Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sram-alloc.c
Go to the documentation of this file.
1 /*
2  * SRAM allocator for Blackfin on-chip memory
3  *
4  * Copyright 2004-2009 Analog Devices Inc.
5  *
6  * Licensed under the GPL-2 or later.
7  */
8 
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/miscdevice.h>
13 #include <linux/ioport.h>
14 #include <linux/fcntl.h>
15 #include <linux/init.h>
16 #include <linux/poll.h>
17 #include <linux/proc_fs.h>
18 #include <linux/seq_file.h>
19 #include <linux/spinlock.h>
20 #include <linux/rtc.h>
21 #include <linux/slab.h>
22 #include <asm/blackfin.h>
23 #include <asm/mem_map.h>
24 #include "blackfin_sram.h"
25 
26 /* the data structure for L1 scratchpad and DATA SRAM */
27 struct sram_piece {
28  void *paddr;
29  int size;
31  struct sram_piece *next;
32 };
33 
34 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1sram_lock);
35 static DEFINE_PER_CPU(struct sram_piece, free_l1_ssram_head);
36 static DEFINE_PER_CPU(struct sram_piece, used_l1_ssram_head);
37 
38 #if L1_DATA_A_LENGTH != 0
39 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_A_sram_head);
40 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_A_sram_head);
41 #endif
42 
43 #if L1_DATA_B_LENGTH != 0
44 static DEFINE_PER_CPU(struct sram_piece, free_l1_data_B_sram_head);
45 static DEFINE_PER_CPU(struct sram_piece, used_l1_data_B_sram_head);
46 #endif
47 
48 #if L1_DATA_A_LENGTH || L1_DATA_B_LENGTH
49 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_data_sram_lock);
50 #endif
51 
52 #if L1_CODE_LENGTH != 0
53 static DEFINE_PER_CPU_SHARED_ALIGNED(spinlock_t, l1_inst_sram_lock);
54 static DEFINE_PER_CPU(struct sram_piece, free_l1_inst_sram_head);
55 static DEFINE_PER_CPU(struct sram_piece, used_l1_inst_sram_head);
56 #endif
57 
58 #if L2_LENGTH != 0
59 static spinlock_t l2_sram_lock ____cacheline_aligned_in_smp;
60 static struct sram_piece free_l2_sram_head, used_l2_sram_head;
61 #endif
62 
63 static struct kmem_cache *sram_piece_cache;
64 
65 /* L1 Scratchpad SRAM initialization function */
66 static void __init l1sram_init(void)
67 {
68  unsigned int cpu;
69  unsigned long reserve;
70 
71 #ifdef CONFIG_SMP
72  reserve = 0;
73 #else
74  reserve = sizeof(struct l1_scratch_task_info);
75 #endif
76 
77  for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
78  per_cpu(free_l1_ssram_head, cpu).next =
79  kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
80  if (!per_cpu(free_l1_ssram_head, cpu).next) {
81  printk(KERN_INFO "Fail to initialize Scratchpad data SRAM.\n");
82  return;
83  }
84 
85  per_cpu(free_l1_ssram_head, cpu).next->paddr = (void *)get_l1_scratch_start_cpu(cpu) + reserve;
86  per_cpu(free_l1_ssram_head, cpu).next->size = L1_SCRATCH_LENGTH - reserve;
87  per_cpu(free_l1_ssram_head, cpu).next->pid = 0;
88  per_cpu(free_l1_ssram_head, cpu).next->next = NULL;
89 
90  per_cpu(used_l1_ssram_head, cpu).next = NULL;
91 
92  /* mutex initialize */
93  spin_lock_init(&per_cpu(l1sram_lock, cpu));
94  printk(KERN_INFO "Blackfin Scratchpad data SRAM: %d KB\n",
95  L1_SCRATCH_LENGTH >> 10);
96  }
97 }
98 
99 static void __init l1_data_sram_init(void)
100 {
101 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
102  unsigned int cpu;
103 #endif
104 #if L1_DATA_A_LENGTH != 0
105  for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
106  per_cpu(free_l1_data_A_sram_head, cpu).next =
107  kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
108  if (!per_cpu(free_l1_data_A_sram_head, cpu).next) {
109  printk(KERN_INFO "Fail to initialize L1 Data A SRAM.\n");
110  return;
111  }
112 
113  per_cpu(free_l1_data_A_sram_head, cpu).next->paddr =
114  (void *)get_l1_data_a_start_cpu(cpu) + (_ebss_l1 - _sdata_l1);
115  per_cpu(free_l1_data_A_sram_head, cpu).next->size =
117  per_cpu(free_l1_data_A_sram_head, cpu).next->pid = 0;
118  per_cpu(free_l1_data_A_sram_head, cpu).next->next = NULL;
119 
120  per_cpu(used_l1_data_A_sram_head, cpu).next = NULL;
121 
122  printk(KERN_INFO "Blackfin L1 Data A SRAM: %d KB (%d KB free)\n",
123  L1_DATA_A_LENGTH >> 10,
124  per_cpu(free_l1_data_A_sram_head, cpu).next->size >> 10);
125  }
126 #endif
127 #if L1_DATA_B_LENGTH != 0
128  for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
129  per_cpu(free_l1_data_B_sram_head, cpu).next =
130  kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
131  if (!per_cpu(free_l1_data_B_sram_head, cpu).next) {
132  printk(KERN_INFO "Fail to initialize L1 Data B SRAM.\n");
133  return;
134  }
135 
136  per_cpu(free_l1_data_B_sram_head, cpu).next->paddr =
137  (void *)get_l1_data_b_start_cpu(cpu) + (_ebss_b_l1 - _sdata_b_l1);
138  per_cpu(free_l1_data_B_sram_head, cpu).next->size =
140  per_cpu(free_l1_data_B_sram_head, cpu).next->pid = 0;
141  per_cpu(free_l1_data_B_sram_head, cpu).next->next = NULL;
142 
143  per_cpu(used_l1_data_B_sram_head, cpu).next = NULL;
144 
145  printk(KERN_INFO "Blackfin L1 Data B SRAM: %d KB (%d KB free)\n",
146  L1_DATA_B_LENGTH >> 10,
147  per_cpu(free_l1_data_B_sram_head, cpu).next->size >> 10);
148  /* mutex initialize */
149  }
150 #endif
151 
152 #if L1_DATA_A_LENGTH != 0 || L1_DATA_B_LENGTH != 0
153  for (cpu = 0; cpu < num_possible_cpus(); ++cpu)
154  spin_lock_init(&per_cpu(l1_data_sram_lock, cpu));
155 #endif
156 }
157 
158 static void __init l1_inst_sram_init(void)
159 {
160 #if L1_CODE_LENGTH != 0
161  unsigned int cpu;
162  for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
163  per_cpu(free_l1_inst_sram_head, cpu).next =
164  kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
165  if (!per_cpu(free_l1_inst_sram_head, cpu).next) {
166  printk(KERN_INFO "Failed to initialize L1 Instruction SRAM\n");
167  return;
168  }
169 
170  per_cpu(free_l1_inst_sram_head, cpu).next->paddr =
171  (void *)get_l1_code_start_cpu(cpu) + (_etext_l1 - _stext_l1);
172  per_cpu(free_l1_inst_sram_head, cpu).next->size =
174  per_cpu(free_l1_inst_sram_head, cpu).next->pid = 0;
175  per_cpu(free_l1_inst_sram_head, cpu).next->next = NULL;
176 
177  per_cpu(used_l1_inst_sram_head, cpu).next = NULL;
178 
179  printk(KERN_INFO "Blackfin L1 Instruction SRAM: %d KB (%d KB free)\n",
180  L1_CODE_LENGTH >> 10,
181  per_cpu(free_l1_inst_sram_head, cpu).next->size >> 10);
182 
183  /* mutex initialize */
184  spin_lock_init(&per_cpu(l1_inst_sram_lock, cpu));
185  }
186 #endif
187 }
188 
189 #ifdef __ADSPBF60x__
190 static irqreturn_t l2_ecc_err(int irq, void *dev_id)
191 {
192  int status;
193 
194  printk(KERN_ERR "L2 ecc error happend\n");
195  status = bfin_read32(L2CTL0_STAT);
196  if (status & 0x1)
197  printk(KERN_ERR "Core channel error type:0x%x, addr:0x%x\n",
199  if (status & 0x2)
200  printk(KERN_ERR "System channel error type:0x%x, addr:0x%x\n",
202 
203  status = status >> 8;
204  if (status)
205  printk(KERN_ERR "L2 Bank%d error, addr:0x%x\n",
206  status, bfin_read32(L2CTL0_ERRADDR0 + status));
207 
208  panic("L2 Ecc error");
209  return IRQ_HANDLED;
210 }
211 #endif
212 
213 static void __init l2_sram_init(void)
214 {
215 #if L2_LENGTH != 0
216 
217 #ifdef __ADSPBF60x__
218  int ret;
219 
220  ret = request_irq(IRQ_L2CTL0_ECC_ERR, l2_ecc_err, 0, "l2-ecc-err",
221  NULL);
222  if (unlikely(ret < 0)) {
223  printk(KERN_INFO "Fail to request l2 ecc error interrupt");
224  return;
225  }
226 #endif
227 
228  free_l2_sram_head.next =
229  kmem_cache_alloc(sram_piece_cache, GFP_KERNEL);
230  if (!free_l2_sram_head.next) {
231  printk(KERN_INFO "Fail to initialize L2 SRAM.\n");
232  return;
233  }
234 
235  free_l2_sram_head.next->paddr =
236  (void *)L2_START + (_ebss_l2 - _stext_l2);
237  free_l2_sram_head.next->size =
239  free_l2_sram_head.next->pid = 0;
240  free_l2_sram_head.next->next = NULL;
241 
242  used_l2_sram_head.next = NULL;
243 
244  printk(KERN_INFO "Blackfin L2 SRAM: %d KB (%d KB free)\n",
245  L2_LENGTH >> 10,
246  free_l2_sram_head.next->size >> 10);
247 
248  /* mutex initialize */
249  spin_lock_init(&l2_sram_lock);
250 #endif
251 }
252 
253 static int __init bfin_sram_init(void)
254 {
255  sram_piece_cache = kmem_cache_create("sram_piece_cache",
256  sizeof(struct sram_piece),
257  0, SLAB_PANIC, NULL);
258 
259  l1sram_init();
260  l1_data_sram_init();
261  l1_inst_sram_init();
262  l2_sram_init();
263 
264  return 0;
265 }
266 pure_initcall(bfin_sram_init);
267 
268 /* SRAM allocate function */
269 static void *_sram_alloc(size_t size, struct sram_piece *pfree_head,
270  struct sram_piece *pused_head)
271 {
272  struct sram_piece *pslot, *plast, *pavail;
273 
274  if (size <= 0 || !pfree_head || !pused_head)
275  return NULL;
276 
277  /* Align the size */
278  size = (size + 3) & ~3;
279 
280  pslot = pfree_head->next;
281  plast = pfree_head;
282 
283  /* search an available piece slot */
284  while (pslot != NULL && size > pslot->size) {
285  plast = pslot;
286  pslot = pslot->next;
287  }
288 
289  if (!pslot)
290  return NULL;
291 
292  if (pslot->size == size) {
293  plast->next = pslot->next;
294  pavail = pslot;
295  } else {
296  /* use atomic so our L1 allocator can be used atomically */
297  pavail = kmem_cache_alloc(sram_piece_cache, GFP_ATOMIC);
298 
299  if (!pavail)
300  return NULL;
301 
302  pavail->paddr = pslot->paddr;
303  pavail->size = size;
304  pslot->paddr += size;
305  pslot->size -= size;
306  }
307 
308  pavail->pid = current->pid;
309 
310  pslot = pused_head->next;
311  plast = pused_head;
312 
313  /* insert new piece into used piece list !!! */
314  while (pslot != NULL && pavail->paddr < pslot->paddr) {
315  plast = pslot;
316  pslot = pslot->next;
317  }
318 
319  pavail->next = pslot;
320  plast->next = pavail;
321 
322  return pavail->paddr;
323 }
324 
325 /* Allocate the largest available block. */
326 static void *_sram_alloc_max(struct sram_piece *pfree_head,
327  struct sram_piece *pused_head,
328  unsigned long *psize)
329 {
330  struct sram_piece *pslot, *pmax;
331 
332  if (!pfree_head || !pused_head)
333  return NULL;
334 
335  pmax = pslot = pfree_head->next;
336 
337  /* search an available piece slot */
338  while (pslot != NULL) {
339  if (pslot->size > pmax->size)
340  pmax = pslot;
341  pslot = pslot->next;
342  }
343 
344  if (!pmax)
345  return NULL;
346 
347  *psize = pmax->size;
348 
349  return _sram_alloc(*psize, pfree_head, pused_head);
350 }
351 
352 /* SRAM free function */
353 static int _sram_free(const void *addr,
354  struct sram_piece *pfree_head,
355  struct sram_piece *pused_head)
356 {
357  struct sram_piece *pslot, *plast, *pavail;
358 
359  if (!pfree_head || !pused_head)
360  return -1;
361 
362  /* search the relevant memory slot */
363  pslot = pused_head->next;
364  plast = pused_head;
365 
366  /* search an available piece slot */
367  while (pslot != NULL && pslot->paddr != addr) {
368  plast = pslot;
369  pslot = pslot->next;
370  }
371 
372  if (!pslot)
373  return -1;
374 
375  plast->next = pslot->next;
376  pavail = pslot;
377  pavail->pid = 0;
378 
379  /* insert free pieces back to the free list */
380  pslot = pfree_head->next;
381  plast = pfree_head;
382 
383  while (pslot != NULL && addr > pslot->paddr) {
384  plast = pslot;
385  pslot = pslot->next;
386  }
387 
388  if (plast != pfree_head && plast->paddr + plast->size == pavail->paddr) {
389  plast->size += pavail->size;
390  kmem_cache_free(sram_piece_cache, pavail);
391  } else {
392  pavail->next = plast->next;
393  plast->next = pavail;
394  plast = pavail;
395  }
396 
397  if (pslot && plast->paddr + plast->size == pslot->paddr) {
398  plast->size += pslot->size;
399  plast->next = pslot->next;
400  kmem_cache_free(sram_piece_cache, pslot);
401  }
402 
403  return 0;
404 }
405 
406 int sram_free(const void *addr)
407 {
408 
409 #if L1_CODE_LENGTH != 0
410  if (addr >= (void *)get_l1_code_start()
411  && addr < (void *)(get_l1_code_start() + L1_CODE_LENGTH))
412  return l1_inst_sram_free(addr);
413  else
414 #endif
415 #if L1_DATA_A_LENGTH != 0
416  if (addr >= (void *)get_l1_data_a_start()
417  && addr < (void *)(get_l1_data_a_start() + L1_DATA_A_LENGTH))
418  return l1_data_A_sram_free(addr);
419  else
420 #endif
421 #if L1_DATA_B_LENGTH != 0
422  if (addr >= (void *)get_l1_data_b_start()
423  && addr < (void *)(get_l1_data_b_start() + L1_DATA_B_LENGTH))
424  return l1_data_B_sram_free(addr);
425  else
426 #endif
427 #if L2_LENGTH != 0
428  if (addr >= (void *)L2_START
429  && addr < (void *)(L2_START + L2_LENGTH))
430  return l2_sram_free(addr);
431  else
432 #endif
433  return -1;
434 }
436 
437 void *l1_data_A_sram_alloc(size_t size)
438 {
439 #if L1_DATA_A_LENGTH != 0
440  unsigned long flags;
441  void *addr;
442  unsigned int cpu;
443 
444  cpu = smp_processor_id();
445  /* add mutex operation */
446  spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
447 
448  addr = _sram_alloc(size, &per_cpu(free_l1_data_A_sram_head, cpu),
449  &per_cpu(used_l1_data_A_sram_head, cpu));
450 
451  /* add mutex operation */
452  spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
453 
454  pr_debug("Allocated address in l1_data_A_sram_alloc is 0x%lx+0x%lx\n",
455  (long unsigned int)addr, size);
456 
457  return addr;
458 #else
459  return NULL;
460 #endif
461 }
463 
464 int l1_data_A_sram_free(const void *addr)
465 {
466 #if L1_DATA_A_LENGTH != 0
467  unsigned long flags;
468  int ret;
469  unsigned int cpu;
470 
471  cpu = smp_processor_id();
472  /* add mutex operation */
473  spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
474 
475  ret = _sram_free(addr, &per_cpu(free_l1_data_A_sram_head, cpu),
476  &per_cpu(used_l1_data_A_sram_head, cpu));
477 
478  /* add mutex operation */
479  spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
480 
481  return ret;
482 #else
483  return -1;
484 #endif
485 }
487 
488 void *l1_data_B_sram_alloc(size_t size)
489 {
490 #if L1_DATA_B_LENGTH != 0
491  unsigned long flags;
492  void *addr;
493  unsigned int cpu;
494 
495  cpu = smp_processor_id();
496  /* add mutex operation */
497  spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
498 
499  addr = _sram_alloc(size, &per_cpu(free_l1_data_B_sram_head, cpu),
500  &per_cpu(used_l1_data_B_sram_head, cpu));
501 
502  /* add mutex operation */
503  spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
504 
505  pr_debug("Allocated address in l1_data_B_sram_alloc is 0x%lx+0x%lx\n",
506  (long unsigned int)addr, size);
507 
508  return addr;
509 #else
510  return NULL;
511 #endif
512 }
514 
515 int l1_data_B_sram_free(const void *addr)
516 {
517 #if L1_DATA_B_LENGTH != 0
518  unsigned long flags;
519  int ret;
520  unsigned int cpu;
521 
522  cpu = smp_processor_id();
523  /* add mutex operation */
524  spin_lock_irqsave(&per_cpu(l1_data_sram_lock, cpu), flags);
525 
526  ret = _sram_free(addr, &per_cpu(free_l1_data_B_sram_head, cpu),
527  &per_cpu(used_l1_data_B_sram_head, cpu));
528 
529  /* add mutex operation */
530  spin_unlock_irqrestore(&per_cpu(l1_data_sram_lock, cpu), flags);
531 
532  return ret;
533 #else
534  return -1;
535 #endif
536 }
538 
539 void *l1_data_sram_alloc(size_t size)
540 {
541  void *addr = l1_data_A_sram_alloc(size);
542 
543  if (!addr)
544  addr = l1_data_B_sram_alloc(size);
545 
546  return addr;
547 }
549 
550 void *l1_data_sram_zalloc(size_t size)
551 {
552  void *addr = l1_data_sram_alloc(size);
553 
554  if (addr)
555  memset(addr, 0x00, size);
556 
557  return addr;
558 }
560 
561 int l1_data_sram_free(const void *addr)
562 {
563  int ret;
564  ret = l1_data_A_sram_free(addr);
565  if (ret == -1)
566  ret = l1_data_B_sram_free(addr);
567  return ret;
568 }
570 
571 void *l1_inst_sram_alloc(size_t size)
572 {
573 #if L1_CODE_LENGTH != 0
574  unsigned long flags;
575  void *addr;
576  unsigned int cpu;
577 
578  cpu = smp_processor_id();
579  /* add mutex operation */
580  spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
581 
582  addr = _sram_alloc(size, &per_cpu(free_l1_inst_sram_head, cpu),
583  &per_cpu(used_l1_inst_sram_head, cpu));
584 
585  /* add mutex operation */
586  spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
587 
588  pr_debug("Allocated address in l1_inst_sram_alloc is 0x%lx+0x%lx\n",
589  (long unsigned int)addr, size);
590 
591  return addr;
592 #else
593  return NULL;
594 #endif
595 }
597 
598 int l1_inst_sram_free(const void *addr)
599 {
600 #if L1_CODE_LENGTH != 0
601  unsigned long flags;
602  int ret;
603  unsigned int cpu;
604 
605  cpu = smp_processor_id();
606  /* add mutex operation */
607  spin_lock_irqsave(&per_cpu(l1_inst_sram_lock, cpu), flags);
608 
609  ret = _sram_free(addr, &per_cpu(free_l1_inst_sram_head, cpu),
610  &per_cpu(used_l1_inst_sram_head, cpu));
611 
612  /* add mutex operation */
613  spin_unlock_irqrestore(&per_cpu(l1_inst_sram_lock, cpu), flags);
614 
615  return ret;
616 #else
617  return -1;
618 #endif
619 }
621 
622 /* L1 Scratchpad memory allocate function */
623 void *l1sram_alloc(size_t size)
624 {
625  unsigned long flags;
626  void *addr;
627  unsigned int cpu;
628 
629  cpu = smp_processor_id();
630  /* add mutex operation */
631  spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
632 
633  addr = _sram_alloc(size, &per_cpu(free_l1_ssram_head, cpu),
634  &per_cpu(used_l1_ssram_head, cpu));
635 
636  /* add mutex operation */
637  spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
638 
639  return addr;
640 }
641 
642 /* L1 Scratchpad memory allocate function */
643 void *l1sram_alloc_max(size_t *psize)
644 {
645  unsigned long flags;
646  void *addr;
647  unsigned int cpu;
648 
649  cpu = smp_processor_id();
650  /* add mutex operation */
651  spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
652 
653  addr = _sram_alloc_max(&per_cpu(free_l1_ssram_head, cpu),
654  &per_cpu(used_l1_ssram_head, cpu), psize);
655 
656  /* add mutex operation */
657  spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
658 
659  return addr;
660 }
661 
662 /* L1 Scratchpad memory free function */
663 int l1sram_free(const void *addr)
664 {
665  unsigned long flags;
666  int ret;
667  unsigned int cpu;
668 
669  cpu = smp_processor_id();
670  /* add mutex operation */
671  spin_lock_irqsave(&per_cpu(l1sram_lock, cpu), flags);
672 
673  ret = _sram_free(addr, &per_cpu(free_l1_ssram_head, cpu),
674  &per_cpu(used_l1_ssram_head, cpu));
675 
676  /* add mutex operation */
677  spin_unlock_irqrestore(&per_cpu(l1sram_lock, cpu), flags);
678 
679  return ret;
680 }
681 
682 void *l2_sram_alloc(size_t size)
683 {
684 #if L2_LENGTH != 0
685  unsigned long flags;
686  void *addr;
687 
688  /* add mutex operation */
689  spin_lock_irqsave(&l2_sram_lock, flags);
690 
691  addr = _sram_alloc(size, &free_l2_sram_head,
692  &used_l2_sram_head);
693 
694  /* add mutex operation */
695  spin_unlock_irqrestore(&l2_sram_lock, flags);
696 
697  pr_debug("Allocated address in l2_sram_alloc is 0x%lx+0x%lx\n",
698  (long unsigned int)addr, size);
699 
700  return addr;
701 #else
702  return NULL;
703 #endif
704 }
706 
707 void *l2_sram_zalloc(size_t size)
708 {
709  void *addr = l2_sram_alloc(size);
710 
711  if (addr)
712  memset(addr, 0x00, size);
713 
714  return addr;
715 }
717 
718 int l2_sram_free(const void *addr)
719 {
720 #if L2_LENGTH != 0
721  unsigned long flags;
722  int ret;
723 
724  /* add mutex operation */
725  spin_lock_irqsave(&l2_sram_lock, flags);
726 
727  ret = _sram_free(addr, &free_l2_sram_head,
728  &used_l2_sram_head);
729 
730  /* add mutex operation */
731  spin_unlock_irqrestore(&l2_sram_lock, flags);
732 
733  return ret;
734 #else
735  return -1;
736 #endif
737 }
739 
740 int sram_free_with_lsl(const void *addr)
741 {
742  struct sram_list_struct *lsl, **tmp;
743  struct mm_struct *mm = current->mm;
744  int ret = -1;
745 
746  for (tmp = &mm->context.sram_list; *tmp; tmp = &(*tmp)->next)
747  if ((*tmp)->addr == addr) {
748  lsl = *tmp;
749  ret = sram_free(addr);
750  *tmp = lsl->next;
751  kfree(lsl);
752  break;
753  }
754 
755  return ret;
756 }
758 
759 /* Allocate memory and keep in L1 SRAM List (lsl) so that the resources are
760  * tracked. These are designed for userspace so that when a process exits,
761  * we can safely reap their resources.
762  */
763 void *sram_alloc_with_lsl(size_t size, unsigned long flags)
764 {
765  void *addr = NULL;
766  struct sram_list_struct *lsl = NULL;
767  struct mm_struct *mm = current->mm;
768 
769  lsl = kzalloc(sizeof(struct sram_list_struct), GFP_KERNEL);
770  if (!lsl)
771  return NULL;
772 
773  if (flags & L1_INST_SRAM)
774  addr = l1_inst_sram_alloc(size);
775 
776  if (addr == NULL && (flags & L1_DATA_A_SRAM))
777  addr = l1_data_A_sram_alloc(size);
778 
779  if (addr == NULL && (flags & L1_DATA_B_SRAM))
780  addr = l1_data_B_sram_alloc(size);
781 
782  if (addr == NULL && (flags & L2_SRAM))
783  addr = l2_sram_alloc(size);
784 
785  if (addr == NULL) {
786  kfree(lsl);
787  return NULL;
788  }
789  lsl->addr = addr;
790  lsl->length = size;
791  lsl->next = mm->context.sram_list;
792  mm->context.sram_list = lsl;
793  return addr;
794 }
796 
797 #ifdef CONFIG_PROC_FS
798 /* Once we get a real allocator, we'll throw all of this away.
799  * Until then, we need some sort of visibility into the L1 alloc.
800  */
801 /* Need to keep line of output the same. Currently, that is 44 bytes
802  * (including newline).
803  */
804 static int _sram_proc_show(struct seq_file *m, const char *desc,
805  struct sram_piece *pfree_head,
806  struct sram_piece *pused_head)
807 {
808  struct sram_piece *pslot;
809 
810  if (!pfree_head || !pused_head)
811  return -1;
812 
813  seq_printf(m, "--- SRAM %-14s Size PID State \n", desc);
814 
815  /* search the relevant memory slot */
816  pslot = pused_head->next;
817 
818  while (pslot != NULL) {
819  seq_printf(m, "%p-%p %10i %5i %-10s\n",
820  pslot->paddr, pslot->paddr + pslot->size,
821  pslot->size, pslot->pid, "ALLOCATED");
822 
823  pslot = pslot->next;
824  }
825 
826  pslot = pfree_head->next;
827 
828  while (pslot != NULL) {
829  seq_printf(m, "%p-%p %10i %5i %-10s\n",
830  pslot->paddr, pslot->paddr + pslot->size,
831  pslot->size, pslot->pid, "FREE");
832 
833  pslot = pslot->next;
834  }
835 
836  return 0;
837 }
838 static int sram_proc_show(struct seq_file *m, void *v)
839 {
840  unsigned int cpu;
841 
842  for (cpu = 0; cpu < num_possible_cpus(); ++cpu) {
843  if (_sram_proc_show(m, "Scratchpad",
844  &per_cpu(free_l1_ssram_head, cpu), &per_cpu(used_l1_ssram_head, cpu)))
845  goto not_done;
846 #if L1_DATA_A_LENGTH != 0
847  if (_sram_proc_show(m, "L1 Data A",
848  &per_cpu(free_l1_data_A_sram_head, cpu),
849  &per_cpu(used_l1_data_A_sram_head, cpu)))
850  goto not_done;
851 #endif
852 #if L1_DATA_B_LENGTH != 0
853  if (_sram_proc_show(m, "L1 Data B",
854  &per_cpu(free_l1_data_B_sram_head, cpu),
855  &per_cpu(used_l1_data_B_sram_head, cpu)))
856  goto not_done;
857 #endif
858 #if L1_CODE_LENGTH != 0
859  if (_sram_proc_show(m, "L1 Instruction",
860  &per_cpu(free_l1_inst_sram_head, cpu),
861  &per_cpu(used_l1_inst_sram_head, cpu)))
862  goto not_done;
863 #endif
864  }
865 #if L2_LENGTH != 0
866  if (_sram_proc_show(m, "L2", &free_l2_sram_head, &used_l2_sram_head))
867  goto not_done;
868 #endif
869  not_done:
870  return 0;
871 }
872 
873 static int sram_proc_open(struct inode *inode, struct file *file)
874 {
875  return single_open(file, sram_proc_show, NULL);
876 }
877 
878 static const struct file_operations sram_proc_ops = {
879  .open = sram_proc_open,
880  .read = seq_read,
881  .llseek = seq_lseek,
882  .release = single_release,
883 };
884 
885 static int __init sram_proc_init(void)
886 {
887  struct proc_dir_entry *ptr;
888 
889  ptr = proc_create("sram", S_IRUGO, NULL, &sram_proc_ops);
890  if (!ptr) {
891  printk(KERN_WARNING "unable to create /proc/sram\n");
892  return -1;
893  }
894  return 0;
895 }
896 late_initcall(sram_proc_init);
897 #endif