOWER 0x02
127 };
128 
129 /* Encode a perf_event_map entry into a long. */
130 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
131 {
132  return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
133 }
134 
135 static u8 perf_event_get_msk(unsigned long val)
136 {
137  return val & 0xff;
138 }
139 
140 static u64 perf_event_get_enc(unsigned long val)
141 {
142  return val >> 16;
143 }
144 
145 #define C(x) PERF_COUNT_HW_CACHE_##x
146 
147 #define CACHE_OP_UNSUPPORTED 0xfffe
148 #define CACHE_OP_NONSENSE 0xffff
149 
154 
155 struct sparc_pmu {
156  const struct perf_event_map *(*event_map)(int);
164  int user_bit;
165  int priv_bit;
166  int hv_bit;
167  int irq_bit;
170  unsigned int flags;
171 #define SPARC_PMU_ALL_EXCLUDES_SAME 0x00000001
172 #define SPARC_PMU_HAS_CONFLICTS 0x00000002
174  int num_pcrs;
176 };
177 
178 static u32 sparc_default_read_pmc(int idx)
179 {
180  u64 val;
181 
182  val = pcr_ops->read_pic(0);
183  if (idx == PIC_UPPER_INDEX)
184  val >>= 32;
185 
186  return val & 0xffffffff;
187 }
188 
189 static void sparc_default_write_pmc(int idx, u64 val)
190 {
191  u64 shift, mask, pic;
192 
193  shift = 0;
194  if (idx == PIC_UPPER_INDEX)
195  shift = 32;
196 
197  mask = ((u64) 0xffffffff) << shift;
198  val <<= shift;
199 
200  pic = pcr_ops->read_pic(0);
201  pic &= ~mask;
202  pic |= val;
203  pcr_ops->write_pic(0, pic);
204 }
205 
206 static const struct perf_event_map ultra3_perfmon_event_map[] = {
207  [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
210  [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
211 };
212 
213 static const struct perf_event_map *ultra3_event_map(int event_id)
214 {
215  return &ultra3_perfmon_event_map[event_id];
216 }
217 
218 static const cache_map_t ultra3_cache_map = {
219 [C(L1D)] = {
220  [C(OP_READ)] = {
221  [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
222  [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
223  },
224  [C(OP_WRITE)] = {
225  [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
226  [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
227  },
228  [C(OP_PREFETCH)] = {
229  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
230  [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
231  },
232 },
233 [C(L1I)] = {
234  [C(OP_READ)] = {
235  [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
236  [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
237  },
238  [ C(OP_WRITE) ] = {
239  [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
240  [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
241  },
242  [ C(OP_PREFETCH) ] = {
243  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
244  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
245  },
246 },
247 [C(LL)] = {
248  [C(OP_READ)] = {
249  [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
250  [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
251  },
252  [C(OP_WRITE)] = {
253  [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
254  [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
255  },
256  [C(OP_PREFETCH)] = {
257  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
258  [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
259  },
260 },
261 [C(DTLB)] = {
262  [C(OP_READ)] = {
263  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
264  [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
265  },
266  [ C(OP_WRITE) ] = {
267  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
268  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
269  },
270  [ C(OP_PREFETCH) ] = {
271  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
272  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
273  },
274 },
275 [C(ITLB)] = {
276  [C(OP_READ)] = {
277  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
278  [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
279  },
280  [ C(OP_WRITE) ] = {
281  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
282  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
283  },
284  [ C(OP_PREFETCH) ] = {
285  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
286  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
287  },
288 },
289 [C(BPU)] = {
290  [C(OP_READ)] = {
291  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
292  [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
293  },
294  [ C(OP_WRITE) ] = {
295  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
296  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
297  },
298  [ C(OP_PREFETCH) ] = {
299  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
300  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
301  },
302 },
303 [C(NODE)] = {
304  [C(OP_READ)] = {
305  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
306  [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
307  },
308  [ C(OP_WRITE) ] = {
309  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
310  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
311  },
312  [ C(OP_PREFETCH) ] = {
313  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
314  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
315  },
316 },
317 };
318 
319 static const struct sparc_pmu ultra3_pmu = {
320  .event_map = ultra3_event_map,
321  .cache_map = &ultra3_cache_map,
322  .max_events = ARRAY_SIZE(ultra3_perfmon_event_map),
323  .read_pmc = sparc_default_read_pmc,
324  .write_pmc = sparc_default_write_pmc,
325  .upper_shift = 11,
326  .lower_shift = 4,
327  .event_mask = 0x3f,
328  .user_bit = PCR_UTRACE,
329  .priv_bit = PCR_STRACE,
330  .upper_nop = 0x1c,
331  .lower_nop = 0x14,
332  .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
334  .max_hw_events = 2,
335  .num_pcrs = 1,
336  .num_pic_regs = 1,
337 };
338 
339 /* Niagara1 is very limited. The upper PIC is hard-locked to count
340  * only instructions, so it is free running which creates all kinds of
341  * problems. Some hardware designs make one wonder if the creator
342  * even looked at how this stuff gets used by software.
343  */
344 static const struct perf_event_map niagara1_perfmon_event_map[] = {
345  [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
349 };
350 
351 static const struct perf_event_map *niagara1_event_map(int event_id)
352 {
353  return &niagara1_perfmon_event_map[event_id];
354 }
355 
356 static const cache_map_t niagara1_cache_map = {
357 [C(L1D)] = {
358  [C(OP_READ)] = {
359  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
360  [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
361  },
362  [C(OP_WRITE)] = {
363  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
364  [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
365  },
366  [C(OP_PREFETCH)] = {
367  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
368  [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
369  },
370 },
371 [C(L1I)] = {
372  [C(OP_READ)] = {
373  [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
374  [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
375  },
376  [ C(OP_WRITE) ] = {
377  [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
378  [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
379  },
380  [ C(OP_PREFETCH) ] = {
381  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
382  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
383  },
384 },
385 [C(LL)] = {
386  [C(OP_READ)] = {
387  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
388  [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
389  },
390  [C(OP_WRITE)] = {
391  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
392  [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
393  },
394  [C(OP_PREFETCH)] = {
395  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
396  [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
397  },
398 },
399 [C(DTLB)] = {
400  [C(OP_READ)] = {
401  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
402  [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
403  },
404  [ C(OP_WRITE) ] = {
405  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
406  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
407  },
408  [ C(OP_PREFETCH) ] = {
409  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
410  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
411  },
412 },
413 [C(ITLB)] = {
414  [C(OP_READ)] = {
415  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
416  [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
417  },
418  [ C(OP_WRITE) ] = {
419  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
420  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
421  },
422  [ C(OP_PREFETCH) ] = {
423  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
424  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
425  },
426 },
427 [C(BPU)] = {
428  [C(OP_READ)] = {
429  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
430  [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
431  },
432  [ C(OP_WRITE) ] = {
433  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
434  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
435  },
436  [ C(OP_PREFETCH) ] = {
437  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
438  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
439  },
440 },
441 [C(NODE)] = {
442  [C(OP_READ)] = {
443  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
444  [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
445  },
446  [ C(OP_WRITE) ] = {
447  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
448  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
449  },
450  [ C(OP_PREFETCH) ] = {
451  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
452  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
453  },
454 },
455 };
456 
457 static const struct sparc_pmu niagara1_pmu = {
458  .event_map = niagara1_event_map,
459  .cache_map = &niagara1_cache_map,
460  .max_events = ARRAY_SIZE(niagara1_perfmon_event_map),
461  .read_pmc = sparc_default_read_pmc,
462  .write_pmc = sparc_default_write_pmc,
463  .upper_shift = 0,
464  .lower_shift = 4,
465  .event_mask = 0x7,
466  .user_bit = PCR_UTRACE,
467  .priv_bit = PCR_STRACE,
468  .upper_nop = 0x0,
469  .lower_nop = 0x0,
470  .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
472  .max_hw_events = 2,
473  .num_pcrs = 1,
474  .num_pic_regs = 1,
475 };
476 
477 static const struct perf_event_map niagara2_perfmon_event_map[] = {
478  [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
484 };
485 
486 static const struct perf_event_map *niagara2_event_map(int event_id)
487 {
488  return &niagara2_perfmon_event_map[event_id];
489 }
490 
491 static const cache_map_t niagara2_cache_map = {
492 [C(L1D)] = {
493  [C(OP_READ)] = {
494  [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
495  [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
496  },
497  [C(OP_WRITE)] = {
498  [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
499  [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
500  },
501  [C(OP_PREFETCH)] = {
502  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
503  [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
504  },
505 },
506 [C(L1I)] = {
507  [C(OP_READ)] = {
508  [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
509  [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
510  },
511  [ C(OP_WRITE) ] = {
512  [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
513  [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
514  },
515  [ C(OP_PREFETCH) ] = {
516  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
517  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
518  },
519 },
520 [C(LL)] = {
521  [C(OP_READ)] = {
522  [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
523  [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
524  },
525  [C(OP_WRITE)] = {
526  [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
527  [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
528  },
529  [C(OP_PREFETCH)] = {
530  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
531  [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
532  },
533 },
534 [C(DTLB)] = {
535  [C(OP_READ)] = {
536  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
537  [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
538  },
539  [ C(OP_WRITE) ] = {
540  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
541  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
542  },
543  [ C(OP_PREFETCH) ] = {
544  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
545  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
546  },
547 },
548 [C(ITLB)] = {
549  [C(OP_READ)] = {
550  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
551  [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
552  },
553  [ C(OP_WRITE) ] = {
554  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
555  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
556  },
557  [ C(OP_PREFETCH) ] = {
558  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
559  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
560  },
561 },
562 [C(BPU)] = {
563  [C(OP_READ)] = {
564  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
565  [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
566  },
567  [ C(OP_WRITE) ] = {
568  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
569  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
570  },
571  [ C(OP_PREFETCH) ] = {
572  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
573  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
574  },
575 },
576 [C(NODE)] = {
577  [C(OP_READ)] = {
578  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
579  [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
580  },
581  [ C(OP_WRITE) ] = {
582  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
583  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
584  },
585  [ C(OP_PREFETCH) ] = {
586  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
587  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
588  },
589 },
590 };
591 
592 static const struct sparc_pmu niagara2_pmu = {
593  .event_map = niagara2_event_map,
594  .cache_map = &niagara2_cache_map,
595  .max_events = ARRAY_SIZE(niagara2_perfmon_event_map),
596  .read_pmc = sparc_default_read_pmc,
597  .write_pmc = sparc_default_write_pmc,
598  .upper_shift = 19,
599  .lower_shift = 6,
600  .event_mask = 0xfff,
601  .user_bit = PCR_UTRACE,
602  .priv_bit = PCR_STRACE,
603  .hv_bit = PCR_N2_HTRACE,
604  .irq_bit = 0x30,
605  .upper_nop = 0x220,
606  .lower_nop = 0x220,
607  .flags = (SPARC_PMU_ALL_EXCLUDES_SAME |
609  .max_hw_events = 2,
610  .num_pcrs = 1,
611  .num_pic_regs = 1,
612 };
613 
614 static const struct perf_event_map niagara4_perfmon_event_map[] = {
615  [PERF_COUNT_HW_CPU_CYCLES] = { (26 << 6) },
616  [PERF_COUNT_HW_INSTRUCTIONS] = { (3 << 6) | 0x3f },
617  [PERF_COUNT_HW_CACHE_REFERENCES] = { (3 << 6) | 0x04 },
618  [PERF_COUNT_HW_CACHE_MISSES] = { (16 << 6) | 0x07 },
619  [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { (4 << 6) | 0x01 },
620  [PERF_COUNT_HW_BRANCH_MISSES] = { (25 << 6) | 0x0f },
621 };
622 
623 static const struct perf_event_map *niagara4_event_map(int event_id)
624 {
625  return &niagara4_perfmon_event_map[event_id];
626 }
627 
628 static const cache_map_t niagara4_cache_map = {
629 [C(L1D)] = {
630  [C(OP_READ)] = {
631  [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
632  [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
633  },
634  [C(OP_WRITE)] = {
635  [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
636  [C(RESULT_MISS)] = { (16 << 6) | 0x07 },
637  },
638  [C(OP_PREFETCH)] = {
639  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
640  [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
641  },
642 },
643 [C(L1I)] = {
644  [C(OP_READ)] = {
645  [C(RESULT_ACCESS)] = { (3 << 6) | 0x3f },
646  [C(RESULT_MISS)] = { (11 << 6) | 0x03 },
647  },
648  [ C(OP_WRITE) ] = {
649  [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
650  [ C(RESULT_MISS) ] = { CACHE_OP_NONSENSE },
651  },
652  [ C(OP_PREFETCH) ] = {
653  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
654  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
655  },
656 },
657 [C(LL)] = {
658  [C(OP_READ)] = {
659  [C(RESULT_ACCESS)] = { (3 << 6) | 0x04 },
660  [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
661  },
662  [C(OP_WRITE)] = {
663  [C(RESULT_ACCESS)] = { (3 << 6) | 0x08 },
664  [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
665  },
666  [C(OP_PREFETCH)] = {
667  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
668  [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
669  },
670 },
671 [C(DTLB)] = {
672  [C(OP_READ)] = {
673  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
674  [C(RESULT_MISS)] = { (17 << 6) | 0x3f },
675  },
676  [ C(OP_WRITE) ] = {
677  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
678  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
679  },
680  [ C(OP_PREFETCH) ] = {
681  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
682  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
683  },
684 },
685 [C(ITLB)] = {
686  [C(OP_READ)] = {
687  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
688  [C(RESULT_MISS)] = { (6 << 6) | 0x3f },
689  },
690  [ C(OP_WRITE) ] = {
691  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
692  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
693  },
694  [ C(OP_PREFETCH) ] = {
695  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
696  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
697  },
698 },
699 [C(BPU)] = {
700  [C(OP_READ)] = {
701  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
702  [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
703  },
704  [ C(OP_WRITE) ] = {
705  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
706  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
707  },
708  [ C(OP_PREFETCH) ] = {
709  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
710  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
711  },
712 },
713 [C(NODE)] = {
714  [C(OP_READ)] = {
715  [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
716  [C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
717  },
718  [ C(OP_WRITE) ] = {
719  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
720  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
721  },
722  [ C(OP_PREFETCH) ] = {
723  [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
724  [ C(RESULT_MISS) ] = { CACHE_OP_UNSUPPORTED },
725  },
726 },
727 };
728 
729 static u32 sparc_vt_read_pmc(int idx)
730 {
731  u64 val = pcr_ops->read_pic(idx);
732 
733  return val & 0xffffffff;
734 }
735 
736 static void sparc_vt_write_pmc(int idx, u64 val)
737 {
738  u64 pcr;
739 
740  /* There seems to be an internal latch on the overflow event
741  * on SPARC-T4 that prevents it from triggering unless you
742  * update the PIC exactly as we do here. The requirement
743  * seems to be that you have to turn off event counting in the
744  * PCR around the PIC update.
745  *
746  * For example, after the following sequence:
747  *
748  * 1) set PIC to -1
749  * 2) enable event counting and overflow reporting in PCR
750  * 3) overflow triggers, softint 15 handler invoked
751  * 4) clear OV bit in PCR
752  * 5) write PIC to -1
753  *
754  * a subsequent overflow event will not trigger. This
755  * sequence works on SPARC-T3 and previous chips.
756  */
757  pcr = pcr_ops->read_pcr(idx);
759 
760  pcr_ops->write_pic(idx, val & 0xffffffff);
761 
762  pcr_ops->write_pcr(idx, pcr);
763 }
764 
765 static const struct sparc_pmu niagara4_pmu = {
766  .event_map = niagara4_event_map,
767  .cache_map = &niagara4_cache_map,
768  .max_events = ARRAY_SIZE(niagara4_perfmon_event_map),
769  .read_pmc = sparc_vt_read_pmc,
770  .write_pmc = sparc_vt_write_pmc,
771  .upper_shift = 5,
772  .lower_shift = 5,
773  .event_mask = 0x7ff,
774  .user_bit = PCR_N4_UTRACE,
775  .priv_bit = PCR_N4_STRACE,
776 
777  /* We explicitly don't support hypervisor tracing. The T4
778  * generates the overflow event for precise events via a trap
779  * which will not be generated (ie. it's completely lost) if
780  * we happen to be in the hypervisor when the event triggers.
781  * Essentially, the overflow event reporting is completely
782  * unusable when you have hypervisor mode tracing enabled.
783  */
784  .hv_bit = 0,
785 
786  .irq_bit = PCR_N4_TOE,
787  .upper_nop = 0,
788  .lower_nop = 0,
789  .flags = 0,
790  .max_hw_events = 4,
791  .num_pcrs = 4,
792  .num_pic_regs = 4,
793 };
794 
795 static const struct sparc_pmu *sparc_pmu __read_mostly;
796 
797 static u64 event_encoding(u64 event_id, int idx)
798 {
799  if (idx == PIC_UPPER_INDEX)
800  event_id <<= sparc_pmu->upper_shift;
801  else
802  event_id <<= sparc_pmu->lower_shift;
803  return event_id;
804 }
805 
806 static u64 mask_for_index(int idx)
807 {
808  return event_encoding(sparc_pmu->event_mask, idx);
809 }
810 
811 static u64 nop_for_index(int idx)
812 {
813  return event_encoding(idx == PIC_UPPER_INDEX ?
815  sparc_pmu->lower_nop, idx);
816 }
817 
818 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
819 {
820  u64 enc, val, mask = mask_for_index(idx);
821  int pcr_index = 0;
822 
823  if (sparc_pmu->num_pcrs > 1)
824  pcr_index = idx;
825 
826  enc = perf_event_get_enc(cpuc->events[idx]);
827 
828  val = cpuc->pcr[pcr_index];
829  val &= ~mask;
830  val |= event_encoding(enc, idx);
831  cpuc->pcr[pcr_index] = val;
832 
833  pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
834 }
835 
836 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
837 {
838  u64 mask = mask_for_index(idx);
839  u64 nop = nop_for_index(idx);
840  int pcr_index = 0;
841  u64 val;
842 
843  if (sparc_pmu->num_pcrs > 1)
844  pcr_index = idx;
845 
846  val = cpuc->pcr[pcr_index];
847  val &= ~mask;
848  val |= nop;
849  cpuc->pcr[pcr_index] = val;
850 
851  pcr_ops->write_pcr(pcr_index, cpuc->pcr[pcr_index]);
852 }
853 
854 static u64 sparc_perf_event_update(struct perf_event *event,
855  struct hw_perf_event *hwc, int idx)
856 {
857  int shift = 64 - 32;
858  u64 prev_raw_count, new_raw_count;
859  s64 delta;
860 
861 again:
862  prev_raw_count = local64_read(&hwc->prev_count);
863  new_raw_count = sparc_pmu->read_pmc(idx);
864 
865  if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
866  new_raw_count) != prev_raw_count)
867  goto again;
868 
869  delta = (new_raw_count << shift) - (prev_raw_count << shift);
870  delta >>= shift;
871 
872  local64_add(delta, &event->count);
873  local64_sub(delta, &hwc->period_left);
874 
875  return new_raw_count;
876 }
877 
878 static int sparc_perf_event_set_period(struct perf_event *event,
879  struct hw_perf_event *hwc, int idx)
880 {
881  s64 left = local64_read(&hwc->period_left);
882  s64 period = hwc->sample_period;
883  int ret = 0;
884 
885  if (unlikely(left <= -period)) {
886  left = period;
887  local64_set(&hwc->period_left, left);
888  hwc->last_period = period;
889  ret = 1;
890  }
891 
892  if (unlikely(left <= 0)) {
893  left += period;
894  local64_set(&hwc->period_left, left);
895  hwc->last_period = period;
896  ret = 1;
897  }
898  if (left > MAX_PERIOD)
899  left = MAX_PERIOD;
900 
901  local64_set(&hwc->prev_count, (u64)-left);
902 
903  sparc_pmu->write_pmc(idx, (u64)(-left) & 0xffffffff);
904 
906 
907  return ret;
908 }
909 
910 static void read_in_all_counters(struct cpu_hw_events *cpuc)
911 {
912  int i;
913 
914  for (i = 0; i < cpuc->n_events; i++) {
915  struct perf_event *cp = cpuc->event[i];
916 
917  if (cpuc->current_idx[i] != PIC_NO_INDEX &&
918  cpuc->current_idx[i] != cp->hw.idx) {
919  sparc_perf_event_update(cp, &cp->hw,
920  cpuc->current_idx[i]);
921  cpuc->current_idx[i] = PIC_NO_INDEX;
922  }
923  }
924 }
925 
926 /* On this PMU all PICs are programmed using a single PCR. Calculate
927  * the combined control register value.
928  *
929  * For such chips we require that all of the events have the same
930  * configuration, so just fetch the settings from the first entry.
931  */
932 static void calculate_single_pcr(struct cpu_hw_events *cpuc)
933 {
934  int i;
935 
936  if (!cpuc->n_added)
937  goto out;
938 
939  /* Assign to counters all unassigned events. */
940  for (i = 0; i < cpuc->n_events; i++) {
941  struct perf_event *cp = cpuc->event[i];
942  struct hw_perf_event *hwc = &cp->hw;
943  int idx = hwc->idx;
944  u64 enc;
945 
946  if (cpuc->current_idx[i] != PIC_NO_INDEX)
947  continue;
948 
949  sparc_perf_event_set_period(cp, hwc, idx);
950  cpuc->current_idx[i] = idx;
951 
952  enc = perf_event_get_enc(cpuc->events[i]);
953  cpuc->pcr[0] &= ~mask_for_index(idx);
954  if (hwc->state & PERF_HES_STOPPED)
955  cpuc->pcr[0] |= nop_for_index(idx);
956  else
957  cpuc->pcr[0] |= event_encoding(enc, idx);
958  }
959 out:
960  cpuc->pcr[0] |= cpuc->event[0]->hw.config_base;
961 }
962 
963 /* On this PMU each PIC has it's own PCR control register. */
964 static void calculate_multiple_pcrs(struct cpu_hw_events *cpuc)
965 {
966  int i;
967 
968  if (!cpuc->n_added)
969  goto out;
970 
971  for (i = 0; i < cpuc->n_events; i++) {
972  struct perf_event *cp = cpuc->event[i];
973  struct hw_perf_event *hwc = &cp->hw;
974  int idx = hwc->idx;
975  u64 enc;
976 
977  if (cpuc->current_idx[i] != PIC_NO_INDEX)
978  continue;
979 
980  sparc_perf_event_set_period(cp, hwc, idx);
981  cpuc->current_idx[i] = idx;
982 
983  enc = perf_event_get_enc(cpuc->events[i]);
984  cpuc->pcr[idx] &= ~mask_for_index(idx);
985  if (hwc->state & PERF_HES_STOPPED)
986  cpuc->pcr[idx] |= nop_for_index(idx);
987  else
988  cpuc->pcr[idx] |= event_encoding(enc, idx);
989  }
990 out:
991  for (i = 0; i < cpuc->n_events; i++) {
992  struct perf_event *cp = cpuc->event[i];
993  int idx = cp->hw.idx;
994 
995  cpuc->pcr[idx] |= cp->hw.config_base;
996  }
997 }
998 
999 /* If performance event entries have been added, move existing events
1000  * around (if necessary) and then assign new entries to counters.
1001  */
1002 static void update_pcrs_for_enable(struct cpu_hw_events *cpuc)
1003 {
1004  if (cpuc->n_added)
1005  read_in_all_counters(cpuc);
1006 
1007  if (sparc_pmu->num_pcrs == 1) {
1008  calculate_single_pcr(cpuc);
1009  } else {
1010  calculate_multiple_pcrs(cpuc);
1011  }
1012 }
1013 
1014 static void sparc_pmu_enable(struct pmu *pmu)
1015 {
1016  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1017  int i;
1018 
1019  if (cpuc->enabled)
1020  return;
1021 
1022  cpuc->enabled = 1;
1023  barrier();
1024 
1025  if (cpuc->n_events)
1026  update_pcrs_for_enable(cpuc);
1027 
1028  for (i = 0; i < sparc_pmu->num_pcrs; i++)
1029  pcr_ops->write_pcr(i, cpuc->pcr[i]);
1030 }
1031 
1032 static void sparc_pmu_disable(struct pmu *pmu)
1033 {
1034  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1035  int i;
1036 
1037  if (!cpuc->enabled)
1038  return;
1039 
1040  cpuc->enabled = 0;
1041  cpuc->n_added = 0;
1042 
1043  for (i = 0; i < sparc_pmu->num_pcrs; i++) {
1044  u64 val = cpuc->pcr[i];
1045 
1046  val &= ~(sparc_pmu->user_bit | sparc_pmu->priv_bit |
1048  cpuc->pcr[i] = val;
1049  pcr_ops->write_pcr(i, cpuc->pcr[i]);
1050  }
1051 }
1052 
1053 static int active_event_index(struct cpu_hw_events *cpuc,
1054  struct perf_event *event)
1055 {
1056  int i;
1057 
1058  for (i = 0; i < cpuc->n_events; i++) {
1059  if (cpuc->event[i] == event)
1060  break;
1061  }
1062  BUG_ON(i == cpuc->n_events);
1063  return cpuc->current_idx[i];
1064 }
1065 
1066 static void sparc_pmu_start(struct perf_event *event, int flags)
1067 {
1068  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1069  int idx = active_event_index(cpuc, event);
1070 
1071  if (flags & PERF_EF_RELOAD) {
1072  WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1073  sparc_perf_event_set_period(event, &event->hw, idx);
1074  }
1075 
1076  event->hw.state = 0;
1077 
1078  sparc_pmu_enable_event(cpuc, &event->hw, idx);
1079 }
1080 
1081 static void sparc_pmu_stop(struct perf_event *event, int flags)
1082 {
1083  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1084  int idx = active_event_index(cpuc, event);
1085 
1086  if (!(event->hw.state & PERF_HES_STOPPED)) {
1087  sparc_pmu_disable_event(cpuc, &event->hw, idx);
1088  event->hw.state |= PERF_HES_STOPPED;
1089  }
1090 
1091  if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
1092  sparc_perf_event_update(event, &event->hw, idx);
1093  event->hw.state |= PERF_HES_UPTODATE;
1094  }
1095 }
1096 
1097 static void sparc_pmu_del(struct perf_event *event, int _flags)
1098 {
1099  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1100  unsigned long flags;
1101  int i;
1102 
1103  local_irq_save(flags);
1104  perf_pmu_disable(event->pmu);
1105 
1106  for (i = 0; i < cpuc->n_events; i++) {
1107  if (event == cpuc->event[i]) {
1108  /* Absorb the final count and turn off the
1109  * event.
1110  */
1111  sparc_pmu_stop(event, PERF_EF_UPDATE);
1112 
1113  /* Shift remaining entries down into
1114  * the existing slot.
1115  */
1116  while (++i < cpuc->n_events) {
1117  cpuc->event[i - 1] = cpuc->event[i];
1118  cpuc->events[i - 1] = cpuc->events[i];
1119  cpuc->current_idx[i - 1] =
1120  cpuc->current_idx[i];
1121  }
1122 
1124 
1125  cpuc->n_events--;
1126  break;
1127  }
1128  }
1129 
1130  perf_pmu_enable(event->pmu);
1131  local_irq_restore(flags);
1132 }
1133 
1134 static void sparc_pmu_read(struct perf_event *event)
1135 {
1136  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1137  int idx = active_event_index(cpuc, event);
1138  struct hw_perf_event *hwc = &event->hw;
1139 
1140  sparc_perf_event_update(event, hwc, idx);
1141 }
1142 
1143 static atomic_t active_events = ATOMIC_INIT(0);
1144 static DEFINE_MUTEX(pmc_grab_mutex);
1145 
1146 static void perf_stop_nmi_watchdog(void *unused)
1147 {
1148  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1149  int i;
1150 
1152  for (i = 0; i < sparc_pmu->num_pcrs; i++)
1153  cpuc->pcr[i] = pcr_ops->read_pcr(i);
1154 }
1155 
1157 {
1158  if (atomic_inc_not_zero(&active_events))
1159  return;
1160 
1161  mutex_lock(&pmc_grab_mutex);
1162  if (atomic_read(&active_events) == 0) {
1163  if (atomic_read(&nmi_active) > 0) {
1164  on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
1165  BUG_ON(atomic_read(&nmi_active) != 0);
1166  }
1167  atomic_inc(&active_events);
1168  }
1169  mutex_unlock(&pmc_grab_mutex);
1170 }
1171 
1173 {
1174  if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
1175  if (atomic_read(&nmi_active) == 0)
1177  mutex_unlock(&pmc_grab_mutex);
1178  }
1179 }
1180 
1181 static const struct perf_event_map *sparc_map_cache_event(u64 config)
1182 {
1183  unsigned int cache_type, cache_op, cache_result;
1184  const struct perf_event_map *pmap;
1185 
1186  if (!sparc_pmu->cache_map)
1187  return ERR_PTR(-ENOENT);
1188 
1189  cache_type = (config >> 0) & 0xff;
1190  if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
1191  return ERR_PTR(-EINVAL);
1192 
1193  cache_op = (config >> 8) & 0xff;
1194  if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
1195  return ERR_PTR(-EINVAL);
1196 
1197  cache_result = (config >> 16) & 0xff;
1198  if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1199  return ERR_PTR(-EINVAL);
1200 
1201  pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
1202 
1203  if (pmap->encoding == CACHE_OP_UNSUPPORTED)
1204  return ERR_PTR(-ENOENT);
1205 
1206  if (pmap->encoding == CACHE_OP_NONSENSE)
1207  return ERR_PTR(-EINVAL);
1208 
1209  return pmap;
1210 }
1211 
1212 static void hw_perf_event_destroy(struct perf_event *event)
1213 {
1215 }
1216 
1217 /* Make sure all events can be scheduled into the hardware at
1218  * the same time. This is simplified by the fact that we only
1219  * need to support 2 simultaneous HW events.
1220  *
1221  * As a side effect, the evts[]->hw.idx values will be assigned
1222  * on success. These are pending indexes. When the events are
1223  * actually programmed into the chip, these values will propagate
1224  * to the per-cpu cpuc->current_idx[] slots, see the code in
1225  * maybe_change_configuration() for details.
1226  */
1227 static int sparc_check_constraints(struct perf_event **evts,
1228  unsigned long *events, int n_ev)
1229 {
1230  u8 msk0 = 0, msk1 = 0;
1231  int idx0 = 0;
1232 
1233  /* This case is possible when we are invoked from
1234  * hw_perf_group_sched_in().
1235  */
1236  if (!n_ev)
1237  return 0;
1238 
1239  if (n_ev > sparc_pmu->max_hw_events)
1240  return -1;
1241 
1243  int i;
1244 
1245  for (i = 0; i < n_ev; i++)
1246  evts[i]->hw.idx = i;
1247  return 0;
1248  }
1249 
1250  msk0 = perf_event_get_msk(events[0]);
1251  if (n_ev == 1) {
1252  if (msk0 & PIC_LOWER)
1253  idx0 = 1;
1254  goto success;
1255  }
1256  BUG_ON(n_ev != 2);
1257  msk1 = perf_event_get_msk(events[1]);
1258 
1259  /* If both events can go on any counter, OK. */
1260  if (msk0 == (PIC_UPPER | PIC_LOWER) &&
1261  msk1 == (PIC_UPPER | PIC_LOWER))
1262  goto success;
1263 
1264  /* If one event is limited to a specific counter,
1265  * and the other can go on both, OK.
1266  */
1267  if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
1268  msk1 == (PIC_UPPER | PIC_LOWER)) {
1269  if (msk0 & PIC_LOWER)
1270  idx0 = 1;
1271  goto success;
1272  }
1273 
1274  if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
1275  msk0 == (PIC_UPPER | PIC_LOWER)) {
1276  if (msk1 & PIC_UPPER)
1277  idx0 = 1;
1278  goto success;
1279  }
1280 
1281  /* If the events are fixed to different counters, OK. */
1282  if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
1283  (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
1284  if (msk0 & PIC_LOWER)
1285  idx0 = 1;
1286  goto success;
1287  }
1288 
1289  /* Otherwise, there is a conflict. */
1290  return -1;
1291 
1292 success:
1293  evts[0]->hw.idx = idx0;
1294  if (n_ev == 2)
1295  evts[1]->hw.idx = idx0 ^ 1;
1296  return 0;
1297 }
1298 
1299 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
1300 {
1301  int eu = 0, ek = 0, eh = 0;
1302  struct perf_event *event;
1303  int i, n, first;
1304 
1306  return 0;
1307 
1308  n = n_prev + n_new;
1309  if (n <= 1)
1310  return 0;
1311 
1312  first = 1;
1313  for (i = 0; i < n; i++) {
1314  event = evts[i];
1315  if (first) {
1316  eu = event->attr.exclude_user;
1317  ek = event->attr.exclude_kernel;
1318  eh = event->attr.exclude_hv;
1319  first = 0;
1320  } else if (event->attr.exclude_user != eu ||
1321  event->attr.exclude_kernel != ek ||
1322  event->attr.exclude_hv != eh) {
1323  return -EAGAIN;
1324  }
1325  }
1326 
1327  return 0;
1328 }
1329 
1330 static int collect_events(struct perf_event *group, int max_count,
1331  struct perf_event *evts[], unsigned long *events,
1332  int *current_idx)
1333 {
1334  struct perf_event *event;
1335  int n = 0;
1336 
1337  if (!is_software_event(group)) {
1338  if (n >= max_count)
1339  return -1;
1340  evts[n] = group;
1341  events[n] = group->hw.event_base;
1342  current_idx[n++] = PIC_NO_INDEX;
1343  }
1344  list_for_each_entry(event, &group->sibling_list, group_entry) {
1345  if (!is_software_event(event) &&
1346  event->state != PERF_EVENT_STATE_OFF) {
1347  if (n >= max_count)
1348  return -1;
1349  evts[n] = event;
1350  events[n] = event->hw.event_base;
1351  current_idx[n++] = PIC_NO_INDEX;
1352  }
1353  }
1354  return n;
1355 }
1356 
1357 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1358 {
1359  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1360  int n0, ret = -EAGAIN;
1361  unsigned long flags;
1362 
1363  local_irq_save(flags);
1364  perf_pmu_disable(event->pmu);
1365 
1366  n0 = cpuc->n_events;
1367  if (n0 >= sparc_pmu->max_hw_events)
1368  goto out;
1369 
1370  cpuc->event[n0] = event;
1371  cpuc->events[n0] = event->hw.event_base;
1372  cpuc->current_idx[n0] = PIC_NO_INDEX;
1373 
1374  event->hw.state = PERF_HES_UPTODATE;
1375  if (!(ef_flags & PERF_EF_START))
1376  event->hw.state |= PERF_HES_STOPPED;
1377 
1378  /*
1379  * If group events scheduling transaction was started,
1380  * skip the schedulability test here, it will be performed
1381  * at commit time(->commit_txn) as a whole
1382  */
1383  if (cpuc->group_flag & PERF_EVENT_TXN)
1384  goto nocheck;
1385 
1386  if (check_excludes(cpuc->event, n0, 1))
1387  goto out;
1388  if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1389  goto out;
1390 
1391 nocheck:
1392  cpuc->n_events++;
1393  cpuc->n_added++;
1394 
1395  ret = 0;
1396 out:
1397  perf_pmu_enable(event->pmu);
1398  local_irq_restore(flags);
1399  return ret;
1400 }
1401 
1402 static int sparc_pmu_event_init(struct perf_event *event)
1403 {
1404  struct perf_event_attr *attr = &event->attr;
1405  struct perf_event *evts[MAX_HWEVENTS];
1406  struct hw_perf_event *hwc = &event->hw;
1407  unsigned long events[MAX_HWEVENTS];
1408  int current_idx_dmy[MAX_HWEVENTS];
1409  const struct perf_event_map *pmap;
1410  int n;
1411 
1412  if (atomic_read(&nmi_active) < 0)
1413  return -ENODEV;
1414 
1415  /* does not support taken branch sampling */
1416  if (has_branch_stack(event))
1417  return -EOPNOTSUPP;
1418 
1419  switch (attr->type) {
1420  case PERF_TYPE_HARDWARE:
1421  if (attr->config >= sparc_pmu->max_events)
1422  return -EINVAL;
1423  pmap = sparc_pmu->event_map(attr->config);
1424  break;
1425 
1426  case PERF_TYPE_HW_CACHE:
1427  pmap = sparc_map_cache_event(attr->config);
1428  if (IS_ERR(pmap))
1429  return PTR_ERR(pmap);
1430  break;
1431 
1432  case PERF_TYPE_RAW:
1433  pmap = NULL;
1434  break;
1435 
1436  default:
1437  return -ENOENT;
1438 
1439  }
1440 
1441  if (pmap) {
1442  hwc->event_base = perf_event_encode(pmap);
1443  } else {
1444  /*
1445  * User gives us "(encoding << 16) | pic_mask" for
1446  * PERF_TYPE_RAW events.
1447  */
1448  hwc->event_base = attr->config;
1449  }
1450 
1451  /* We save the enable bits in the config_base. */
1452  hwc->config_base = sparc_pmu->irq_bit;
1453  if (!attr->exclude_user)
1454  hwc->config_base |= sparc_pmu->user_bit;
1455  if (!attr->exclude_kernel)
1456  hwc->config_base |= sparc_pmu->priv_bit;
1457  if (!attr->exclude_hv)
1458  hwc->config_base |= sparc_pmu->hv_bit;
1459 
1460  n = 0;
1461  if (event->group_leader != event) {
1462  n = collect_events(event->group_leader,
1463  sparc_pmu->max_hw_events - 1,
1464  evts, events, current_idx_dmy);
1465  if (n < 0)
1466  return -EINVAL;
1467  }
1468  events[n] = hwc->event_base;
1469  evts[n] = event;
1470 
1471  if (check_excludes(evts, n, 1))
1472  return -EINVAL;
1473 
1474  if (sparc_check_constraints(evts, events, n + 1))
1475  return -EINVAL;
1476 
1477  hwc->idx = PIC_NO_INDEX;
1478 
1479  /* Try to do all error checking before this point, as unwinding
1480  * state after grabbing the PMC is difficult.
1481  */
1483  event->destroy = hw_perf_event_destroy;
1484 
1485  if (!hwc->sample_period) {
1486  hwc->sample_period = MAX_PERIOD;
1487  hwc->last_period = hwc->sample_period;
1488  local64_set(&hwc->period_left, hwc->sample_period);
1489  }
1490 
1491  return 0;
1492 }
1493 
1494 /*
1495  * Start group events scheduling transaction
1496  * Set the flag to make pmu::enable() not perform the
1497  * schedulability test, it will be performed at commit time
1498  */
1499 static void sparc_pmu_start_txn(struct pmu *pmu)
1500 {
1501  struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1502 
1503  perf_pmu_disable(pmu);
1504  cpuhw->group_flag |= PERF_EVENT_TXN;
1505 }
1506 
1507 /*
1508  * Stop group events scheduling transaction
1509  * Clear the flag and pmu::enable() will perform the
1510  * schedulability test.
1511  */
1512 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1513 {
1514  struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1515 
1516  cpuhw->group_flag &= ~PERF_EVENT_TXN;
1517  perf_pmu_enable(pmu);
1518 }
1519 
1520 /*
1521  * Commit group events scheduling transaction
1522  * Perform the group schedulability test as a whole
1523  * Return 0 if success
1524  */
1525 static int sparc_pmu_commit_txn(struct pmu *pmu)
1526 {
1527  struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1528  int n;
1529 
1530  if (!sparc_pmu)
1531  return -EINVAL;
1532 
1533  cpuc = &__get_cpu_var(cpu_hw_events);
1534  n = cpuc->n_events;
1535  if (check_excludes(cpuc->event, 0, n))
1536  return -EINVAL;
1537  if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1538  return -EAGAIN;
1539 
1540  cpuc->group_flag &= ~PERF_EVENT_TXN;
1541  perf_pmu_enable(pmu);
1542  return 0;
1543 }
1544 
1545 static struct pmu pmu = {
1546  .pmu_enable = sparc_pmu_enable,
1547  .pmu_disable = sparc_pmu_disable,
1548  .event_init = sparc_pmu_event_init,
1549  .add = sparc_pmu_add,
1550  .del = sparc_pmu_del,
1551  .start = sparc_pmu_start,
1552  .stop = sparc_pmu_stop,
1553  .read = sparc_pmu_read,
1554  .start_txn = sparc_pmu_start_txn,
1555  .cancel_txn = sparc_pmu_cancel_txn,
1556  .commit_txn = sparc_pmu_commit_txn,
1557 };
1558 
1560 {
1561  unsigned long flags;
1562  int cpu, i;
1563 
1564  if (!sparc_pmu)
1565  return;
1566 
1567  local_irq_save(flags);
1568 
1569  cpu = smp_processor_id();
1570 
1571  pr_info("\n");
1572  for (i = 0; i < sparc_pmu->num_pcrs; i++)
1573  pr_info("CPU#%d: PCR%d[%016llx]\n",
1574  cpu, i, pcr_ops->read_pcr(i));
1575  for (i = 0; i < sparc_pmu->num_pic_regs; i++)
1576  pr_info("CPU#%d: PIC%d[%016llx]\n",
1577  cpu, i, pcr_ops->read_pic(i));
1578 
1579  local_irq_restore(flags);
1580 }
1581 
1582 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1583  unsigned long cmd, void *__args)
1584 {
1585  struct die_args *args = __args;
1586  struct perf_sample_data data;
1587  struct cpu_hw_events *cpuc;
1588  struct pt_regs *regs;
1589  int i;
1590 
1591  if (!atomic_read(&active_events))
1592  return NOTIFY_DONE;
1593 
1594  switch (cmd) {
1595  case DIE_NMI:
1596  break;
1597 
1598  default:
1599  return NOTIFY_DONE;
1600  }
1601 
1602  regs = args->regs;
1603 
1604  cpuc = &__get_cpu_var(cpu_hw_events);
1605 
1606  /* If the PMU has the TOE IRQ enable bits, we need to do a
1607  * dummy write to the %pcr to clear the overflow bits and thus
1608  * the interrupt.
1609  *
1610  * Do this before we peek at the counters to determine
1611  * overflow so we don't lose any events.
1612  */
1613  if (sparc_pmu->irq_bit &&
1614  sparc_pmu->num_pcrs == 1)
1615  pcr_ops->write_pcr(0, cpuc->pcr[0]);
1616 
1617  for (i = 0; i < cpuc->n_events; i++) {
1618  struct perf_event *event = cpuc->event[i];
1619  int idx = cpuc->current_idx[i];
1620  struct hw_perf_event *hwc;
1621  u64 val;
1622 
1623  if (sparc_pmu->irq_bit &&
1624  sparc_pmu->num_pcrs > 1)
1625  pcr_ops->write_pcr(idx, cpuc->pcr[idx]);
1626 
1627  hwc = &event->hw;
1628  val = sparc_perf_event_update(event, hwc, idx);
1629  if (val & (1ULL << 31))
1630  continue;
1631 
1632  perf_sample_data_init(&data, 0, hwc->last_period);
1633  if (!sparc_perf_event_set_period(event, hwc, idx))
1634  continue;
1635 
1636  if (perf_event_overflow(event, &data, regs))
1637  sparc_pmu_stop(event, 0);
1638  }
1639 
1640  return NOTIFY_STOP;
1641 }
1642 
1643 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1644  .notifier_call = perf_event_nmi_handler,
1645 };
1646 
1647 static bool __init supported_pmu(void)
1648 {
1649  if (!strcmp(sparc_pmu_type, "ultra3") ||
1650  !strcmp(sparc_pmu_type, "ultra3+") ||
1651  !strcmp(sparc_pmu_type, "ultra3i") ||
1652  !strcmp(sparc_pmu_type, "ultra4+")) {
1653  sparc_pmu = &ultra3_pmu;
1654  return true;
1655  }
1656  if (!strcmp(sparc_pmu_type, "niagara")) {
1657  sparc_pmu = &niagara1_pmu;
1658  return true;
1659  }
1660  if (!strcmp(sparc_pmu_type, "niagara2") ||
1661  !strcmp(sparc_pmu_type, "niagara3")) {
1662  sparc_pmu = &niagara2_pmu;
1663  return true;
1664  }
1665  if (!strcmp(sparc_pmu_type, "niagara4")) {
1666  sparc_pmu = &niagara4_pmu;
1667  return true;
1668  }
1669  return false;
1670 }
1671 
1673 {
1674  pr_info("Performance events: ");
1675 
1676  if (!supported_pmu()) {
1677  pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1678  return 0;
1679  }
1680 
1681  pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1682 
1683  perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1684  register_die_notifier(&perf_event_nmi_notifier);
1685 
1686  return 0;
1687 }
1689 
1691  struct pt_regs *regs)
1692 {
1693  unsigned long ksp, fp;
1694 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1695  int graph = 0;
1696 #endif
1697 
1699 
1700  perf_callchain_store(entry, regs->tpc);
1701 
1702  ksp = regs->u_regs[UREG_I6];
1703  fp = ksp + STACK_BIAS;
1704  do {
1705  struct sparc_stackf *sf;
1706  struct pt_regs *regs;
1707  unsigned long pc;
1708 
1709  if (!kstack_valid(current_thread_info(), fp))
1710  break;
1711 
1712  sf = (struct sparc_stackf *) fp;
1713  regs = (struct pt_regs *) (sf + 1);
1714 
1715  if (kstack_is_trap_frame(current_thread_info(), regs)) {
1716  if (user_mode(regs))
1717  break;
1718  pc = regs->tpc;
1719  fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1720  } else {
1721  pc = sf->callers_pc;
1722  fp = (unsigned long)sf->fp + STACK_BIAS;
1723  }
1724  perf_callchain_store(entry, pc);
1725 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1726  if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1727  int index = current->curr_ret_stack;
1728  if (current->ret_stack && index >= graph) {
1729  pc = current->ret_stack[index - graph].ret;
1730  perf_callchain_store(entry, pc);
1731  graph++;
1732  }
1733  }
1734 #endif
1735  } while (entry->nr < PERF_MAX_STACK_DEPTH);
1736 }
1737 
1738 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1739  struct pt_regs *regs)
1740 {
1741  unsigned long ufp;
1742 
1743  ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1744  do {
1745  struct sparc_stackf *usf, sf;
1746  unsigned long pc;
1747 
1748  usf = (struct sparc_stackf *) ufp;
1749  if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1750  break;
1751 
1752  pc = sf.callers_pc;
1753  ufp = (unsigned long)sf.fp + STACK_BIAS;
1754  perf_callchain_store(entry, pc);
1755  } while (entry->nr < PERF_MAX_STACK_DEPTH);
1756 }
1757 
1758 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1759  struct pt_regs *regs)
1760 {
1761  unsigned long ufp;
1762 
1763  ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1764  do {
1765  unsigned long pc;
1766 
1767  if (thread32_stack_is_64bit(ufp)) {
1768  struct sparc_stackf *usf, sf;
1769 
1770  ufp += STACK_BIAS;
1771  usf = (struct sparc_stackf *) ufp;
1772  if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1773  break;
1774  pc = sf.callers_pc & 0xffffffff;
1775  ufp = ((unsigned long) sf.fp) & 0xffffffff;
1776  } else {
1777  struct sparc_stackf32 *usf, sf;
1778  usf = (struct sparc_stackf32 *) ufp;
1779  if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1780  break;
1781  pc = sf.callers_pc;
1782  ufp = (unsigned long)sf.fp;
1783  }
1784  perf_callchain_store(entry, pc);
1785  } while (entry->nr < PERF_MAX_STACK_DEPTH);
1786 }
1787 
1788 void
1790 {
1791  perf_callchain_store(entry, regs->tpc);
1792 
1793  if (!current->mm)
1794  return;
1795 
1796  flushw_user();
1797  if (test_thread_flag(TIF_32BIT))
1798  perf_callchain_user_32(entry, regs);
1799  else
1800  perf_callchain_user_64(entry, regs);
1801 }