Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sparse.c
Go to the documentation of this file.
1 /*
2  * sparse memory mappings.
3  */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/highmem.h>
9 #include <linux/export.h>
10 #include <linux/spinlock.h>
11 #include <linux/vmalloc.h>
12 #include "internal.h"
13 #include <asm/dma.h>
14 #include <asm/pgalloc.h>
15 #include <asm/pgtable.h>
16 
17 /*
18  * Permanent SPARSEMEM data:
19  *
20  * 1) mem_section - memory sections, mem_map's for valid memory
21  */
22 #ifdef CONFIG_SPARSEMEM_EXTREME
23 struct mem_section *mem_section[NR_SECTION_ROOTS]
25 #else
26 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
28 #endif
29 EXPORT_SYMBOL(mem_section);
30 
31 #ifdef NODE_NOT_IN_PAGE_FLAGS
32 /*
33  * If we did not store the node number in the page then we have to
34  * do a lookup in the section_to_node_table in order to find which
35  * node the page belongs to.
36  */
37 #if MAX_NUMNODES <= 256
38 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
39 #else
40 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #endif
42 
43 int page_to_nid(const struct page *page)
44 {
45  return section_to_node_table[page_to_section(page)];
46 }
47 EXPORT_SYMBOL(page_to_nid);
48 
49 static void set_section_nid(unsigned long section_nr, int nid)
50 {
51  section_to_node_table[section_nr] = nid;
52 }
53 #else /* !NODE_NOT_IN_PAGE_FLAGS */
54 static inline void set_section_nid(unsigned long section_nr, int nid)
55 {
56 }
57 #endif
58 
59 #ifdef CONFIG_SPARSEMEM_EXTREME
60 static struct mem_section noinline __init_refok *sparse_index_alloc(int nid)
61 {
62  struct mem_section *section = NULL;
63  unsigned long array_size = SECTIONS_PER_ROOT *
64  sizeof(struct mem_section);
65 
66  if (slab_is_available()) {
67  if (node_state(nid, N_HIGH_MEMORY))
68  section = kzalloc_node(array_size, GFP_KERNEL, nid);
69  else
70  section = kzalloc(array_size, GFP_KERNEL);
71  } else {
72  section = alloc_bootmem_node(NODE_DATA(nid), array_size);
73  }
74 
75  return section;
76 }
77 
78 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
79 {
80  unsigned long root = SECTION_NR_TO_ROOT(section_nr);
81  struct mem_section *section;
82  int ret = 0;
83 
84  if (mem_section[root])
85  return -EEXIST;
86 
87  section = sparse_index_alloc(nid);
88  if (!section)
89  return -ENOMEM;
90 
91  mem_section[root] = section;
92 
93  return ret;
94 }
95 #else /* !SPARSEMEM_EXTREME */
96 static inline int sparse_index_init(unsigned long section_nr, int nid)
97 {
98  return 0;
99 }
100 #endif
101 
102 /*
103  * Although written for the SPARSEMEM_EXTREME case, this happens
104  * to also work for the flat array case because
105  * NR_SECTION_ROOTS==NR_MEM_SECTIONS.
106  */
107 int __section_nr(struct mem_section* ms)
108 {
109  unsigned long root_nr;
110  struct mem_section* root;
111 
112  for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
113  root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
114  if (!root)
115  continue;
116 
117  if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
118  break;
119  }
120 
121  VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
122 
123  return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
124 }
125 
126 /*
127  * During early boot, before section_mem_map is used for an actual
128  * mem_map, we use section_mem_map to store the section's NUMA
129  * node. This keeps us from having to use another data structure. The
130  * node information is cleared just before we store the real mem_map.
131  */
132 static inline unsigned long sparse_encode_early_nid(int nid)
133 {
134  return (nid << SECTION_NID_SHIFT);
135 }
136 
137 static inline int sparse_early_nid(struct mem_section *section)
138 {
139  return (section->section_mem_map >> SECTION_NID_SHIFT);
140 }
141 
142 /* Validate the physical addressing limitations of the model */
143 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
144  unsigned long *end_pfn)
145 {
146  unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
147 
148  /*
149  * Sanity checks - do not allow an architecture to pass
150  * in larger pfns than the maximum scope of sparsemem:
151  */
152  if (*start_pfn > max_sparsemem_pfn) {
153  mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
154  "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
155  *start_pfn, *end_pfn, max_sparsemem_pfn);
156  WARN_ON_ONCE(1);
157  *start_pfn = max_sparsemem_pfn;
158  *end_pfn = max_sparsemem_pfn;
159  } else if (*end_pfn > max_sparsemem_pfn) {
160  mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
161  "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
162  *start_pfn, *end_pfn, max_sparsemem_pfn);
163  WARN_ON_ONCE(1);
164  *end_pfn = max_sparsemem_pfn;
165  }
166 }
167 
168 /* Record a memory area against a node. */
169 void __init memory_present(int nid, unsigned long start, unsigned long end)
170 {
171  unsigned long pfn;
172 
173  start &= PAGE_SECTION_MASK;
174  mminit_validate_memmodel_limits(&start, &end);
175  for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
176  unsigned long section = pfn_to_section_nr(pfn);
177  struct mem_section *ms;
178 
179  sparse_index_init(section, nid);
180  set_section_nid(section, nid);
181 
182  ms = __nr_to_section(section);
183  if (!ms->section_mem_map)
184  ms->section_mem_map = sparse_encode_early_nid(nid) |
185  SECTION_MARKED_PRESENT;
186  }
187 }
188 
189 /*
190  * Only used by the i386 NUMA architecures, but relatively
191  * generic code.
192  */
193 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
194  unsigned long end_pfn)
195 {
196  unsigned long pfn;
197  unsigned long nr_pages = 0;
198 
199  mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
200  for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
201  if (nid != early_pfn_to_nid(pfn))
202  continue;
203 
204  if (pfn_present(pfn))
205  nr_pages += PAGES_PER_SECTION;
206  }
207 
208  return nr_pages * sizeof(struct page);
209 }
210 
211 /*
212  * Subtle, we encode the real pfn into the mem_map such that
213  * the identity pfn - section_mem_map will return the actual
214  * physical page frame number.
215  */
216 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
217 {
218  return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
219 }
220 
221 /*
222  * Decode mem_map from the coded memmap
223  */
224 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
225 {
226  /* mask off the extra low bits of information */
227  coded_mem_map &= SECTION_MAP_MASK;
228  return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
229 }
230 
231 static int __meminit sparse_init_one_section(struct mem_section *ms,
232  unsigned long pnum, struct page *mem_map,
233  unsigned long *pageblock_bitmap)
234 {
235  if (!present_section(ms))
236  return -EINVAL;
237 
238  ms->section_mem_map &= ~SECTION_MAP_MASK;
239  ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
240  SECTION_HAS_MEM_MAP;
241  ms->pageblock_flags = pageblock_bitmap;
242 
243  return 1;
244 }
245 
246 unsigned long usemap_size(void)
247 {
248  unsigned long size_bytes;
249  size_bytes = roundup(SECTION_BLOCKFLAGS_BITS, 8) / 8;
250  size_bytes = roundup(size_bytes, sizeof(unsigned long));
251  return size_bytes;
252 }
253 
254 #ifdef CONFIG_MEMORY_HOTPLUG
255 static unsigned long *__kmalloc_section_usemap(void)
256 {
257  return kmalloc(usemap_size(), GFP_KERNEL);
258 }
259 #endif /* CONFIG_MEMORY_HOTPLUG */
260 
261 #ifdef CONFIG_MEMORY_HOTREMOVE
262 static unsigned long * __init
263 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
264  unsigned long size)
265 {
266  unsigned long goal, limit;
267  unsigned long *p;
268  int nid;
269  /*
270  * A page may contain usemaps for other sections preventing the
271  * page being freed and making a section unremovable while
272  * other sections referencing the usemap retmain active. Similarly,
273  * a pgdat can prevent a section being removed. If section A
274  * contains a pgdat and section B contains the usemap, both
275  * sections become inter-dependent. This allocates usemaps
276  * from the same section as the pgdat where possible to avoid
277  * this problem.
278  */
279  goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
280  limit = goal + (1UL << PA_SECTION_SHIFT);
281  nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
282 again:
284  SMP_CACHE_BYTES, goal, limit);
285  if (!p && limit) {
286  limit = 0;
287  goto again;
288  }
289  return p;
290 }
291 
292 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
293 {
294  unsigned long usemap_snr, pgdat_snr;
295  static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
296  static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
297  struct pglist_data *pgdat = NODE_DATA(nid);
298  int usemap_nid;
299 
300  usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
301  pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
302  if (usemap_snr == pgdat_snr)
303  return;
304 
305  if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
306  /* skip redundant message */
307  return;
308 
309  old_usemap_snr = usemap_snr;
310  old_pgdat_snr = pgdat_snr;
311 
312  usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
313  if (usemap_nid != nid) {
315  "node %d must be removed before remove section %ld\n",
316  nid, usemap_snr);
317  return;
318  }
319  /*
320  * There is a circular dependency.
321  * Some platforms allow un-removable section because they will just
322  * gather other removable sections for dynamic partitioning.
323  * Just notify un-removable section's number here.
324  */
325  printk(KERN_INFO "Section %ld and %ld (node %d)", usemap_snr,
326  pgdat_snr, nid);
328  " have a circular dependency on usemap and pgdat allocations\n");
329 }
330 #else
331 static unsigned long * __init
332 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
333  unsigned long size)
334 {
335  return alloc_bootmem_node_nopanic(pgdat, size);
336 }
337 
338 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
339 {
340 }
341 #endif /* CONFIG_MEMORY_HOTREMOVE */
342 
343 static void __init sparse_early_usemaps_alloc_node(unsigned long**usemap_map,
344  unsigned long pnum_begin,
345  unsigned long pnum_end,
346  unsigned long usemap_count, int nodeid)
347 {
348  void *usemap;
349  unsigned long pnum;
350  int size = usemap_size();
351 
352  usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
353  size * usemap_count);
354  if (!usemap) {
355  printk(KERN_WARNING "%s: allocation failed\n", __func__);
356  return;
357  }
358 
359  for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
360  if (!present_section_nr(pnum))
361  continue;
362  usemap_map[pnum] = usemap;
363  usemap += size;
364  check_usemap_section_nr(nodeid, usemap_map[pnum]);
365  }
366 }
367 
368 #ifndef CONFIG_SPARSEMEM_VMEMMAP
369 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
370 {
371  struct page *map;
372  unsigned long size;
373 
374  map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
375  if (map)
376  return map;
377 
378  size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
379  map = __alloc_bootmem_node_high(NODE_DATA(nid), size,
381  return map;
382 }
384  unsigned long pnum_begin,
385  unsigned long pnum_end,
386  unsigned long map_count, int nodeid)
387 {
388  void *map;
389  unsigned long pnum;
390  unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
391 
392  map = alloc_remap(nodeid, size * map_count);
393  if (map) {
394  for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
395  if (!present_section_nr(pnum))
396  continue;
397  map_map[pnum] = map;
398  map += size;
399  }
400  return;
401  }
402 
403  size = PAGE_ALIGN(size);
404  map = __alloc_bootmem_node_high(NODE_DATA(nodeid), size * map_count,
406  if (map) {
407  for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
408  if (!present_section_nr(pnum))
409  continue;
410  map_map[pnum] = map;
411  map += size;
412  }
413  return;
414  }
415 
416  /* fallback */
417  for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
418  struct mem_section *ms;
419 
420  if (!present_section_nr(pnum))
421  continue;
422  map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
423  if (map_map[pnum])
424  continue;
425  ms = __nr_to_section(pnum);
426  printk(KERN_ERR "%s: sparsemem memory map backing failed "
427  "some memory will not be available.\n", __func__);
428  ms->section_mem_map = 0;
429  }
430 }
431 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
432 
433 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
434 static void __init sparse_early_mem_maps_alloc_node(struct page **map_map,
435  unsigned long pnum_begin,
436  unsigned long pnum_end,
437  unsigned long map_count, int nodeid)
438 {
439  sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
440  map_count, nodeid);
441 }
442 #else
443 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
444 {
445  struct page *map;
446  struct mem_section *ms = __nr_to_section(pnum);
447  int nid = sparse_early_nid(ms);
448 
449  map = sparse_mem_map_populate(pnum, nid);
450  if (map)
451  return map;
452 
453  printk(KERN_ERR "%s: sparsemem memory map backing failed "
454  "some memory will not be available.\n", __func__);
455  ms->section_mem_map = 0;
456  return NULL;
457 }
458 #endif
459 
460 void __attribute__((weak)) __meminit vmemmap_populate_print_last(void)
461 {
462 }
463 
464 /*
465  * Allocate the accumulated non-linear sections, allocate a mem_map
466  * for each and record the physical to section mapping.
467  */
468 void __init sparse_init(void)
469 {
470  unsigned long pnum;
471  struct page *map;
472  unsigned long *usemap;
473  unsigned long **usemap_map;
474  int size;
475  int nodeid_begin = 0;
476  unsigned long pnum_begin = 0;
477  unsigned long usemap_count;
478 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
479  unsigned long map_count;
480  int size2;
481  struct page **map_map;
482 #endif
483 
484  /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
486 
487  /*
488  * map is using big page (aka 2M in x86 64 bit)
489  * usemap is less one page (aka 24 bytes)
490  * so alloc 2M (with 2M align) and 24 bytes in turn will
491  * make next 2M slip to one more 2M later.
492  * then in big system, the memory will have a lot of holes...
493  * here try to allocate 2M pages continuously.
494  *
495  * powerpc need to call sparse_init_one_section right after each
496  * sparse_early_mem_map_alloc, so allocate usemap_map at first.
497  */
498  size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
499  usemap_map = alloc_bootmem(size);
500  if (!usemap_map)
501  panic("can not allocate usemap_map\n");
502 
503  for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
504  struct mem_section *ms;
505 
506  if (!present_section_nr(pnum))
507  continue;
508  ms = __nr_to_section(pnum);
509  nodeid_begin = sparse_early_nid(ms);
510  pnum_begin = pnum;
511  break;
512  }
513  usemap_count = 1;
514  for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
515  struct mem_section *ms;
516  int nodeid;
517 
518  if (!present_section_nr(pnum))
519  continue;
520  ms = __nr_to_section(pnum);
521  nodeid = sparse_early_nid(ms);
522  if (nodeid == nodeid_begin) {
523  usemap_count++;
524  continue;
525  }
526  /* ok, we need to take cake of from pnum_begin to pnum - 1*/
527  sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, pnum,
528  usemap_count, nodeid_begin);
529  /* new start, update count etc*/
530  nodeid_begin = nodeid;
531  pnum_begin = pnum;
532  usemap_count = 1;
533  }
534  /* ok, last chunk */
535  sparse_early_usemaps_alloc_node(usemap_map, pnum_begin, NR_MEM_SECTIONS,
536  usemap_count, nodeid_begin);
537 
538 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
539  size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
540  map_map = alloc_bootmem(size2);
541  if (!map_map)
542  panic("can not allocate map_map\n");
543 
544  for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
545  struct mem_section *ms;
546 
547  if (!present_section_nr(pnum))
548  continue;
549  ms = __nr_to_section(pnum);
550  nodeid_begin = sparse_early_nid(ms);
551  pnum_begin = pnum;
552  break;
553  }
554  map_count = 1;
555  for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
556  struct mem_section *ms;
557  int nodeid;
558 
559  if (!present_section_nr(pnum))
560  continue;
561  ms = __nr_to_section(pnum);
562  nodeid = sparse_early_nid(ms);
563  if (nodeid == nodeid_begin) {
564  map_count++;
565  continue;
566  }
567  /* ok, we need to take cake of from pnum_begin to pnum - 1*/
568  sparse_early_mem_maps_alloc_node(map_map, pnum_begin, pnum,
569  map_count, nodeid_begin);
570  /* new start, update count etc*/
571  nodeid_begin = nodeid;
572  pnum_begin = pnum;
573  map_count = 1;
574  }
575  /* ok, last chunk */
576  sparse_early_mem_maps_alloc_node(map_map, pnum_begin, NR_MEM_SECTIONS,
577  map_count, nodeid_begin);
578 #endif
579 
580  for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
581  if (!present_section_nr(pnum))
582  continue;
583 
584  usemap = usemap_map[pnum];
585  if (!usemap)
586  continue;
587 
588 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
589  map = map_map[pnum];
590 #else
591  map = sparse_early_mem_map_alloc(pnum);
592 #endif
593  if (!map)
594  continue;
595 
596  sparse_init_one_section(__nr_to_section(pnum), pnum, map,
597  usemap);
598  }
599 
600  vmemmap_populate_print_last();
601 
602 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
603  free_bootmem(__pa(map_map), size2);
604 #endif
605  free_bootmem(__pa(usemap_map), size);
606 }
607 
608 #ifdef CONFIG_MEMORY_HOTPLUG
609 #ifdef CONFIG_SPARSEMEM_VMEMMAP
610 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
611  unsigned long nr_pages)
612 {
613  /* This will make the necessary allocations eventually. */
614  return sparse_mem_map_populate(pnum, nid);
615 }
616 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
617 {
618  return; /* XXX: Not implemented yet */
619 }
620 static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
621 {
622 }
623 #else
624 static struct page *__kmalloc_section_memmap(unsigned long nr_pages)
625 {
626  struct page *page, *ret;
627  unsigned long memmap_size = sizeof(struct page) * nr_pages;
628 
629  page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
630  if (page)
631  goto got_map_page;
632 
633  ret = vmalloc(memmap_size);
634  if (ret)
635  goto got_map_ptr;
636 
637  return NULL;
638 got_map_page:
639  ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
640 got_map_ptr:
641  memset(ret, 0, memmap_size);
642 
643  return ret;
644 }
645 
646 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid,
647  unsigned long nr_pages)
648 {
649  return __kmalloc_section_memmap(nr_pages);
650 }
651 
652 static void __kfree_section_memmap(struct page *memmap, unsigned long nr_pages)
653 {
654  if (is_vmalloc_addr(memmap))
655  vfree(memmap);
656  else
657  free_pages((unsigned long)memmap,
658  get_order(sizeof(struct page) * nr_pages));
659 }
660 
661 static void free_map_bootmem(struct page *memmap, unsigned long nr_pages)
662 {
663  unsigned long maps_section_nr, removing_section_nr, i;
664  unsigned long magic;
665  struct page *page = virt_to_page(memmap);
666 
667  for (i = 0; i < nr_pages; i++, page++) {
668  magic = (unsigned long) page->lru.next;
669 
670  BUG_ON(magic == NODE_INFO);
671 
672  maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
673  removing_section_nr = page->private;
674 
675  /*
676  * When this function is called, the removing section is
677  * logical offlined state. This means all pages are isolated
678  * from page allocator. If removing section's memmap is placed
679  * on the same section, it must not be freed.
680  * If it is freed, page allocator may allocate it which will
681  * be removed physically soon.
682  */
683  if (maps_section_nr != removing_section_nr)
684  put_page_bootmem(page);
685  }
686 }
687 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
688 
689 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
690 {
691  struct page *usemap_page;
692  unsigned long nr_pages;
693 
694  if (!usemap)
695  return;
696 
697  usemap_page = virt_to_page(usemap);
698  /*
699  * Check to see if allocation came from hot-plug-add
700  */
701  if (PageSlab(usemap_page)) {
702  kfree(usemap);
703  if (memmap)
704  __kfree_section_memmap(memmap, PAGES_PER_SECTION);
705  return;
706  }
707 
708  /*
709  * The usemap came from bootmem. This is packed with other usemaps
710  * on the section which has pgdat at boot time. Just keep it as is now.
711  */
712 
713  if (memmap) {
714  nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
715  >> PAGE_SHIFT;
716 
717  free_map_bootmem(memmap, nr_pages);
718  }
719 }
720 
721 /*
722  * returns the number of sections whose mem_maps were properly
723  * set. If this is <=0, then that means that the passed-in
724  * map was not consumed and must be freed.
725  */
726 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn,
727  int nr_pages)
728 {
729  unsigned long section_nr = pfn_to_section_nr(start_pfn);
730  struct pglist_data *pgdat = zone->zone_pgdat;
731  struct mem_section *ms;
732  struct page *memmap;
733  unsigned long *usemap;
734  unsigned long flags;
735  int ret;
736 
737  /*
738  * no locking for this, because it does its own
739  * plus, it does a kmalloc
740  */
741  ret = sparse_index_init(section_nr, pgdat->node_id);
742  if (ret < 0 && ret != -EEXIST)
743  return ret;
744  memmap = kmalloc_section_memmap(section_nr, pgdat->node_id, nr_pages);
745  if (!memmap)
746  return -ENOMEM;
747  usemap = __kmalloc_section_usemap();
748  if (!usemap) {
749  __kfree_section_memmap(memmap, nr_pages);
750  return -ENOMEM;
751  }
752 
753  pgdat_resize_lock(pgdat, &flags);
754 
755  ms = __pfn_to_section(start_pfn);
756  if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
757  ret = -EEXIST;
758  goto out;
759  }
760 
761  ms->section_mem_map |= SECTION_MARKED_PRESENT;
762 
763  ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
764 
765 out:
766  pgdat_resize_unlock(pgdat, &flags);
767  if (ret <= 0) {
768  kfree(usemap);
769  __kfree_section_memmap(memmap, nr_pages);
770  }
771  return ret;
772 }
773 
774 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms)
775 {
776  struct page *memmap = NULL;
777  unsigned long *usemap = NULL;
778 
779  if (ms->section_mem_map) {
780  usemap = ms->pageblock_flags;
781  memmap = sparse_decode_mem_map(ms->section_mem_map,
782  __section_nr(ms));
783  ms->section_mem_map = 0;
784  ms->pageblock_flags = NULL;
785  }
786 
787  free_section_usemap(memmap, usemap);
788 }
789 #endif