Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
spu_task_sync.c
Go to the documentation of this file.
1 /*
2  * Cell Broadband Engine OProfile Support
3  *
4  * (C) Copyright IBM Corporation 2006
5  *
6  * Author: Maynard Johnson <[email protected]>
7  *
8  * This program is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU General Public License
10  * as published by the Free Software Foundation; either version
11  * 2 of the License, or (at your option) any later version.
12  */
13 
14 /* The purpose of this file is to handle SPU event task switching
15  * and to record SPU context information into the OProfile
16  * event buffer.
17  *
18  * Additionally, the spu_sync_buffer function is provided as a helper
19  * for recoding actual SPU program counter samples to the event buffer.
20  */
21 #include <linux/dcookies.h>
22 #include <linux/kref.h>
23 #include <linux/mm.h>
24 #include <linux/fs.h>
25 #include <linux/module.h>
26 #include <linux/notifier.h>
27 #include <linux/numa.h>
28 #include <linux/oprofile.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include "pr_util.h"
32 
33 #define RELEASE_ALL 9999
34 
35 static DEFINE_SPINLOCK(buffer_lock);
36 static DEFINE_SPINLOCK(cache_lock);
37 static int num_spu_nodes;
39 
42 static unsigned max_spu_buff;
43 
44 static void spu_buff_add(unsigned long int value, int spu)
45 {
46  /* spu buff is a circular buffer. Add entries to the
47  * head. Head is the index to store the next value.
48  * The buffer is full when there is one available entry
49  * in the queue, i.e. head and tail can't be equal.
50  * That way we can tell the difference between the
51  * buffer being full versus empty.
52  *
53  * ASSUPTION: the buffer_lock is held when this function
54  * is called to lock the buffer, head and tail.
55  */
56  int full = 1;
57 
58  if (spu_buff[spu].head >= spu_buff[spu].tail) {
59  if ((spu_buff[spu].head - spu_buff[spu].tail)
60  < (max_spu_buff - 1))
61  full = 0;
62 
63  } else if (spu_buff[spu].tail > spu_buff[spu].head) {
64  if ((spu_buff[spu].tail - spu_buff[spu].head)
65  > 1)
66  full = 0;
67  }
68 
69  if (!full) {
70  spu_buff[spu].buff[spu_buff[spu].head] = value;
71  spu_buff[spu].head++;
72 
73  if (spu_buff[spu].head >= max_spu_buff)
74  spu_buff[spu].head = 0;
75  } else {
76  /* From the user's perspective make the SPU buffer
77  * size management/overflow look like we are using
78  * per cpu buffers. The user uses the same
79  * per cpu parameter to adjust the SPU buffer size.
80  * Increment the sample_lost_overflow to inform
81  * the user the buffer size needs to be increased.
82  */
84  }
85 }
86 
87 /* This function copies the per SPU buffers to the
88  * OProfile kernel buffer.
89  */
90 void sync_spu_buff(void)
91 {
92  int spu;
93  unsigned long flags;
94  int curr_head;
95 
96  for (spu = 0; spu < num_spu_nodes; spu++) {
97  /* In case there was an issue and the buffer didn't
98  * get created skip it.
99  */
100  if (spu_buff[spu].buff == NULL)
101  continue;
102 
103  /* Hold the lock to make sure the head/tail
104  * doesn't change while spu_buff_add() is
105  * deciding if the buffer is full or not.
106  * Being a little paranoid.
107  */
108  spin_lock_irqsave(&buffer_lock, flags);
109  curr_head = spu_buff[spu].head;
110  spin_unlock_irqrestore(&buffer_lock, flags);
111 
112  /* Transfer the current contents to the kernel buffer.
113  * data can still be added to the head of the buffer.
114  */
115  oprofile_put_buff(spu_buff[spu].buff,
116  spu_buff[spu].tail,
117  curr_head, max_spu_buff);
118 
119  spin_lock_irqsave(&buffer_lock, flags);
120  spu_buff[spu].tail = curr_head;
121  spin_unlock_irqrestore(&buffer_lock, flags);
122  }
123 
124 }
125 
126 static void wq_sync_spu_buff(struct work_struct *work)
127 {
128  /* move data from spu buffers to kernel buffer */
129  sync_spu_buff();
130 
131  /* only reschedule if profiling is not done */
132  if (spu_prof_running)
134 }
135 
136 /* Container for caching information about an active SPU task. */
137 struct cached_info {
139  struct spu *the_spu; /* needed to access pointer to local_store */
140  struct kref cache_ref;
141 };
142 
143 static struct cached_info *spu_info[MAX_NUMNODES * 8];
144 
145 static void destroy_cached_info(struct kref *kref)
146 {
147  struct cached_info *info;
148 
149  info = container_of(kref, struct cached_info, cache_ref);
150  vma_map_free(info->map);
151  kfree(info);
152  module_put(THIS_MODULE);
153 }
154 
155 /* Return the cached_info for the passed SPU number.
156  * ATTENTION: Callers are responsible for obtaining the
157  * cache_lock if needed prior to invoking this function.
158  */
159 static struct cached_info *get_cached_info(struct spu *the_spu, int spu_num)
160 {
161  struct kref *ref;
162  struct cached_info *ret_info;
163 
164  if (spu_num >= num_spu_nodes) {
165  printk(KERN_ERR "SPU_PROF: "
166  "%s, line %d: Invalid index %d into spu info cache\n",
167  __func__, __LINE__, spu_num);
168  ret_info = NULL;
169  goto out;
170  }
171  if (!spu_info[spu_num] && the_spu) {
172  ref = spu_get_profile_private_kref(the_spu->ctx);
173  if (ref) {
174  spu_info[spu_num] = container_of(ref, struct cached_info, cache_ref);
175  kref_get(&spu_info[spu_num]->cache_ref);
176  }
177  }
178 
179  ret_info = spu_info[spu_num];
180  out:
181  return ret_info;
182 }
183 
184 
185 /* Looks for cached info for the passed spu. If not found, the
186  * cached info is created for the passed spu.
187  * Returns 0 for success; otherwise, -1 for error.
188  */
189 static int
190 prepare_cached_spu_info(struct spu *spu, unsigned long objectId)
191 {
192  unsigned long flags;
193  struct vma_to_fileoffset_map *new_map;
194  int retval = 0;
195  struct cached_info *info;
196 
197  /* We won't bother getting cache_lock here since
198  * don't do anything with the cached_info that's returned.
199  */
200  info = get_cached_info(spu, spu->number);
201 
202  if (info) {
203  pr_debug("Found cached SPU info.\n");
204  goto out;
205  }
206 
207  /* Create cached_info and set spu_info[spu->number] to point to it.
208  * spu->number is a system-wide value, not a per-node value.
209  */
210  info = kzalloc(sizeof(struct cached_info), GFP_KERNEL);
211  if (!info) {
212  printk(KERN_ERR "SPU_PROF: "
213  "%s, line %d: create vma_map failed\n",
214  __func__, __LINE__);
215  retval = -ENOMEM;
216  goto err_alloc;
217  }
218  new_map = create_vma_map(spu, objectId);
219  if (!new_map) {
220  printk(KERN_ERR "SPU_PROF: "
221  "%s, line %d: create vma_map failed\n",
222  __func__, __LINE__);
223  retval = -ENOMEM;
224  goto err_alloc;
225  }
226 
227  pr_debug("Created vma_map\n");
228  info->map = new_map;
229  info->the_spu = spu;
230  kref_init(&info->cache_ref);
231  spin_lock_irqsave(&cache_lock, flags);
232  spu_info[spu->number] = info;
233  /* Increment count before passing off ref to SPUFS. */
234  kref_get(&info->cache_ref);
235 
236  /* We increment the module refcount here since SPUFS is
237  * responsible for the final destruction of the cached_info,
238  * and it must be able to access the destroy_cached_info()
239  * function defined in the OProfile module. We decrement
240  * the module refcount in destroy_cached_info.
241  */
242  try_module_get(THIS_MODULE);
243  spu_set_profile_private_kref(spu->ctx, &info->cache_ref,
244  destroy_cached_info);
245  spin_unlock_irqrestore(&cache_lock, flags);
246  goto out;
247 
248 err_alloc:
249  kfree(info);
250 out:
251  return retval;
252 }
253 
254 /*
255  * NOTE: The caller is responsible for locking the
256  * cache_lock prior to calling this function.
257  */
258 static int release_cached_info(int spu_index)
259 {
260  int index, end;
261 
262  if (spu_index == RELEASE_ALL) {
263  end = num_spu_nodes;
264  index = 0;
265  } else {
266  if (spu_index >= num_spu_nodes) {
267  printk(KERN_ERR "SPU_PROF: "
268  "%s, line %d: "
269  "Invalid index %d into spu info cache\n",
270  __func__, __LINE__, spu_index);
271  goto out;
272  }
273  end = spu_index + 1;
274  index = spu_index;
275  }
276  for (; index < end; index++) {
277  if (spu_info[index]) {
278  kref_put(&spu_info[index]->cache_ref,
279  destroy_cached_info);
280  spu_info[index] = NULL;
281  }
282  }
283 
284 out:
285  return 0;
286 }
287 
288 /* The source code for fast_get_dcookie was "borrowed"
289  * from drivers/oprofile/buffer_sync.c.
290  */
291 
292 /* Optimisation. We can manage without taking the dcookie sem
293  * because we cannot reach this code without at least one
294  * dcookie user still being registered (namely, the reader
295  * of the event buffer).
296  */
297 static inline unsigned long fast_get_dcookie(struct path *path)
298 {
299  unsigned long cookie;
300 
301  if (path->dentry->d_flags & DCACHE_COOKIE)
302  return (unsigned long)path->dentry;
303  get_dcookie(path, &cookie);
304  return cookie;
305 }
306 
307 /* Look up the dcookie for the task's mm->exe_file,
308  * which corresponds loosely to "application name". Also, determine
309  * the offset for the SPU ELF object. If computed offset is
310  * non-zero, it implies an embedded SPU object; otherwise, it's a
311  * separate SPU binary, in which case we retrieve it's dcookie.
312  * For the embedded case, we must determine if SPU ELF is embedded
313  * in the executable application or another file (i.e., shared lib).
314  * If embedded in a shared lib, we must get the dcookie and return
315  * that to the caller.
316  */
317 static unsigned long
318 get_exec_dcookie_and_offset(struct spu *spu, unsigned int *offsetp,
319  unsigned long *spu_bin_dcookie,
320  unsigned long spu_ref)
321 {
322  unsigned long app_cookie = 0;
323  unsigned int my_offset = 0;
324  struct vm_area_struct *vma;
325  struct mm_struct *mm = spu->mm;
326 
327  if (!mm)
328  goto out;
329 
330  down_read(&mm->mmap_sem);
331 
332  if (mm->exe_file) {
333  app_cookie = fast_get_dcookie(&mm->exe_file->f_path);
334  pr_debug("got dcookie for %s\n",
335  mm->exe_file->f_dentry->d_name.name);
336  }
337 
338  for (vma = mm->mmap; vma; vma = vma->vm_next) {
339  if (vma->vm_start > spu_ref || vma->vm_end <= spu_ref)
340  continue;
341  my_offset = spu_ref - vma->vm_start;
342  if (!vma->vm_file)
343  goto fail_no_image_cookie;
344 
345  pr_debug("Found spu ELF at %X(object-id:%lx) for file %s\n",
346  my_offset, spu_ref,
347  vma->vm_file->f_dentry->d_name.name);
348  *offsetp = my_offset;
349  break;
350  }
351 
352  *spu_bin_dcookie = fast_get_dcookie(&vma->vm_file->f_path);
353  pr_debug("got dcookie for %s\n", vma->vm_file->f_dentry->d_name.name);
354 
355  up_read(&mm->mmap_sem);
356 
357 out:
358  return app_cookie;
359 
360 fail_no_image_cookie:
361  up_read(&mm->mmap_sem);
362 
363  printk(KERN_ERR "SPU_PROF: "
364  "%s, line %d: Cannot find dcookie for SPU binary\n",
365  __func__, __LINE__);
366  goto out;
367 }
368 
369 
370 
371 /* This function finds or creates cached context information for the
372  * passed SPU and records SPU context information into the OProfile
373  * event buffer.
374  */
375 static int process_context_switch(struct spu *spu, unsigned long objectId)
376 {
377  unsigned long flags;
378  int retval;
379  unsigned int offset = 0;
380  unsigned long spu_cookie = 0, app_dcookie;
381 
382  retval = prepare_cached_spu_info(spu, objectId);
383  if (retval)
384  goto out;
385 
386  /* Get dcookie first because a mutex_lock is taken in that
387  * code path, so interrupts must not be disabled.
388  */
389  app_dcookie = get_exec_dcookie_and_offset(spu, &offset, &spu_cookie, objectId);
390  if (!app_dcookie || !spu_cookie) {
391  retval = -ENOENT;
392  goto out;
393  }
394 
395  /* Record context info in event buffer */
396  spin_lock_irqsave(&buffer_lock, flags);
397  spu_buff_add(ESCAPE_CODE, spu->number);
398  spu_buff_add(SPU_CTX_SWITCH_CODE, spu->number);
399  spu_buff_add(spu->number, spu->number);
400  spu_buff_add(spu->pid, spu->number);
401  spu_buff_add(spu->tgid, spu->number);
402  spu_buff_add(app_dcookie, spu->number);
403  spu_buff_add(spu_cookie, spu->number);
404  spu_buff_add(offset, spu->number);
405 
406  /* Set flag to indicate SPU PC data can now be written out. If
407  * the SPU program counter data is seen before an SPU context
408  * record is seen, the postprocessing will fail.
409  */
410  spu_buff[spu->number].ctx_sw_seen = 1;
411 
412  spin_unlock_irqrestore(&buffer_lock, flags);
413  smp_wmb(); /* insure spu event buffer updates are written */
414  /* don't want entries intermingled... */
415 out:
416  return retval;
417 }
418 
419 /*
420  * This function is invoked on either a bind_context or unbind_context.
421  * If called for an unbind_context, the val arg is 0; otherwise,
422  * it is the object-id value for the spu context.
423  * The data arg is of type 'struct spu *'.
424  */
425 static int spu_active_notify(struct notifier_block *self, unsigned long val,
426  void *data)
427 {
428  int retval;
429  unsigned long flags;
430  struct spu *the_spu = data;
431 
432  pr_debug("SPU event notification arrived\n");
433  if (!val) {
434  spin_lock_irqsave(&cache_lock, flags);
435  retval = release_cached_info(the_spu->number);
436  spin_unlock_irqrestore(&cache_lock, flags);
437  } else {
438  retval = process_context_switch(the_spu, val);
439  }
440  return retval;
441 }
442 
443 static struct notifier_block spu_active = {
444  .notifier_call = spu_active_notify,
445 };
446 
447 static int number_of_online_nodes(void)
448 {
449  u32 cpu; u32 tmp;
450  int nodes = 0;
451  for_each_online_cpu(cpu) {
452  tmp = cbe_cpu_to_node(cpu) + 1;
453  if (tmp > nodes)
454  nodes++;
455  }
456  return nodes;
457 }
458 
459 static int oprofile_spu_buff_create(void)
460 {
461  int spu;
462 
463  max_spu_buff = oprofile_get_cpu_buffer_size();
464 
465  for (spu = 0; spu < num_spu_nodes; spu++) {
466  /* create circular buffers to store the data in.
467  * use locks to manage accessing the buffers
468  */
469  spu_buff[spu].head = 0;
470  spu_buff[spu].tail = 0;
471 
472  /*
473  * Create a buffer for each SPU. Can't reliably
474  * create a single buffer for all spus due to not
475  * enough contiguous kernel memory.
476  */
477 
478  spu_buff[spu].buff = kzalloc((max_spu_buff
479  * sizeof(unsigned long)),
480  GFP_KERNEL);
481 
482  if (!spu_buff[spu].buff) {
483  printk(KERN_ERR "SPU_PROF: "
484  "%s, line %d: oprofile_spu_buff_create "
485  "failed to allocate spu buffer %d.\n",
486  __func__, __LINE__, spu);
487 
488  /* release the spu buffers that have been allocated */
489  while (spu >= 0) {
490  kfree(spu_buff[spu].buff);
491  spu_buff[spu].buff = 0;
492  spu--;
493  }
494  return -ENOMEM;
495  }
496  }
497  return 0;
498 }
499 
500 /* The main purpose of this function is to synchronize
501  * OProfile with SPUFS by registering to be notified of
502  * SPU task switches.
503  *
504  * NOTE: When profiling SPUs, we must ensure that only
505  * spu_sync_start is invoked and not the generic sync_start
506  * in drivers/oprofile/oprof.c. A return value of
507  * SKIP_GENERIC_SYNC or SYNC_START_ERROR will
508  * accomplish this.
509  */
510 int spu_sync_start(void)
511 {
512  int spu;
513  int ret = SKIP_GENERIC_SYNC;
514  int register_ret;
515  unsigned long flags = 0;
516 
517  spu_prof_num_nodes = number_of_online_nodes();
518  num_spu_nodes = spu_prof_num_nodes * 8;
519  INIT_DELAYED_WORK(&spu_work, wq_sync_spu_buff);
520 
521  /* create buffer for storing the SPU data to put in
522  * the kernel buffer.
523  */
524  ret = oprofile_spu_buff_create();
525  if (ret)
526  goto out;
527 
528  spin_lock_irqsave(&buffer_lock, flags);
529  for (spu = 0; spu < num_spu_nodes; spu++) {
530  spu_buff_add(ESCAPE_CODE, spu);
531  spu_buff_add(SPU_PROFILING_CODE, spu);
532  spu_buff_add(num_spu_nodes, spu);
533  }
534  spin_unlock_irqrestore(&buffer_lock, flags);
535 
536  for (spu = 0; spu < num_spu_nodes; spu++) {
537  spu_buff[spu].ctx_sw_seen = 0;
538  spu_buff[spu].last_guard_val = 0;
539  }
540 
541  /* Register for SPU events */
542  register_ret = spu_switch_event_register(&spu_active);
543  if (register_ret) {
544  ret = SYNC_START_ERROR;
545  goto out;
546  }
547 
548  pr_debug("spu_sync_start -- running.\n");
549 out:
550  return ret;
551 }
552 
553 /* Record SPU program counter samples to the oprofile event buffer. */
554 void spu_sync_buffer(int spu_num, unsigned int *samples,
555  int num_samples)
556 {
557  unsigned long long file_offset;
558  unsigned long flags;
559  int i;
560  struct vma_to_fileoffset_map *map;
561  struct spu *the_spu;
562  unsigned long long spu_num_ll = spu_num;
563  unsigned long long spu_num_shifted = spu_num_ll << 32;
564  struct cached_info *c_info;
565 
566  /* We need to obtain the cache_lock here because it's
567  * possible that after getting the cached_info, the SPU job
568  * corresponding to this cached_info may end, thus resulting
569  * in the destruction of the cached_info.
570  */
571  spin_lock_irqsave(&cache_lock, flags);
572  c_info = get_cached_info(NULL, spu_num);
573  if (!c_info) {
574  /* This legitimately happens when the SPU task ends before all
575  * samples are recorded.
576  * No big deal -- so we just drop a few samples.
577  */
578  pr_debug("SPU_PROF: No cached SPU contex "
579  "for SPU #%d. Dropping samples.\n", spu_num);
580  goto out;
581  }
582 
583  map = c_info->map;
584  the_spu = c_info->the_spu;
585  spin_lock(&buffer_lock);
586  for (i = 0; i < num_samples; i++) {
587  unsigned int sample = *(samples+i);
588  int grd_val = 0;
589  file_offset = 0;
590  if (sample == 0)
591  continue;
592  file_offset = vma_map_lookup( map, sample, the_spu, &grd_val);
593 
594  /* If overlays are used by this SPU application, the guard
595  * value is non-zero, indicating which overlay section is in
596  * use. We need to discard samples taken during the time
597  * period which an overlay occurs (i.e., guard value changes).
598  */
599  if (grd_val && grd_val != spu_buff[spu_num].last_guard_val) {
600  spu_buff[spu_num].last_guard_val = grd_val;
601  /* Drop the rest of the samples. */
602  break;
603  }
604 
605  /* We must ensure that the SPU context switch has been written
606  * out before samples for the SPU. Otherwise, the SPU context
607  * information is not available and the postprocessing of the
608  * SPU PC will fail with no available anonymous map information.
609  */
610  if (spu_buff[spu_num].ctx_sw_seen)
611  spu_buff_add((file_offset | spu_num_shifted),
612  spu_num);
613  }
614  spin_unlock(&buffer_lock);
615 out:
616  spin_unlock_irqrestore(&cache_lock, flags);
617 }
618 
619 
620 int spu_sync_stop(void)
621 {
622  unsigned long flags = 0;
623  int ret;
624  int k;
625 
626  ret = spu_switch_event_unregister(&spu_active);
627 
628  if (ret)
629  printk(KERN_ERR "SPU_PROF: "
630  "%s, line %d: spu_switch_event_unregister " \
631  "returned %d\n",
632  __func__, __LINE__, ret);
633 
634  /* flush any remaining data in the per SPU buffers */
635  sync_spu_buff();
636 
637  spin_lock_irqsave(&cache_lock, flags);
638  ret = release_cached_info(RELEASE_ALL);
639  spin_unlock_irqrestore(&cache_lock, flags);
640 
641  /* remove scheduled work queue item rather then waiting
642  * for every queued entry to execute. Then flush pending
643  * system wide buffer to event buffer.
644  */
646 
647  for (k = 0; k < num_spu_nodes; k++) {
648  spu_buff[k].ctx_sw_seen = 0;
649 
650  /*
651  * spu_sys_buff will be null if there was a problem
652  * allocating the buffer. Only delete if it exists.
653  */
654  kfree(spu_buff[k].buff);
655  spu_buff[k].buff = 0;
656  }
657  pr_debug("spu_sync_stop -- done.\n");
658  return ret;
659 }
660