Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
bpf_jit_comp.c
Go to the documentation of this file.
1 #include <linux/moduleloader.h>
2 #include <linux/workqueue.h>
3 #include <linux/netdevice.h>
4 #include <linux/filter.h>
5 #include <linux/cache.h>
6 
7 #include <asm/cacheflush.h>
8 #include <asm/ptrace.h>
9 
10 #include "bpf_jit.h"
11 
13 
14 static inline bool is_simm13(unsigned int value)
15 {
16  return value + 0x1000 < 0x2000;
17 }
18 
19 static void bpf_flush_icache(void *start_, void *end_)
20 {
21 #ifdef CONFIG_SPARC64
22  /* Cheetah's I-cache is fully coherent. */
23  if (tlb_type == spitfire) {
24  unsigned long start = (unsigned long) start_;
25  unsigned long end = (unsigned long) end_;
26 
27  start &= ~7UL;
28  end = (end + 7UL) & ~7UL;
29  while (start < end) {
30  flushi(start);
31  start += 32;
32  }
33  }
34 #endif
35 }
36 
37 #define SEEN_DATAREF 1 /* might call external helpers */
38 #define SEEN_XREG 2 /* ebx is used */
39 #define SEEN_MEM 4 /* use mem[] for temporary storage */
40 
41 #define S13(X) ((X) & 0x1fff)
42 #define IMMED 0x00002000
43 #define RD(X) ((X) << 25)
44 #define RS1(X) ((X) << 14)
45 #define RS2(X) ((X))
46 #define OP(X) ((X) << 30)
47 #define OP2(X) ((X) << 22)
48 #define OP3(X) ((X) << 19)
49 #define COND(X) ((X) << 25)
50 #define F1(X) OP(X)
51 #define F2(X, Y) (OP(X) | OP2(Y))
52 #define F3(X, Y) (OP(X) | OP3(Y))
53 
54 #define CONDN COND(0x0)
55 #define CONDE COND(0x1)
56 #define CONDLE COND(0x2)
57 #define CONDL COND(0x3)
58 #define CONDLEU COND(0x4)
59 #define CONDCS COND(0x5)
60 #define CONDNEG COND(0x6)
61 #define CONDVC COND(0x7)
62 #define CONDA COND(0x8)
63 #define CONDNE COND(0x9)
64 #define CONDG COND(0xa)
65 #define CONDGE COND(0xb)
66 #define CONDGU COND(0xc)
67 #define CONDCC COND(0xd)
68 #define CONDPOS COND(0xe)
69 #define CONDVS COND(0xf)
70 
71 #define CONDGEU CONDCC
72 #define CONDLU CONDCS
73 
74 #define WDISP22(X) (((X) >> 2) & 0x3fffff)
75 
76 #define BA (F2(0, 2) | CONDA)
77 #define BGU (F2(0, 2) | CONDGU)
78 #define BLEU (F2(0, 2) | CONDLEU)
79 #define BGEU (F2(0, 2) | CONDGEU)
80 #define BLU (F2(0, 2) | CONDLU)
81 #define BE (F2(0, 2) | CONDE)
82 #define BNE (F2(0, 2) | CONDNE)
83 
84 #ifdef CONFIG_SPARC64
85 #define BNE_PTR (F2(0, 1) | CONDNE | (2 << 20))
86 #else
87 #define BNE_PTR BNE
88 #endif
89 
90 #define SETHI(K, REG) \
91  (F2(0, 0x4) | RD(REG) | (((K) >> 10) & 0x3fffff))
92 #define OR_LO(K, REG) \
93  (F3(2, 0x02) | IMMED | RS1(REG) | ((K) & 0x3ff) | RD(REG))
94 
95 #define ADD F3(2, 0x00)
96 #define AND F3(2, 0x01)
97 #define ANDCC F3(2, 0x11)
98 #define OR F3(2, 0x02)
99 #define XOR F3(2, 0x03)
100 #define SUB F3(2, 0x04)
101 #define SUBCC F3(2, 0x14)
102 #define MUL F3(2, 0x0a) /* umul */
103 #define DIV F3(2, 0x0e) /* udiv */
104 #define SLL F3(2, 0x25)
105 #define SRL F3(2, 0x26)
106 #define JMPL F3(2, 0x38)
107 #define CALL F1(1)
108 #define BR F2(0, 0x01)
109 #define RD_Y F3(2, 0x28)
110 #define WR_Y F3(2, 0x30)
111 
112 #define LD32 F3(3, 0x00)
113 #define LD8 F3(3, 0x01)
114 #define LD16 F3(3, 0x02)
115 #define LD64 F3(3, 0x0b)
116 #define ST32 F3(3, 0x04)
117 
118 #ifdef CONFIG_SPARC64
119 #define LDPTR LD64
120 #define BASE_STACKFRAME 176
121 #else
122 #define LDPTR LD32
123 #define BASE_STACKFRAME 96
124 #endif
125 
126 #define LD32I (LD32 | IMMED)
127 #define LD8I (LD8 | IMMED)
128 #define LD16I (LD16 | IMMED)
129 #define LD64I (LD64 | IMMED)
130 #define LDPTRI (LDPTR | IMMED)
131 #define ST32I (ST32 | IMMED)
132 
133 #define emit_nop() \
134 do { \
135  *prog++ = SETHI(0, G0); \
136 } while (0)
137 
138 #define emit_neg() \
139 do { /* sub %g0, r_A, r_A */ \
140  *prog++ = SUB | RS1(G0) | RS2(r_A) | RD(r_A); \
141 } while (0)
142 
143 #define emit_reg_move(FROM, TO) \
144 do { /* or %g0, FROM, TO */ \
145  *prog++ = OR | RS1(G0) | RS2(FROM) | RD(TO); \
146 } while (0)
147 
148 #define emit_clear(REG) \
149 do { /* or %g0, %g0, REG */ \
150  *prog++ = OR | RS1(G0) | RS2(G0) | RD(REG); \
151 } while (0)
152 
153 #define emit_set_const(K, REG) \
154 do { /* sethi %hi(K), REG */ \
155  *prog++ = SETHI(K, REG); \
156  /* or REG, %lo(K), REG */ \
157  *prog++ = OR_LO(K, REG); \
158 } while (0)
159 
160  /* Emit
161  *
162  * OP r_A, r_X, r_A
163  */
164 #define emit_alu_X(OPCODE) \
165 do { \
166  seen |= SEEN_XREG; \
167  *prog++ = OPCODE | RS1(r_A) | RS2(r_X) | RD(r_A); \
168 } while (0)
169 
170  /* Emit either:
171  *
172  * OP r_A, K, r_A
173  *
174  * or
175  *
176  * sethi %hi(K), r_TMP
177  * or r_TMP, %lo(K), r_TMP
178  * OP r_A, r_TMP, r_A
179  *
180  * depending upon whether K fits in a signed 13-bit
181  * immediate instruction field. Emit nothing if K
182  * is zero.
183  */
184 #define emit_alu_K(OPCODE, K) \
185 do { \
186  if (K) { \
187  unsigned int _insn = OPCODE; \
188  _insn |= RS1(r_A) | RD(r_A); \
189  if (is_simm13(K)) { \
190  *prog++ = _insn | IMMED | S13(K); \
191  } else { \
192  emit_set_const(K, r_TMP); \
193  *prog++ = _insn | RS2(r_TMP); \
194  } \
195  } \
196 } while (0)
197 
198 #define emit_loadimm(K, DEST) \
199 do { \
200  if (is_simm13(K)) { \
201  /* or %g0, K, DEST */ \
202  *prog++ = OR | IMMED | RS1(G0) | S13(K) | RD(DEST); \
203  } else { \
204  emit_set_const(K, DEST); \
205  } \
206 } while (0)
207 
208 #define emit_loadptr(BASE, STRUCT, FIELD, DEST) \
209 do { unsigned int _off = offsetof(STRUCT, FIELD); \
210  BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(void *)); \
211  *prog++ = LDPTRI | RS1(BASE) | S13(_off) | RD(DEST); \
212 } while (0)
213 
214 #define emit_load32(BASE, STRUCT, FIELD, DEST) \
215 do { unsigned int _off = offsetof(STRUCT, FIELD); \
216  BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u32)); \
217  *prog++ = LD32I | RS1(BASE) | S13(_off) | RD(DEST); \
218 } while (0)
219 
220 #define emit_load16(BASE, STRUCT, FIELD, DEST) \
221 do { unsigned int _off = offsetof(STRUCT, FIELD); \
222  BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u16)); \
223  *prog++ = LD16I | RS1(BASE) | S13(_off) | RD(DEST); \
224 } while (0)
225 
226 #define __emit_load8(BASE, STRUCT, FIELD, DEST) \
227 do { unsigned int _off = offsetof(STRUCT, FIELD); \
228  *prog++ = LD8I | RS1(BASE) | S13(_off) | RD(DEST); \
229 } while (0)
230 
231 #define emit_load8(BASE, STRUCT, FIELD, DEST) \
232 do { BUILD_BUG_ON(FIELD_SIZEOF(STRUCT, FIELD) != sizeof(u8)); \
233  __emit_load8(BASE, STRUCT, FIELD, DEST); \
234 } while (0)
235 
236 #define emit_ldmem(OFF, DEST) \
237 do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(DEST); \
238 } while (0)
239 
240 #define emit_stmem(OFF, SRC) \
241 do { *prog++ = LD32I | RS1(FP) | S13(-(OFF)) | RD(SRC); \
242 } while (0)
243 
244 #ifdef CONFIG_SMP
245 #ifdef CONFIG_SPARC64
246 #define emit_load_cpu(REG) \
247  emit_load16(G6, struct thread_info, cpu, REG)
248 #else
249 #define emit_load_cpu(REG) \
250  emit_load32(G6, struct thread_info, cpu, REG)
251 #endif
252 #else
253 #define emit_load_cpu(REG) emit_clear(REG)
254 #endif
255 
256 #define emit_skb_loadptr(FIELD, DEST) \
257  emit_loadptr(r_SKB, struct sk_buff, FIELD, DEST)
258 #define emit_skb_load32(FIELD, DEST) \
259  emit_load32(r_SKB, struct sk_buff, FIELD, DEST)
260 #define emit_skb_load16(FIELD, DEST) \
261  emit_load16(r_SKB, struct sk_buff, FIELD, DEST)
262 #define __emit_skb_load8(FIELD, DEST) \
263  __emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
264 #define emit_skb_load8(FIELD, DEST) \
265  emit_load8(r_SKB, struct sk_buff, FIELD, DEST)
266 
267 #define emit_jmpl(BASE, IMM_OFF, LREG) \
268  *prog++ = (JMPL | IMMED | RS1(BASE) | S13(IMM_OFF) | RD(LREG))
269 
270 #define emit_call(FUNC) \
271 do { void *_here = image + addrs[i] - 8; \
272  unsigned int _off = (void *)(FUNC) - _here; \
273  *prog++ = CALL | (((_off) >> 2) & 0x3fffffff); \
274  emit_nop(); \
275 } while (0)
276 
277 #define emit_branch(BR_OPC, DEST) \
278 do { unsigned int _here = addrs[i] - 8; \
279  *prog++ = BR_OPC | WDISP22((DEST) - _here); \
280 } while (0)
281 
282 #define emit_branch_off(BR_OPC, OFF) \
283 do { *prog++ = BR_OPC | WDISP22(OFF); \
284 } while (0)
285 
286 #define emit_jump(DEST) emit_branch(BA, DEST)
287 
288 #define emit_read_y(REG) *prog++ = RD_Y | RD(REG)
289 #define emit_write_y(REG) *prog++ = WR_Y | IMMED | RS1(REG) | S13(0)
290 
291 #define emit_cmp(R1, R2) \
292  *prog++ = (SUBCC | RS1(R1) | RS2(R2) | RD(G0))
293 
294 #define emit_cmpi(R1, IMM) \
295  *prog++ = (SUBCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
296 
297 #define emit_btst(R1, R2) \
298  *prog++ = (ANDCC | RS1(R1) | RS2(R2) | RD(G0))
299 
300 #define emit_btsti(R1, IMM) \
301  *prog++ = (ANDCC | IMMED | RS1(R1) | S13(IMM) | RD(G0));
302 
303 #define emit_sub(R1, R2, R3) \
304  *prog++ = (SUB | RS1(R1) | RS2(R2) | RD(R3))
305 
306 #define emit_subi(R1, IMM, R3) \
307  *prog++ = (SUB | IMMED | RS1(R1) | S13(IMM) | RD(R3))
308 
309 #define emit_add(R1, R2, R3) \
310  *prog++ = (ADD | RS1(R1) | RS2(R2) | RD(R3))
311 
312 #define emit_addi(R1, IMM, R3) \
313  *prog++ = (ADD | IMMED | RS1(R1) | S13(IMM) | RD(R3))
314 
315 #define emit_alloc_stack(SZ) \
316  *prog++ = (SUB | IMMED | RS1(SP) | S13(SZ) | RD(SP))
317 
318 #define emit_release_stack(SZ) \
319  *prog++ = (ADD | IMMED | RS1(SP) | S13(SZ) | RD(SP))
320 
321 /* A note about branch offset calculations. The addrs[] array,
322  * indexed by BPF instruction, records the address after all the
323  * sparc instructions emitted for that BPF instruction.
324  *
325  * The most common case is to emit a branch at the end of such
326  * a code sequence. So this would be two instructions, the
327  * branch and it's delay slot.
328  *
329  * Therefore by default the branch emitters calculate the branch
330  * offset field as:
331  *
332  * destination - (addrs[i] - 8)
333  *
334  * This "addrs[i] - 8" is the address of the branch itself or
335  * what "." would be in assembler notation. The "8" part is
336  * how we take into consideration the branch and it's delay
337  * slot mentioned above.
338  *
339  * Sometimes we need to emit a branch earlier in the code
340  * sequence. And in these situations we adjust "destination"
341  * to accomodate this difference. For example, if we needed
342  * to emit a branch (and it's delay slot) right before the
343  * final instruction emitted for a BPF opcode, we'd use
344  * "destination + 4" instead of just plain "destination" above.
345  *
346  * This is why you see all of these funny emit_branch() and
347  * emit_jump() calls with adjusted offsets.
348  */
349 
351 {
352  unsigned int cleanup_addr, proglen, oldproglen = 0;
353  u32 temp[8], *prog, *func, seen = 0, pass;
354  const struct sock_filter *filter = fp->insns;
355  int i, flen = fp->len, pc_ret0 = -1;
356  unsigned int *addrs;
357  void *image;
358 
359  if (!bpf_jit_enable)
360  return;
361 
362  addrs = kmalloc(flen * sizeof(*addrs), GFP_KERNEL);
363  if (addrs == NULL)
364  return;
365 
366  /* Before first pass, make a rough estimation of addrs[]
367  * each bpf instruction is translated to less than 64 bytes
368  */
369  for (proglen = 0, i = 0; i < flen; i++) {
370  proglen += 64;
371  addrs[i] = proglen;
372  }
373  cleanup_addr = proglen; /* epilogue address */
374  image = NULL;
375  for (pass = 0; pass < 10; pass++) {
376  u8 seen_or_pass0 = (pass == 0) ? (SEEN_XREG | SEEN_DATAREF | SEEN_MEM) : seen;
377 
378  /* no prologue/epilogue for trivial filters (RET something) */
379  proglen = 0;
380  prog = temp;
381 
382  /* Prologue */
383  if (seen_or_pass0) {
384  if (seen_or_pass0 & SEEN_MEM) {
385  unsigned int sz = BASE_STACKFRAME;
386  sz += BPF_MEMWORDS * sizeof(u32);
387  emit_alloc_stack(sz);
388  }
389 
390  /* Make sure we dont leek kernel memory. */
391  if (seen_or_pass0 & SEEN_XREG)
392  emit_clear(r_X);
393 
394  /* If this filter needs to access skb data,
395  * load %o4 and %o5 with:
396  * %o4 = skb->len - skb->data_len
397  * %o5 = skb->data
398  * And also back up %o7 into r_saved_O7 so we can
399  * invoke the stubs using 'call'.
400  */
401  if (seen_or_pass0 & SEEN_DATAREF) {
406  }
407  }
409 
410  switch (filter[0].code) {
411  case BPF_S_RET_K:
412  case BPF_S_LD_W_LEN:
413  case BPF_S_ANC_PROTOCOL:
414  case BPF_S_ANC_PKTTYPE:
415  case BPF_S_ANC_IFINDEX:
416  case BPF_S_ANC_MARK:
417  case BPF_S_ANC_RXHASH:
418  case BPF_S_ANC_CPU:
419  case BPF_S_ANC_QUEUE:
420  case BPF_S_LD_W_ABS:
421  case BPF_S_LD_H_ABS:
422  case BPF_S_LD_B_ABS:
423  /* The first instruction sets the A register (or is
424  * a "RET 'constant'")
425  */
426  break;
427  default:
428  /* Make sure we dont leak kernel information to the
429  * user.
430  */
431  emit_clear(r_A); /* A = 0 */
432  }
433 
434  for (i = 0; i < flen; i++) {
435  unsigned int K = filter[i].k;
436  unsigned int t_offset;
437  unsigned int f_offset;
438  u32 t_op, f_op;
439  int ilen;
440 
441  switch (filter[i].code) {
442  case BPF_S_ALU_ADD_X: /* A += X; */
443  emit_alu_X(ADD);
444  break;
445  case BPF_S_ALU_ADD_K: /* A += K; */
446  emit_alu_K(ADD, K);
447  break;
448  case BPF_S_ALU_SUB_X: /* A -= X; */
449  emit_alu_X(SUB);
450  break;
451  case BPF_S_ALU_SUB_K: /* A -= K */
452  emit_alu_K(SUB, K);
453  break;
454  case BPF_S_ALU_AND_X: /* A &= X */
455  emit_alu_X(AND);
456  break;
457  case BPF_S_ALU_AND_K: /* A &= K */
458  emit_alu_K(AND, K);
459  break;
460  case BPF_S_ALU_OR_X: /* A |= X */
461  emit_alu_X(OR);
462  break;
463  case BPF_S_ALU_OR_K: /* A |= K */
464  emit_alu_K(OR, K);
465  break;
466  case BPF_S_ANC_ALU_XOR_X: /* A ^= X; */
467  case BPF_S_ALU_XOR_X:
468  emit_alu_X(XOR);
469  break;
470  case BPF_S_ALU_XOR_K: /* A ^= K */
471  emit_alu_K(XOR, K);
472  break;
473  case BPF_S_ALU_LSH_X: /* A <<= X */
474  emit_alu_X(SLL);
475  break;
476  case BPF_S_ALU_LSH_K: /* A <<= K */
477  emit_alu_K(SLL, K);
478  break;
479  case BPF_S_ALU_RSH_X: /* A >>= X */
480  emit_alu_X(SRL);
481  break;
482  case BPF_S_ALU_RSH_K: /* A >>= K */
483  emit_alu_K(SRL, K);
484  break;
485  case BPF_S_ALU_MUL_X: /* A *= X; */
486  emit_alu_X(MUL);
487  break;
488  case BPF_S_ALU_MUL_K: /* A *= K */
489  emit_alu_K(MUL, K);
490  break;
491  case BPF_S_ALU_DIV_K: /* A /= K */
492  emit_alu_K(MUL, K);
493  emit_read_y(r_A);
494  break;
495  case BPF_S_ALU_DIV_X: /* A /= X; */
496  emit_cmpi(r_X, 0);
497  if (pc_ret0 > 0) {
498  t_offset = addrs[pc_ret0 - 1];
499 #ifdef CONFIG_SPARC32
500  emit_branch(BE, t_offset + 20);
501 #else
502  emit_branch(BE, t_offset + 8);
503 #endif
504  emit_nop(); /* delay slot */
505  } else {
506  emit_branch_off(BNE, 16);
507  emit_nop();
508 #ifdef CONFIG_SPARC32
509  emit_jump(cleanup_addr + 20);
510 #else
511  emit_jump(cleanup_addr + 8);
512 #endif
513  emit_clear(r_A);
514  }
515  emit_write_y(G0);
516 #ifdef CONFIG_SPARC32
517  /* The Sparc v8 architecture requires
518  * three instructions between a %y
519  * register write and the first use.
520  */
521  emit_nop();
522  emit_nop();
523  emit_nop();
524 #endif
525  emit_alu_X(DIV);
526  break;
527  case BPF_S_ALU_NEG:
528  emit_neg();
529  break;
530  case BPF_S_RET_K:
531  if (!K) {
532  if (pc_ret0 == -1)
533  pc_ret0 = i;
534  emit_clear(r_A);
535  } else {
536  emit_loadimm(K, r_A);
537  }
538  /* Fallthrough */
539  case BPF_S_RET_A:
540  if (seen_or_pass0) {
541  if (i != flen - 1) {
542  emit_jump(cleanup_addr);
543  emit_nop();
544  break;
545  }
546  if (seen_or_pass0 & SEEN_MEM) {
547  unsigned int sz = BASE_STACKFRAME;
548  sz += BPF_MEMWORDS * sizeof(u32);
549  emit_release_stack(sz);
550  }
551  }
552  /* jmpl %r_saved_O7 + 8, %g0 */
553  emit_jmpl(r_saved_O7, 8, G0);
554  emit_reg_move(r_A, O0); /* delay slot */
555  break;
556  case BPF_S_MISC_TAX:
557  seen |= SEEN_XREG;
559  break;
560  case BPF_S_MISC_TXA:
561  seen |= SEEN_XREG;
563  break;
564  case BPF_S_ANC_CPU:
566  break;
567  case BPF_S_ANC_PROTOCOL:
569  break;
570 #if 0
571  /* GCC won't let us take the address of
572  * a bit field even though we very much
573  * know what we are doing here.
574  */
575  case BPF_S_ANC_PKTTYPE:
576  __emit_skb_load8(pkt_type, r_A);
577  emit_alu_K(SRL, 5);
578  break;
579 #endif
580  case BPF_S_ANC_IFINDEX:
582  emit_cmpi(r_A, 0);
583  emit_branch(BNE_PTR, cleanup_addr + 4);
584  emit_nop();
585  emit_load32(r_A, struct net_device, ifindex, r_A);
586  break;
587  case BPF_S_ANC_MARK:
589  break;
590  case BPF_S_ANC_QUEUE:
591  emit_skb_load16(queue_mapping, r_A);
592  break;
593  case BPF_S_ANC_HATYPE:
595  emit_cmpi(r_A, 0);
596  emit_branch(BNE_PTR, cleanup_addr + 4);
597  emit_nop();
598  emit_load16(r_A, struct net_device, type, r_A);
599  break;
600  case BPF_S_ANC_RXHASH:
601  emit_skb_load32(rxhash, r_A);
602  break;
603 
604  case BPF_S_LD_IMM:
605  emit_loadimm(K, r_A);
606  break;
607  case BPF_S_LDX_IMM:
608  emit_loadimm(K, r_X);
609  break;
610  case BPF_S_LD_MEM:
611  emit_ldmem(K * 4, r_A);
612  break;
613  case BPF_S_LDX_MEM:
614  emit_ldmem(K * 4, r_X);
615  break;
616  case BPF_S_ST:
617  emit_stmem(K * 4, r_A);
618  break;
619  case BPF_S_STX:
620  emit_stmem(K * 4, r_X);
621  break;
622 
623 #define CHOOSE_LOAD_FUNC(K, func) \
624  ((int)K < 0 ? ((int)K >= SKF_LL_OFF ? func##_negative_offset : func) : func##_positive_offset)
625 
626  case BPF_S_LD_W_ABS:
628 common_load: seen |= SEEN_DATAREF;
629  emit_loadimm(K, r_OFF);
630  emit_call(func);
631  break;
632  case BPF_S_LD_H_ABS:
634  goto common_load;
635  case BPF_S_LD_B_ABS:
637  goto common_load;
638  case BPF_S_LDX_B_MSH:
640  goto common_load;
641  case BPF_S_LD_W_IND:
642  func = bpf_jit_load_word;
643 common_load_ind: seen |= SEEN_DATAREF | SEEN_XREG;
644  if (K) {
645  if (is_simm13(K)) {
646  emit_addi(r_X, K, r_OFF);
647  } else {
648  emit_loadimm(K, r_TMP);
649  emit_add(r_X, r_TMP, r_OFF);
650  }
651  } else {
653  }
654  emit_call(func);
655  break;
656  case BPF_S_LD_H_IND:
657  func = bpf_jit_load_half;
658  goto common_load_ind;
659  case BPF_S_LD_B_IND:
660  func = bpf_jit_load_byte;
661  goto common_load_ind;
662  case BPF_S_JMP_JA:
663  emit_jump(addrs[i + K]);
664  emit_nop();
665  break;
666 
667 #define COND_SEL(CODE, TOP, FOP) \
668  case CODE: \
669  t_op = TOP; \
670  f_op = FOP; \
671  goto cond_branch
672 
681 
682 cond_branch: f_offset = addrs[i + filter[i].jf];
683  t_offset = addrs[i + filter[i].jt];
684 
685  /* same targets, can avoid doing the test :) */
686  if (filter[i].jt == filter[i].jf) {
687  emit_jump(t_offset);
688  emit_nop();
689  break;
690  }
691 
692  switch (filter[i].code) {
693  case BPF_S_JMP_JGT_X:
694  case BPF_S_JMP_JGE_X:
695  case BPF_S_JMP_JEQ_X:
696  seen |= SEEN_XREG;
697  emit_cmp(r_A, r_X);
698  break;
699  case BPF_S_JMP_JSET_X:
700  seen |= SEEN_XREG;
701  emit_btst(r_A, r_X);
702  break;
703  case BPF_S_JMP_JEQ_K:
704  case BPF_S_JMP_JGT_K:
705  case BPF_S_JMP_JGE_K:
706  if (is_simm13(K)) {
707  emit_cmpi(r_A, K);
708  } else {
709  emit_loadimm(K, r_TMP);
710  emit_cmp(r_A, r_TMP);
711  }
712  break;
713  case BPF_S_JMP_JSET_K:
714  if (is_simm13(K)) {
715  emit_btsti(r_A, K);
716  } else {
717  emit_loadimm(K, r_TMP);
718  emit_btst(r_A, r_TMP);
719  }
720  break;
721  }
722  if (filter[i].jt != 0) {
723  if (filter[i].jf)
724  t_offset += 8;
725  emit_branch(t_op, t_offset);
726  emit_nop(); /* delay slot */
727  if (filter[i].jf) {
728  emit_jump(f_offset);
729  emit_nop();
730  }
731  break;
732  }
733  emit_branch(f_op, f_offset);
734  emit_nop(); /* delay slot */
735  break;
736 
737  default:
738  /* hmm, too complex filter, give up with jit compiler */
739  goto out;
740  }
741  ilen = (void *) prog - (void *) temp;
742  if (image) {
743  if (unlikely(proglen + ilen > oldproglen)) {
744  pr_err("bpb_jit_compile fatal error\n");
745  kfree(addrs);
746  module_free(NULL, image);
747  return;
748  }
749  memcpy(image + proglen, temp, ilen);
750  }
751  proglen += ilen;
752  addrs[i] = proglen;
753  prog = temp;
754  }
755  /* last bpf instruction is always a RET :
756  * use it to give the cleanup instruction(s) addr
757  */
758  cleanup_addr = proglen - 8; /* jmpl; mov r_A,%o0; */
759  if (seen_or_pass0 & SEEN_MEM)
760  cleanup_addr -= 4; /* add %sp, X, %sp; */
761 
762  if (image) {
763  if (proglen != oldproglen)
764  pr_err("bpb_jit_compile proglen=%u != oldproglen=%u\n",
765  proglen, oldproglen);
766  break;
767  }
768  if (proglen == oldproglen) {
769  image = module_alloc(max_t(unsigned int,
770  proglen,
771  sizeof(struct work_struct)));
772  if (!image)
773  goto out;
774  }
775  oldproglen = proglen;
776  }
777 
778  if (bpf_jit_enable > 1)
779  pr_err("flen=%d proglen=%u pass=%d image=%p\n",
780  flen, proglen, pass, image);
781 
782  if (image) {
783  if (bpf_jit_enable > 1)
784  print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_ADDRESS,
785  16, 1, image, proglen, false);
786  bpf_flush_icache(image, image + proglen);
787  fp->bpf_func = (void *)image;
788  }
789 out:
790  kfree(addrs);
791  return;
792 }
793 
794 static void jit_free_defer(struct work_struct *arg)
795 {
796  module_free(NULL, arg);
797 }
798 
799 /* run from softirq, we must use a work_struct to call
800  * module_free() from process context
801  */
802 void bpf_jit_free(struct sk_filter *fp)
803 {
804  if (fp->bpf_func != sk_run_filter) {
805  struct work_struct *work = (struct work_struct *)fp->bpf_func;
806 
807  INIT_WORK(work, jit_free_defer);
808  schedule_work(work);
809  }
810 }