Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
spu_manage.c
Go to the documentation of this file.
1 /*
2  * spu management operations for of based platforms
3  *
4  * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5  * Copyright 2006 Sony Corp.
6  * (C) Copyright 2007 TOSHIBA CORPORATION
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; version 2 of the License.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License along
18  * with this program; if not, write to the Free Software Foundation, Inc.,
19  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20  */
21 
22 #include <linux/interrupt.h>
23 #include <linux/list.h>
24 #include <linux/export.h>
25 #include <linux/ptrace.h>
26 #include <linux/wait.h>
27 #include <linux/mm.h>
28 #include <linux/io.h>
29 #include <linux/mutex.h>
30 #include <linux/device.h>
31 
32 #include <asm/spu.h>
33 #include <asm/spu_priv1.h>
34 #include <asm/firmware.h>
35 #include <asm/prom.h>
36 
37 #include "spufs/spufs.h"
38 #include "interrupt.h"
39 
40 struct device_node *spu_devnode(struct spu *spu)
41 {
42  return spu->devnode;
43 }
44 
46 
47 static u64 __init find_spu_unit_number(struct device_node *spe)
48 {
49  const unsigned int *prop;
50  int proplen;
51 
52  /* new device trees should provide the physical-id attribute */
53  prop = of_get_property(spe, "physical-id", &proplen);
54  if (proplen == 4)
55  return (u64)*prop;
56 
57  /* celleb device tree provides the unit-id */
58  prop = of_get_property(spe, "unit-id", &proplen);
59  if (proplen == 4)
60  return (u64)*prop;
61 
62  /* legacy device trees provide the id in the reg attribute */
63  prop = of_get_property(spe, "reg", &proplen);
64  if (proplen == 4)
65  return (u64)*prop;
66 
67  return 0;
68 }
69 
70 static void spu_unmap(struct spu *spu)
71 {
72  if (!firmware_has_feature(FW_FEATURE_LPAR))
73  iounmap(spu->priv1);
74  iounmap(spu->priv2);
75  iounmap(spu->problem);
76  iounmap((__force u8 __iomem *)spu->local_store);
77 }
78 
79 static int __init spu_map_interrupts_old(struct spu *spu,
80  struct device_node *np)
81 {
82  unsigned int isrc;
83  const u32 *tmp;
84  int nid;
85 
86  /* Get the interrupt source unit from the device-tree */
87  tmp = of_get_property(np, "isrc", NULL);
88  if (!tmp)
89  return -ENODEV;
90  isrc = tmp[0];
91 
92  tmp = of_get_property(np->parent->parent, "node-id", NULL);
93  if (!tmp) {
94  printk(KERN_WARNING "%s: can't find node-id\n", __func__);
95  nid = spu->node;
96  } else
97  nid = tmp[0];
98 
99  /* Add the node number */
100  isrc |= nid << IIC_IRQ_NODE_SHIFT;
101 
102  /* Now map interrupts of all 3 classes */
103  spu->irqs[0] = irq_create_mapping(NULL, IIC_IRQ_CLASS_0 | isrc);
104  spu->irqs[1] = irq_create_mapping(NULL, IIC_IRQ_CLASS_1 | isrc);
105  spu->irqs[2] = irq_create_mapping(NULL, IIC_IRQ_CLASS_2 | isrc);
106 
107  /* Right now, we only fail if class 2 failed */
108  return spu->irqs[2] == NO_IRQ ? -EINVAL : 0;
109 }
110 
111 static void __iomem * __init spu_map_prop_old(struct spu *spu,
112  struct device_node *n,
113  const char *name)
114 {
115  const struct address_prop {
116  unsigned long address;
117  unsigned int len;
118  } __attribute__((packed)) *prop;
119  int proplen;
120 
121  prop = of_get_property(n, name, &proplen);
122  if (prop == NULL || proplen != sizeof (struct address_prop))
123  return NULL;
124 
125  return ioremap(prop->address, prop->len);
126 }
127 
128 static int __init spu_map_device_old(struct spu *spu)
129 {
130  struct device_node *node = spu->devnode;
131  const char *prop;
132  int ret;
133 
134  ret = -ENODEV;
135  spu->name = of_get_property(node, "name", NULL);
136  if (!spu->name)
137  goto out;
138 
139  prop = of_get_property(node, "local-store", NULL);
140  if (!prop)
141  goto out;
142  spu->local_store_phys = *(unsigned long *)prop;
143 
144  /* we use local store as ram, not io memory */
145  spu->local_store = (void __force *)
146  spu_map_prop_old(spu, node, "local-store");
147  if (!spu->local_store)
148  goto out;
149 
150  prop = of_get_property(node, "problem", NULL);
151  if (!prop)
152  goto out_unmap;
153  spu->problem_phys = *(unsigned long *)prop;
154 
155  spu->problem = spu_map_prop_old(spu, node, "problem");
156  if (!spu->problem)
157  goto out_unmap;
158 
159  spu->priv2 = spu_map_prop_old(spu, node, "priv2");
160  if (!spu->priv2)
161  goto out_unmap;
162 
163  if (!firmware_has_feature(FW_FEATURE_LPAR)) {
164  spu->priv1 = spu_map_prop_old(spu, node, "priv1");
165  if (!spu->priv1)
166  goto out_unmap;
167  }
168 
169  ret = 0;
170  goto out;
171 
172 out_unmap:
173  spu_unmap(spu);
174 out:
175  return ret;
176 }
177 
178 static int __init spu_map_interrupts(struct spu *spu, struct device_node *np)
179 {
180  struct of_irq oirq;
181  int ret;
182  int i;
183 
184  for (i=0; i < 3; i++) {
185  ret = of_irq_map_one(np, i, &oirq);
186  if (ret) {
187  pr_debug("spu_new: failed to get irq %d\n", i);
188  goto err;
189  }
190  ret = -EINVAL;
191  pr_debug(" irq %d no 0x%x on %s\n", i, oirq.specifier[0],
192  oirq.controller->full_name);
193  spu->irqs[i] = irq_create_of_mapping(oirq.controller,
194  oirq.specifier, oirq.size);
195  if (spu->irqs[i] == NO_IRQ) {
196  pr_debug("spu_new: failed to map it !\n");
197  goto err;
198  }
199  }
200  return 0;
201 
202 err:
203  pr_debug("failed to map irq %x for spu %s\n", *oirq.specifier,
204  spu->name);
205  for (; i >= 0; i--) {
206  if (spu->irqs[i] != NO_IRQ)
207  irq_dispose_mapping(spu->irqs[i]);
208  }
209  return ret;
210 }
211 
212 static int spu_map_resource(struct spu *spu, int nr,
213  void __iomem** virt, unsigned long *phys)
214 {
215  struct device_node *np = spu->devnode;
216  struct resource resource = { };
217  unsigned long len;
218  int ret;
219 
220  ret = of_address_to_resource(np, nr, &resource);
221  if (ret)
222  return ret;
223  if (phys)
224  *phys = resource.start;
225  len = resource_size(&resource);
226  *virt = ioremap(resource.start, len);
227  if (!*virt)
228  return -EINVAL;
229  return 0;
230 }
231 
232 static int __init spu_map_device(struct spu *spu)
233 {
234  struct device_node *np = spu->devnode;
235  int ret = -ENODEV;
236 
237  spu->name = of_get_property(np, "name", NULL);
238  if (!spu->name)
239  goto out;
240 
241  ret = spu_map_resource(spu, 0, (void __iomem**)&spu->local_store,
242  &spu->local_store_phys);
243  if (ret) {
244  pr_debug("spu_new: failed to map %s resource 0\n",
245  np->full_name);
246  goto out;
247  }
248  ret = spu_map_resource(spu, 1, (void __iomem**)&spu->problem,
249  &spu->problem_phys);
250  if (ret) {
251  pr_debug("spu_new: failed to map %s resource 1\n",
252  np->full_name);
253  goto out_unmap;
254  }
255  ret = spu_map_resource(spu, 2, (void __iomem**)&spu->priv2, NULL);
256  if (ret) {
257  pr_debug("spu_new: failed to map %s resource 2\n",
258  np->full_name);
259  goto out_unmap;
260  }
261  if (!firmware_has_feature(FW_FEATURE_LPAR))
262  ret = spu_map_resource(spu, 3,
263  (void __iomem**)&spu->priv1, NULL);
264  if (ret) {
265  pr_debug("spu_new: failed to map %s resource 3\n",
266  np->full_name);
267  goto out_unmap;
268  }
269  pr_debug("spu_new: %s maps:\n", np->full_name);
270  pr_debug(" local store : 0x%016lx -> 0x%p\n",
271  spu->local_store_phys, spu->local_store);
272  pr_debug(" problem state : 0x%016lx -> 0x%p\n",
273  spu->problem_phys, spu->problem);
274  pr_debug(" priv2 : 0x%p\n", spu->priv2);
275  pr_debug(" priv1 : 0x%p\n", spu->priv1);
276 
277  return 0;
278 
279 out_unmap:
280  spu_unmap(spu);
281 out:
282  pr_debug("failed to map spe %s: %d\n", spu->name, ret);
283  return ret;
284 }
285 
286 static int __init of_enumerate_spus(int (*fn)(void *data))
287 {
288  int ret;
289  struct device_node *node;
290  unsigned int n = 0;
291 
292  ret = -ENODEV;
293  for (node = of_find_node_by_type(NULL, "spe");
294  node; node = of_find_node_by_type(node, "spe")) {
295  ret = fn(node);
296  if (ret) {
297  printk(KERN_WARNING "%s: Error initializing %s\n",
298  __func__, node->name);
299  break;
300  }
301  n++;
302  }
303  return ret ? ret : n;
304 }
305 
306 static int __init of_create_spu(struct spu *spu, void *data)
307 {
308  int ret;
309  struct device_node *spe = (struct device_node *)data;
310  static int legacy_map = 0, legacy_irq = 0;
311 
312  spu->devnode = of_node_get(spe);
313  spu->spe_id = find_spu_unit_number(spe);
314 
315  spu->node = of_node_to_nid(spe);
316  if (spu->node >= MAX_NUMNODES) {
317  printk(KERN_WARNING "SPE %s on node %d ignored,"
318  " node number too big\n", spe->full_name, spu->node);
319  printk(KERN_WARNING "Check if CONFIG_NUMA is enabled.\n");
320  ret = -ENODEV;
321  goto out;
322  }
323 
324  ret = spu_map_device(spu);
325  if (ret) {
326  if (!legacy_map) {
327  legacy_map = 1;
328  printk(KERN_WARNING "%s: Legacy device tree found, "
329  "trying to map old style\n", __func__);
330  }
331  ret = spu_map_device_old(spu);
332  if (ret) {
333  printk(KERN_ERR "Unable to map %s\n",
334  spu->name);
335  goto out;
336  }
337  }
338 
339  ret = spu_map_interrupts(spu, spe);
340  if (ret) {
341  if (!legacy_irq) {
342  legacy_irq = 1;
343  printk(KERN_WARNING "%s: Legacy device tree found, "
344  "trying old style irq\n", __func__);
345  }
346  ret = spu_map_interrupts_old(spu, spe);
347  if (ret) {
348  printk(KERN_ERR "%s: could not map interrupts\n",
349  spu->name);
350  goto out_unmap;
351  }
352  }
353 
354  pr_debug("Using SPE %s %p %p %p %p %d\n", spu->name,
355  spu->local_store, spu->problem, spu->priv1,
356  spu->priv2, spu->number);
357  goto out;
358 
359 out_unmap:
360  spu_unmap(spu);
361 out:
362  return ret;
363 }
364 
365 static int of_destroy_spu(struct spu *spu)
366 {
367  spu_unmap(spu);
368  of_node_put(spu->devnode);
369  return 0;
370 }
371 
372 static void enable_spu_by_master_run(struct spu_context *ctx)
373 {
374  ctx->ops->master_start(ctx);
375 }
376 
377 static void disable_spu_by_master_run(struct spu_context *ctx)
378 {
379  ctx->ops->master_stop(ctx);
380 }
381 
382 /* Hardcoded affinity idxs for qs20 */
383 #define QS20_SPES_PER_BE 8
384 static int qs20_reg_idxs[QS20_SPES_PER_BE] = { 0, 2, 4, 6, 7, 5, 3, 1 };
385 static int qs20_reg_memory[QS20_SPES_PER_BE] = { 1, 1, 0, 0, 0, 0, 0, 0 };
386 
387 static struct spu *spu_lookup_reg(int node, u32 reg)
388 {
389  struct spu *spu;
390  const u32 *spu_reg;
391 
392  list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
393  spu_reg = of_get_property(spu_devnode(spu), "reg", NULL);
394  if (*spu_reg == reg)
395  return spu;
396  }
397  return NULL;
398 }
399 
400 static void init_affinity_qs20_harcoded(void)
401 {
402  int node, i;
403  struct spu *last_spu, *spu;
404  u32 reg;
405 
406  for (node = 0; node < MAX_NUMNODES; node++) {
407  last_spu = NULL;
408  for (i = 0; i < QS20_SPES_PER_BE; i++) {
409  reg = qs20_reg_idxs[i];
410  spu = spu_lookup_reg(node, reg);
411  if (!spu)
412  continue;
413  spu->has_mem_affinity = qs20_reg_memory[reg];
414  if (last_spu)
415  list_add_tail(&spu->aff_list,
416  &last_spu->aff_list);
417  last_spu = spu;
418  }
419  }
420 }
421 
422 static int of_has_vicinity(void)
423 {
424  struct device_node *dn;
425 
426  for_each_node_by_type(dn, "spe") {
427  if (of_find_property(dn, "vicinity", NULL)) {
428  of_node_put(dn);
429  return 1;
430  }
431  }
432  return 0;
433 }
434 
435 static struct spu *devnode_spu(int cbe, struct device_node *dn)
436 {
437  struct spu *spu;
438 
439  list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list)
440  if (spu_devnode(spu) == dn)
441  return spu;
442  return NULL;
443 }
444 
445 static struct spu *
446 neighbour_spu(int cbe, struct device_node *target, struct device_node *avoid)
447 {
448  struct spu *spu;
449  struct device_node *spu_dn;
450  const phandle *vic_handles;
451  int lenp, i;
452 
453  list_for_each_entry(spu, &cbe_spu_info[cbe].spus, cbe_list) {
454  spu_dn = spu_devnode(spu);
455  if (spu_dn == avoid)
456  continue;
457  vic_handles = of_get_property(spu_dn, "vicinity", &lenp);
458  for (i=0; i < (lenp / sizeof(phandle)); i++) {
459  if (vic_handles[i] == target->phandle)
460  return spu;
461  }
462  }
463  return NULL;
464 }
465 
466 static void init_affinity_node(int cbe)
467 {
468  struct spu *spu, *last_spu;
469  struct device_node *vic_dn, *last_spu_dn;
470  phandle avoid_ph;
471  const phandle *vic_handles;
472  const char *name;
473  int lenp, i, added;
474 
475  last_spu = list_first_entry(&cbe_spu_info[cbe].spus, struct spu,
476  cbe_list);
477  avoid_ph = 0;
478  for (added = 1; added < cbe_spu_info[cbe].n_spus; added++) {
479  last_spu_dn = spu_devnode(last_spu);
480  vic_handles = of_get_property(last_spu_dn, "vicinity", &lenp);
481 
482  /*
483  * Walk through each phandle in vicinity property of the spu
484  * (tipically two vicinity phandles per spe node)
485  */
486  for (i = 0; i < (lenp / sizeof(phandle)); i++) {
487  if (vic_handles[i] == avoid_ph)
488  continue;
489 
490  vic_dn = of_find_node_by_phandle(vic_handles[i]);
491  if (!vic_dn)
492  continue;
493 
494  /* a neighbour might be spe, mic-tm, or bif0 */
495  name = of_get_property(vic_dn, "name", NULL);
496  if (!name)
497  continue;
498 
499  if (strcmp(name, "spe") == 0) {
500  spu = devnode_spu(cbe, vic_dn);
501  avoid_ph = last_spu_dn->phandle;
502  } else {
503  /*
504  * "mic-tm" and "bif0" nodes do not have
505  * vicinity property. So we need to find the
506  * spe which has vic_dn as neighbour, but
507  * skipping the one we came from (last_spu_dn)
508  */
509  spu = neighbour_spu(cbe, vic_dn, last_spu_dn);
510  if (!spu)
511  continue;
512  if (!strcmp(name, "mic-tm")) {
513  last_spu->has_mem_affinity = 1;
514  spu->has_mem_affinity = 1;
515  }
516  avoid_ph = vic_dn->phandle;
517  }
518 
519  list_add_tail(&spu->aff_list, &last_spu->aff_list);
520  last_spu = spu;
521  break;
522  }
523  }
524 }
525 
526 static void init_affinity_fw(void)
527 {
528  int cbe;
529 
530  for (cbe = 0; cbe < MAX_NUMNODES; cbe++)
531  init_affinity_node(cbe);
532 }
533 
534 static int __init init_affinity(void)
535 {
536  if (of_has_vicinity()) {
537  init_affinity_fw();
538  } else {
539  long root = of_get_flat_dt_root();
540  if (of_flat_dt_is_compatible(root, "IBM,CPBW-1.0"))
541  init_affinity_qs20_harcoded();
542  else
543  printk("No affinity configuration found\n");
544  }
545 
546  return 0;
547 }
548 
550  .enumerate_spus = of_enumerate_spus,
551  .create_spu = of_create_spu,
552  .destroy_spu = of_destroy_spu,
553  .enable_spu = enable_spu_by_master_run,
554  .disable_spu = disable_spu_by_master_run,
555  .init_affinity = init_affinity,
556 };