Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
spi-fsl-espi.c
Go to the documentation of this file.
1 /*
2  * Freescale eSPI controller driver.
3  *
4  * Copyright 2010 Freescale Semiconductor, Inc.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License as published by the
8  * Free Software Foundation; either version 2 of the License, or (at your
9  * option) any later version.
10  */
11 #include <linux/module.h>
12 #include <linux/delay.h>
13 #include <linux/irq.h>
14 #include <linux/spi/spi.h>
15 #include <linux/platform_device.h>
16 #include <linux/fsl_devices.h>
17 #include <linux/mm.h>
18 #include <linux/of.h>
19 #include <linux/of_platform.h>
20 #include <linux/interrupt.h>
21 #include <linux/err.h>
22 #include <sysdev/fsl_soc.h>
23 
24 #include "spi-fsl-lib.h"
25 
26 /* eSPI Controller registers */
27 struct fsl_espi_reg {
28  __be32 mode; /* 0x000 - eSPI mode register */
29  __be32 event; /* 0x004 - eSPI event register */
30  __be32 mask; /* 0x008 - eSPI mask register */
31  __be32 command; /* 0x00c - eSPI command register */
32  __be32 transmit; /* 0x010 - eSPI transmit FIFO access register*/
33  __be32 receive; /* 0x014 - eSPI receive FIFO access register*/
34  u8 res[8]; /* 0x018 - 0x01c reserved */
35  __be32 csmode[4]; /* 0x020 - 0x02c eSPI cs mode register */
36 };
37 
39  const void *tx_buf;
40  void *rx_buf;
41  unsigned len;
42  unsigned n_tx;
43  unsigned n_rx;
44  unsigned actual_length;
45  int status;
46 };
47 
48 /* eSPI Controller mode register definitions */
49 #define SPMODE_ENABLE (1 << 31)
50 #define SPMODE_LOOP (1 << 30)
51 #define SPMODE_TXTHR(x) ((x) << 8)
52 #define SPMODE_RXTHR(x) ((x) << 0)
53 
54 /* eSPI Controller CS mode register definitions */
55 #define CSMODE_CI_INACTIVEHIGH (1 << 31)
56 #define CSMODE_CP_BEGIN_EDGECLK (1 << 30)
57 #define CSMODE_REV (1 << 29)
58 #define CSMODE_DIV16 (1 << 28)
59 #define CSMODE_PM(x) ((x) << 24)
60 #define CSMODE_POL_1 (1 << 20)
61 #define CSMODE_LEN(x) ((x) << 16)
62 #define CSMODE_BEF(x) ((x) << 12)
63 #define CSMODE_AFT(x) ((x) << 8)
64 #define CSMODE_CG(x) ((x) << 3)
65 
66 /* Default mode/csmode for eSPI controller */
67 #define SPMODE_INIT_VAL (SPMODE_TXTHR(4) | SPMODE_RXTHR(3))
68 #define CSMODE_INIT_VAL (CSMODE_POL_1 | CSMODE_BEF(0) \
69  | CSMODE_AFT(0) | CSMODE_CG(1))
70 
71 /* SPIE register values */
72 #define SPIE_NE 0x00000200 /* Not empty */
73 #define SPIE_NF 0x00000100 /* Not full */
74 
75 /* SPIM register values */
76 #define SPIM_NE 0x00000200 /* Not empty */
77 #define SPIM_NF 0x00000100 /* Not full */
78 #define SPIE_RXCNT(reg) ((reg >> 24) & 0x3F)
79 #define SPIE_TXCNT(reg) ((reg >> 16) & 0x3F)
80 
81 /* SPCOM register values */
82 #define SPCOM_CS(x) ((x) << 30)
83 #define SPCOM_TRANLEN(x) ((x) << 0)
84 #define SPCOM_TRANLEN_MAX 0xFFFF /* Max transaction length */
85 
86 static void fsl_espi_change_mode(struct spi_device *spi)
87 {
88  struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
89  struct spi_mpc8xxx_cs *cs = spi->controller_state;
90  struct fsl_espi_reg *reg_base = mspi->reg_base;
91  __be32 __iomem *mode = &reg_base->csmode[spi->chip_select];
92  __be32 __iomem *espi_mode = &reg_base->mode;
93  u32 tmp;
94  unsigned long flags;
95 
96  /* Turn off IRQs locally to minimize time that SPI is disabled. */
97  local_irq_save(flags);
98 
99  /* Turn off SPI unit prior changing mode */
100  tmp = mpc8xxx_spi_read_reg(espi_mode);
101  mpc8xxx_spi_write_reg(espi_mode, tmp & ~SPMODE_ENABLE);
102  mpc8xxx_spi_write_reg(mode, cs->hw_mode);
103  mpc8xxx_spi_write_reg(espi_mode, tmp);
104 
105  local_irq_restore(flags);
106 }
107 
108 static u32 fsl_espi_tx_buf_lsb(struct mpc8xxx_spi *mpc8xxx_spi)
109 {
110  u32 data;
111  u16 data_h;
112  u16 data_l;
113  const u32 *tx = mpc8xxx_spi->tx;
114 
115  if (!tx)
116  return 0;
117 
118  data = *tx++ << mpc8xxx_spi->tx_shift;
119  data_l = data & 0xffff;
120  data_h = (data >> 16) & 0xffff;
121  swab16s(&data_l);
122  swab16s(&data_h);
123  data = data_h | data_l;
124 
125  mpc8xxx_spi->tx = tx;
126  return data;
127 }
128 
129 static int fsl_espi_setup_transfer(struct spi_device *spi,
130  struct spi_transfer *t)
131 {
132  struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
133  int bits_per_word = 0;
134  u8 pm;
135  u32 hz = 0;
136  struct spi_mpc8xxx_cs *cs = spi->controller_state;
137 
138  if (t) {
139  bits_per_word = t->bits_per_word;
140  hz = t->speed_hz;
141  }
142 
143  /* spi_transfer level calls that work per-word */
144  if (!bits_per_word)
145  bits_per_word = spi->bits_per_word;
146 
147  /* Make sure its a bit width we support [4..16] */
148  if ((bits_per_word < 4) || (bits_per_word > 16))
149  return -EINVAL;
150 
151  if (!hz)
152  hz = spi->max_speed_hz;
153 
154  cs->rx_shift = 0;
155  cs->tx_shift = 0;
158  if (bits_per_word <= 8) {
159  cs->rx_shift = 8 - bits_per_word;
160  } else if (bits_per_word <= 16) {
161  cs->rx_shift = 16 - bits_per_word;
162  if (spi->mode & SPI_LSB_FIRST)
163  cs->get_tx = fsl_espi_tx_buf_lsb;
164  } else {
165  return -EINVAL;
166  }
167 
168  mpc8xxx_spi->rx_shift = cs->rx_shift;
169  mpc8xxx_spi->tx_shift = cs->tx_shift;
170  mpc8xxx_spi->get_rx = cs->get_rx;
171  mpc8xxx_spi->get_tx = cs->get_tx;
172 
173  bits_per_word = bits_per_word - 1;
174 
175  /* mask out bits we are going to set */
176  cs->hw_mode &= ~(CSMODE_LEN(0xF) | CSMODE_DIV16 | CSMODE_PM(0xF));
177 
178  cs->hw_mode |= CSMODE_LEN(bits_per_word);
179 
180  if ((mpc8xxx_spi->spibrg / hz) > 64) {
181  cs->hw_mode |= CSMODE_DIV16;
182  pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 16 * 4);
183 
184  WARN_ONCE(pm > 33, "%s: Requested speed is too low: %d Hz. "
185  "Will use %d Hz instead.\n", dev_name(&spi->dev),
186  hz, mpc8xxx_spi->spibrg / (4 * 16 * (32 + 1)));
187  if (pm > 33)
188  pm = 33;
189  } else {
190  pm = DIV_ROUND_UP(mpc8xxx_spi->spibrg, hz * 4);
191  }
192  if (pm)
193  pm--;
194  if (pm < 2)
195  pm = 2;
196 
197  cs->hw_mode |= CSMODE_PM(pm);
198 
199  fsl_espi_change_mode(spi);
200  return 0;
201 }
202 
203 static int fsl_espi_cpu_bufs(struct mpc8xxx_spi *mspi, struct spi_transfer *t,
204  unsigned int len)
205 {
206  u32 word;
207  struct fsl_espi_reg *reg_base = mspi->reg_base;
208 
209  mspi->count = len;
210 
211  /* enable rx ints */
212  mpc8xxx_spi_write_reg(&reg_base->mask, SPIM_NE);
213 
214  /* transmit word */
215  word = mspi->get_tx(mspi);
216  mpc8xxx_spi_write_reg(&reg_base->transmit, word);
217 
218  return 0;
219 }
220 
221 static int fsl_espi_bufs(struct spi_device *spi, struct spi_transfer *t)
222 {
223  struct mpc8xxx_spi *mpc8xxx_spi = spi_master_get_devdata(spi->master);
224  struct fsl_espi_reg *reg_base = mpc8xxx_spi->reg_base;
225  unsigned int len = t->len;
226  u8 bits_per_word;
227  int ret;
228 
229  bits_per_word = spi->bits_per_word;
230  if (t->bits_per_word)
231  bits_per_word = t->bits_per_word;
232 
233  mpc8xxx_spi->len = t->len;
234  len = roundup(len, 4) / 4;
235 
236  mpc8xxx_spi->tx = t->tx_buf;
237  mpc8xxx_spi->rx = t->rx_buf;
238 
239  INIT_COMPLETION(mpc8xxx_spi->done);
240 
241  /* Set SPCOM[CS] and SPCOM[TRANLEN] field */
242  if ((t->len - 1) > SPCOM_TRANLEN_MAX) {
243  dev_err(mpc8xxx_spi->dev, "Transaction length (%d)"
244  " beyond the SPCOM[TRANLEN] field\n", t->len);
245  return -EINVAL;
246  }
247  mpc8xxx_spi_write_reg(&reg_base->command,
248  (SPCOM_CS(spi->chip_select) | SPCOM_TRANLEN(t->len - 1)));
249 
250  ret = fsl_espi_cpu_bufs(mpc8xxx_spi, t, len);
251  if (ret)
252  return ret;
253 
254  wait_for_completion(&mpc8xxx_spi->done);
255 
256  /* disable rx ints */
257  mpc8xxx_spi_write_reg(&reg_base->mask, 0);
258 
259  return mpc8xxx_spi->count;
260 }
261 
262 static inline void fsl_espi_addr2cmd(unsigned int addr, u8 *cmd)
263 {
264  if (cmd) {
265  cmd[1] = (u8)(addr >> 16);
266  cmd[2] = (u8)(addr >> 8);
267  cmd[3] = (u8)(addr >> 0);
268  }
269 }
270 
271 static inline unsigned int fsl_espi_cmd2addr(u8 *cmd)
272 {
273  if (cmd)
274  return cmd[1] << 16 | cmd[2] << 8 | cmd[3] << 0;
275 
276  return 0;
277 }
278 
279 static void fsl_espi_do_trans(struct spi_message *m,
280  struct fsl_espi_transfer *tr)
281 {
282  struct spi_device *spi = m->spi;
283  struct mpc8xxx_spi *mspi = spi_master_get_devdata(spi->master);
284  struct fsl_espi_transfer *espi_trans = tr;
285  struct spi_message message;
286  struct spi_transfer *t, *first, trans;
287  int status = 0;
288 
289  spi_message_init(&message);
290  memset(&trans, 0, sizeof(trans));
291 
292  first = list_first_entry(&m->transfers, struct spi_transfer,
293  transfer_list);
295  if ((first->bits_per_word != t->bits_per_word) ||
296  (first->speed_hz != t->speed_hz)) {
297  espi_trans->status = -EINVAL;
298  dev_err(mspi->dev, "bits_per_word/speed_hz should be"
299  " same for the same SPI transfer\n");
300  return;
301  }
302 
303  trans.speed_hz = t->speed_hz;
304  trans.bits_per_word = t->bits_per_word;
305  trans.delay_usecs = max(first->delay_usecs, t->delay_usecs);
306  }
307 
308  trans.len = espi_trans->len;
309  trans.tx_buf = espi_trans->tx_buf;
310  trans.rx_buf = espi_trans->rx_buf;
311  spi_message_add_tail(&trans, &message);
312 
313  list_for_each_entry(t, &message.transfers, transfer_list) {
314  if (t->bits_per_word || t->speed_hz) {
315  status = -EINVAL;
316 
317  status = fsl_espi_setup_transfer(spi, t);
318  if (status < 0)
319  break;
320  }
321 
322  if (t->len)
323  status = fsl_espi_bufs(spi, t);
324 
325  if (status) {
326  status = -EMSGSIZE;
327  break;
328  }
329 
330  if (t->delay_usecs)
331  udelay(t->delay_usecs);
332  }
333 
334  espi_trans->status = status;
335  fsl_espi_setup_transfer(spi, NULL);
336 }
337 
338 static void fsl_espi_cmd_trans(struct spi_message *m,
339  struct fsl_espi_transfer *trans, u8 *rx_buff)
340 {
341  struct spi_transfer *t;
342  u8 *local_buf;
343  int i = 0;
344  struct fsl_espi_transfer *espi_trans = trans;
345 
346  local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
347  if (!local_buf) {
348  espi_trans->status = -ENOMEM;
349  return;
350  }
351 
352  list_for_each_entry(t, &m->transfers, transfer_list) {
353  if (t->tx_buf) {
354  memcpy(local_buf + i, t->tx_buf, t->len);
355  i += t->len;
356  }
357  }
358 
359  espi_trans->tx_buf = local_buf;
360  espi_trans->rx_buf = local_buf + espi_trans->n_tx;
361  fsl_espi_do_trans(m, espi_trans);
362 
363  espi_trans->actual_length = espi_trans->len;
364  kfree(local_buf);
365 }
366 
367 static void fsl_espi_rw_trans(struct spi_message *m,
368  struct fsl_espi_transfer *trans, u8 *rx_buff)
369 {
370  struct fsl_espi_transfer *espi_trans = trans;
371  unsigned int n_tx = espi_trans->n_tx;
372  unsigned int n_rx = espi_trans->n_rx;
373  struct spi_transfer *t;
374  u8 *local_buf;
375  u8 *rx_buf = rx_buff;
376  unsigned int trans_len;
377  unsigned int addr;
378  int i, pos, loop;
379 
380  local_buf = kzalloc(SPCOM_TRANLEN_MAX, GFP_KERNEL);
381  if (!local_buf) {
382  espi_trans->status = -ENOMEM;
383  return;
384  }
385 
386  for (pos = 0, loop = 0; pos < n_rx; pos += trans_len, loop++) {
387  trans_len = n_rx - pos;
388  if (trans_len > SPCOM_TRANLEN_MAX - n_tx)
389  trans_len = SPCOM_TRANLEN_MAX - n_tx;
390 
391  i = 0;
393  if (t->tx_buf) {
394  memcpy(local_buf + i, t->tx_buf, t->len);
395  i += t->len;
396  }
397  }
398 
399  if (pos > 0) {
400  addr = fsl_espi_cmd2addr(local_buf);
401  addr += pos;
402  fsl_espi_addr2cmd(addr, local_buf);
403  }
404 
405  espi_trans->n_tx = n_tx;
406  espi_trans->n_rx = trans_len;
407  espi_trans->len = trans_len + n_tx;
408  espi_trans->tx_buf = local_buf;
409  espi_trans->rx_buf = local_buf + n_tx;
410  fsl_espi_do_trans(m, espi_trans);
411 
412  memcpy(rx_buf + pos, espi_trans->rx_buf + n_tx, trans_len);
413 
414  if (loop > 0)
415  espi_trans->actual_length += espi_trans->len - n_tx;
416  else
417  espi_trans->actual_length += espi_trans->len;
418  }
419 
420  kfree(local_buf);
421 }
422 
423 static void fsl_espi_do_one_msg(struct spi_message *m)
424 {
425  struct spi_transfer *t;
426  u8 *rx_buf = NULL;
427  unsigned int n_tx = 0;
428  unsigned int n_rx = 0;
429  struct fsl_espi_transfer espi_trans;
430 
431  list_for_each_entry(t, &m->transfers, transfer_list) {
432  if (t->tx_buf)
433  n_tx += t->len;
434  if (t->rx_buf) {
435  n_rx += t->len;
436  rx_buf = t->rx_buf;
437  }
438  }
439 
440  espi_trans.n_tx = n_tx;
441  espi_trans.n_rx = n_rx;
442  espi_trans.len = n_tx + n_rx;
443  espi_trans.actual_length = 0;
444  espi_trans.status = 0;
445 
446  if (!rx_buf)
447  fsl_espi_cmd_trans(m, &espi_trans, NULL);
448  else
449  fsl_espi_rw_trans(m, &espi_trans, rx_buf);
450 
451  m->actual_length = espi_trans.actual_length;
452  m->status = espi_trans.status;
453  m->complete(m->context);
454 }
455 
456 static int fsl_espi_setup(struct spi_device *spi)
457 {
458  struct mpc8xxx_spi *mpc8xxx_spi;
459  struct fsl_espi_reg *reg_base;
460  int retval;
461  u32 hw_mode;
462  u32 loop_mode;
463  struct spi_mpc8xxx_cs *cs = spi->controller_state;
464 
465  if (!spi->max_speed_hz)
466  return -EINVAL;
467 
468  if (!cs) {
469  cs = kzalloc(sizeof *cs, GFP_KERNEL);
470  if (!cs)
471  return -ENOMEM;
472  spi->controller_state = cs;
473  }
474 
475  mpc8xxx_spi = spi_master_get_devdata(spi->master);
476  reg_base = mpc8xxx_spi->reg_base;
477 
478  hw_mode = cs->hw_mode; /* Save original settings */
479  cs->hw_mode = mpc8xxx_spi_read_reg(
480  &reg_base->csmode[spi->chip_select]);
481  /* mask out bits we are going to set */
483  | CSMODE_REV);
484 
485  if (spi->mode & SPI_CPHA)
487  if (spi->mode & SPI_CPOL)
489  if (!(spi->mode & SPI_LSB_FIRST))
490  cs->hw_mode |= CSMODE_REV;
491 
492  /* Handle the loop mode */
493  loop_mode = mpc8xxx_spi_read_reg(&reg_base->mode);
494  loop_mode &= ~SPMODE_LOOP;
495  if (spi->mode & SPI_LOOP)
496  loop_mode |= SPMODE_LOOP;
497  mpc8xxx_spi_write_reg(&reg_base->mode, loop_mode);
498 
499  retval = fsl_espi_setup_transfer(spi, NULL);
500  if (retval < 0) {
501  cs->hw_mode = hw_mode; /* Restore settings */
502  return retval;
503  }
504  return 0;
505 }
506 
507 void fsl_espi_cpu_irq(struct mpc8xxx_spi *mspi, u32 events)
508 {
509  struct fsl_espi_reg *reg_base = mspi->reg_base;
510 
511  /* We need handle RX first */
512  if (events & SPIE_NE) {
513  u32 rx_data, tmp;
514  u8 rx_data_8;
515 
516  /* Spin until RX is done */
517  while (SPIE_RXCNT(events) < min(4, mspi->len)) {
518  cpu_relax();
519  events = mpc8xxx_spi_read_reg(&reg_base->event);
520  }
521 
522  if (mspi->len >= 4) {
523  rx_data = mpc8xxx_spi_read_reg(&reg_base->receive);
524  } else {
525  tmp = mspi->len;
526  rx_data = 0;
527  while (tmp--) {
528  rx_data_8 = in_8((u8 *)&reg_base->receive);
529  rx_data |= (rx_data_8 << (tmp * 8));
530  }
531 
532  rx_data <<= (4 - mspi->len) * 8;
533  }
534 
535  mspi->len -= 4;
536 
537  if (mspi->rx)
538  mspi->get_rx(rx_data, mspi);
539  }
540 
541  if (!(events & SPIE_NF)) {
542  int ret;
543 
544  /* spin until TX is done */
545  ret = spin_event_timeout(((events = mpc8xxx_spi_read_reg(
546  &reg_base->event)) & SPIE_NF) == 0, 1000, 0);
547  if (!ret) {
548  dev_err(mspi->dev, "tired waiting for SPIE_NF\n");
549  return;
550  }
551  }
552 
553  /* Clear the events */
554  mpc8xxx_spi_write_reg(&reg_base->event, events);
555 
556  mspi->count -= 1;
557  if (mspi->count) {
558  u32 word = mspi->get_tx(mspi);
559 
560  mpc8xxx_spi_write_reg(&reg_base->transmit, word);
561  } else {
562  complete(&mspi->done);
563  }
564 }
565 
566 static irqreturn_t fsl_espi_irq(s32 irq, void *context_data)
567 {
568  struct mpc8xxx_spi *mspi = context_data;
569  struct fsl_espi_reg *reg_base = mspi->reg_base;
570  irqreturn_t ret = IRQ_NONE;
571  u32 events;
572 
573  /* Get interrupt events(tx/rx) */
574  events = mpc8xxx_spi_read_reg(&reg_base->event);
575  if (events)
576  ret = IRQ_HANDLED;
577 
578  dev_vdbg(mspi->dev, "%s: events %x\n", __func__, events);
579 
580  fsl_espi_cpu_irq(mspi, events);
581 
582  return ret;
583 }
584 
585 static void fsl_espi_remove(struct mpc8xxx_spi *mspi)
586 {
587  iounmap(mspi->reg_base);
588 }
589 
590 static struct spi_master * __devinit fsl_espi_probe(struct device *dev,
591  struct resource *mem, unsigned int irq)
592 {
594  struct spi_master *master;
595  struct mpc8xxx_spi *mpc8xxx_spi;
596  struct fsl_espi_reg *reg_base;
597  u32 regval;
598  int i, ret = 0;
599 
600  master = spi_alloc_master(dev, sizeof(struct mpc8xxx_spi));
601  if (!master) {
602  ret = -ENOMEM;
603  goto err;
604  }
605 
606  dev_set_drvdata(dev, master);
607 
608  ret = mpc8xxx_spi_probe(dev, mem, irq);
609  if (ret)
610  goto err_probe;
611 
612  master->setup = fsl_espi_setup;
613 
614  mpc8xxx_spi = spi_master_get_devdata(master);
615  mpc8xxx_spi->spi_do_one_msg = fsl_espi_do_one_msg;
616  mpc8xxx_spi->spi_remove = fsl_espi_remove;
617 
618  mpc8xxx_spi->reg_base = ioremap(mem->start, resource_size(mem));
619  if (!mpc8xxx_spi->reg_base) {
620  ret = -ENOMEM;
621  goto err_probe;
622  }
623 
624  reg_base = mpc8xxx_spi->reg_base;
625 
626  /* Register for SPI Interrupt */
627  ret = request_irq(mpc8xxx_spi->irq, fsl_espi_irq,
628  0, "fsl_espi", mpc8xxx_spi);
629  if (ret)
630  goto free_irq;
631 
632  if (mpc8xxx_spi->flags & SPI_QE_CPU_MODE) {
633  mpc8xxx_spi->rx_shift = 16;
634  mpc8xxx_spi->tx_shift = 24;
635  }
636 
637  /* SPI controller initializations */
638  mpc8xxx_spi_write_reg(&reg_base->mode, 0);
639  mpc8xxx_spi_write_reg(&reg_base->mask, 0);
640  mpc8xxx_spi_write_reg(&reg_base->command, 0);
641  mpc8xxx_spi_write_reg(&reg_base->event, 0xffffffff);
642 
643  /* Init eSPI CS mode register */
644  for (i = 0; i < pdata->max_chipselect; i++)
645  mpc8xxx_spi_write_reg(&reg_base->csmode[i], CSMODE_INIT_VAL);
646 
647  /* Enable SPI interface */
648  regval = pdata->initial_spmode | SPMODE_INIT_VAL | SPMODE_ENABLE;
649 
650  mpc8xxx_spi_write_reg(&reg_base->mode, regval);
651 
652  ret = spi_register_master(master);
653  if (ret < 0)
654  goto unreg_master;
655 
656  dev_info(dev, "at 0x%p (irq = %d)\n", reg_base, mpc8xxx_spi->irq);
657 
658  return master;
659 
660 unreg_master:
661  free_irq(mpc8xxx_spi->irq, mpc8xxx_spi);
662 free_irq:
663  iounmap(mpc8xxx_spi->reg_base);
664 err_probe:
665  spi_master_put(master);
666 err:
667  return ERR_PTR(ret);
668 }
669 
670 static int of_fsl_espi_get_chipselects(struct device *dev)
671 {
672  struct device_node *np = dev->of_node;
673  struct fsl_spi_platform_data *pdata = dev->platform_data;
674  const u32 *prop;
675  int len;
676 
677  prop = of_get_property(np, "fsl,espi-num-chipselects", &len);
678  if (!prop || len < sizeof(*prop)) {
679  dev_err(dev, "No 'fsl,espi-num-chipselects' property\n");
680  return -EINVAL;
681  }
682 
683  pdata->max_chipselect = *prop;
684  pdata->cs_control = NULL;
685 
686  return 0;
687 }
688 
689 static int __devinit of_fsl_espi_probe(struct platform_device *ofdev)
690 {
691  struct device *dev = &ofdev->dev;
692  struct device_node *np = ofdev->dev.of_node;
693  struct spi_master *master;
694  struct resource mem;
695  struct resource irq;
696  int ret = -ENOMEM;
697 
698  ret = of_mpc8xxx_spi_probe(ofdev);
699  if (ret)
700  return ret;
701 
702  ret = of_fsl_espi_get_chipselects(dev);
703  if (ret)
704  goto err;
705 
706  ret = of_address_to_resource(np, 0, &mem);
707  if (ret)
708  goto err;
709 
710  ret = of_irq_to_resource(np, 0, &irq);
711  if (!ret) {
712  ret = -EINVAL;
713  goto err;
714  }
715 
716  master = fsl_espi_probe(dev, &mem, irq.start);
717  if (IS_ERR(master)) {
718  ret = PTR_ERR(master);
719  goto err;
720  }
721 
722  return 0;
723 
724 err:
725  return ret;
726 }
727 
728 static int __devexit of_fsl_espi_remove(struct platform_device *dev)
729 {
730  return mpc8xxx_spi_remove(&dev->dev);
731 }
732 
733 static const struct of_device_id of_fsl_espi_match[] = {
734  { .compatible = "fsl,mpc8536-espi" },
735  {}
736 };
737 MODULE_DEVICE_TABLE(of, of_fsl_espi_match);
738 
739 static struct platform_driver fsl_espi_driver = {
740  .driver = {
741  .name = "fsl_espi",
742  .owner = THIS_MODULE,
743  .of_match_table = of_fsl_espi_match,
744  },
745  .probe = of_fsl_espi_probe,
746  .remove = __devexit_p(of_fsl_espi_remove),
747 };
748 module_platform_driver(fsl_espi_driver);
749 
750 MODULE_AUTHOR("Mingkai Hu");
751 MODULE_DESCRIPTION("Enhanced Freescale SPI Driver");
752 MODULE_LICENSE("GPL");