Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sungem_phy.c
Go to the documentation of this file.
1 /*
2  * PHY drivers for the sungem ethernet driver.
3  *
4  * This file could be shared with other drivers.
5  *
6  * (c) 2002-2007, Benjamin Herrenscmidt ([email protected])
7  *
8  * TODO:
9  * - Add support for PHYs that provide an IRQ line
10  * - Eventually moved the entire polling state machine in
11  * there (out of the eth driver), so that it can easily be
12  * skipped on PHYs that implement it in hardware.
13  * - On LXT971 & BCM5201, Apple uses some chip specific regs
14  * to read the link status. Figure out why and if it makes
15  * sense to do the same (magic aneg ?)
16  * - Apple has some additional power management code for some
17  * Broadcom PHYs that they "hide" from the OpenSource version
18  * of darwin, still need to reverse engineer that
19  */
20 
21 
22 #include <linux/module.h>
23 
24 #include <linux/kernel.h>
25 #include <linux/types.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/mii.h>
29 #include <linux/ethtool.h>
30 #include <linux/delay.h>
31 
32 #ifdef CONFIG_PPC_PMAC
33 #include <asm/prom.h>
34 #endif
35 
36 #include <linux/sungem_phy.h>
37 
38 /* Link modes of the BCM5400 PHY */
39 static const int phy_BCM5400_link_table[8][3] = {
40  { 0, 0, 0 }, /* No link */
41  { 0, 0, 0 }, /* 10BT Half Duplex */
42  { 1, 0, 0 }, /* 10BT Full Duplex */
43  { 0, 1, 0 }, /* 100BT Half Duplex */
44  { 0, 1, 0 }, /* 100BT Half Duplex */
45  { 1, 1, 0 }, /* 100BT Full Duplex*/
46  { 1, 0, 1 }, /* 1000BT */
47  { 1, 0, 1 }, /* 1000BT */
48 };
49 
50 static inline int __phy_read(struct mii_phy* phy, int id, int reg)
51 {
52  return phy->mdio_read(phy->dev, id, reg);
53 }
54 
55 static inline void __phy_write(struct mii_phy* phy, int id, int reg, int val)
56 {
57  phy->mdio_write(phy->dev, id, reg, val);
58 }
59 
60 static inline int phy_read(struct mii_phy* phy, int reg)
61 {
62  return phy->mdio_read(phy->dev, phy->mii_id, reg);
63 }
64 
65 static inline void phy_write(struct mii_phy* phy, int reg, int val)
66 {
67  phy->mdio_write(phy->dev, phy->mii_id, reg, val);
68 }
69 
70 static int reset_one_mii_phy(struct mii_phy* phy, int phy_id)
71 {
72  u16 val;
73  int limit = 10000;
74 
75  val = __phy_read(phy, phy_id, MII_BMCR);
76  val &= ~(BMCR_ISOLATE | BMCR_PDOWN);
77  val |= BMCR_RESET;
78  __phy_write(phy, phy_id, MII_BMCR, val);
79 
80  udelay(100);
81 
82  while (--limit) {
83  val = __phy_read(phy, phy_id, MII_BMCR);
84  if ((val & BMCR_RESET) == 0)
85  break;
86  udelay(10);
87  }
88  if ((val & BMCR_ISOLATE) && limit > 0)
89  __phy_write(phy, phy_id, MII_BMCR, val & ~BMCR_ISOLATE);
90 
91  return limit <= 0;
92 }
93 
94 static int bcm5201_init(struct mii_phy* phy)
95 {
96  u16 data;
97 
98  data = phy_read(phy, MII_BCM5201_MULTIPHY);
100  phy_write(phy, MII_BCM5201_MULTIPHY, data);
101 
103 
104  return 0;
105 }
106 
107 static int bcm5201_suspend(struct mii_phy* phy)
108 {
111 
112  return 0;
113 }
114 
115 static int bcm5221_init(struct mii_phy* phy)
116 {
117  u16 data;
118 
119  data = phy_read(phy, MII_BCM5221_TEST);
122 
126 
130 
131  data = phy_read(phy, MII_BCM5221_TEST);
134 
135  return 0;
136 }
137 
138 static int bcm5221_suspend(struct mii_phy* phy)
139 {
140  u16 data;
141 
142  data = phy_read(phy, MII_BCM5221_TEST);
145 
149 
150  return 0;
151 }
152 
153 static int bcm5241_init(struct mii_phy* phy)
154 {
155  u16 data;
156 
157  data = phy_read(phy, MII_BCM5221_TEST);
160 
164 
168 
169  data = phy_read(phy, MII_BCM5221_TEST);
172 
173  return 0;
174 }
175 
176 static int bcm5241_suspend(struct mii_phy* phy)
177 {
178  u16 data;
179 
180  data = phy_read(phy, MII_BCM5221_TEST);
183 
187 
188  return 0;
189 }
190 
191 static int bcm5400_init(struct mii_phy* phy)
192 {
193  u16 data;
194 
195  /* Configure for gigabit full duplex */
196  data = phy_read(phy, MII_BCM5400_AUXCONTROL);
198  phy_write(phy, MII_BCM5400_AUXCONTROL, data);
199 
200  data = phy_read(phy, MII_BCM5400_GB_CONTROL);
202  phy_write(phy, MII_BCM5400_GB_CONTROL, data);
203 
204  udelay(100);
205 
206  /* Reset and configure cascaded 10/100 PHY */
207  (void)reset_one_mii_phy(phy, 0x1f);
208 
209  data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
211  __phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
212 
213  data = phy_read(phy, MII_BCM5400_AUXCONTROL);
215  phy_write(phy, MII_BCM5400_AUXCONTROL, data);
216 
217  return 0;
218 }
219 
220 static int bcm5400_suspend(struct mii_phy* phy)
221 {
222 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
224 #endif
225  return 0;
226 }
227 
228 static int bcm5401_init(struct mii_phy* phy)
229 {
230  u16 data;
231  int rev;
232 
233  rev = phy_read(phy, MII_PHYSID2) & 0x000f;
234  if (rev == 0 || rev == 3) {
235  /* Some revisions of 5401 appear to need this
236  * initialisation sequence to disable, according
237  * to OF, "tap power management"
238  *
239  * WARNING ! OF and Darwin don't agree on the
240  * register addresses. OF seem to interpret the
241  * register numbers below as decimal
242  *
243  * Note: This should (and does) match tg3_init_5401phy_dsp
244  * in the tg3.c driver. -DaveM
245  */
246  phy_write(phy, 0x18, 0x0c20);
247  phy_write(phy, 0x17, 0x0012);
248  phy_write(phy, 0x15, 0x1804);
249  phy_write(phy, 0x17, 0x0013);
250  phy_write(phy, 0x15, 0x1204);
251  phy_write(phy, 0x17, 0x8006);
252  phy_write(phy, 0x15, 0x0132);
253  phy_write(phy, 0x17, 0x8006);
254  phy_write(phy, 0x15, 0x0232);
255  phy_write(phy, 0x17, 0x201f);
256  phy_write(phy, 0x15, 0x0a20);
257  }
258 
259  /* Configure for gigabit full duplex */
260  data = phy_read(phy, MII_BCM5400_GB_CONTROL);
262  phy_write(phy, MII_BCM5400_GB_CONTROL, data);
263 
264  udelay(10);
265 
266  /* Reset and configure cascaded 10/100 PHY */
267  (void)reset_one_mii_phy(phy, 0x1f);
268 
269  data = __phy_read(phy, 0x1f, MII_BCM5201_MULTIPHY);
271  __phy_write(phy, 0x1f, MII_BCM5201_MULTIPHY, data);
272 
273  return 0;
274 }
275 
276 static int bcm5401_suspend(struct mii_phy* phy)
277 {
278 #if 0 /* Commented out in Darwin... someone has those dawn docs ? */
280 #endif
281  return 0;
282 }
283 
284 static int bcm5411_init(struct mii_phy* phy)
285 {
286  u16 data;
287 
288  /* Here's some more Apple black magic to setup
289  * some voltage stuffs.
290  */
291  phy_write(phy, 0x1c, 0x8c23);
292  phy_write(phy, 0x1c, 0x8ca3);
293  phy_write(phy, 0x1c, 0x8c23);
294 
295  /* Here, Apple seems to want to reset it, do
296  * it as well
297  */
299  phy_write(phy, MII_BMCR, 0x1340);
300 
301  data = phy_read(phy, MII_BCM5400_GB_CONTROL);
303  phy_write(phy, MII_BCM5400_GB_CONTROL, data);
304 
305  udelay(10);
306 
307  /* Reset and configure cascaded 10/100 PHY */
308  (void)reset_one_mii_phy(phy, 0x1f);
309 
310  return 0;
311 }
312 
313 static int genmii_setup_aneg(struct mii_phy *phy, u32 advertise)
314 {
315  u16 ctl, adv;
316 
317  phy->autoneg = 1;
318  phy->speed = SPEED_10;
319  phy->duplex = DUPLEX_HALF;
320  phy->pause = 0;
321  phy->advertising = advertise;
322 
323  /* Setup standard advertise */
324  adv = phy_read(phy, MII_ADVERTISE);
325  adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
326  if (advertise & ADVERTISED_10baseT_Half)
327  adv |= ADVERTISE_10HALF;
328  if (advertise & ADVERTISED_10baseT_Full)
329  adv |= ADVERTISE_10FULL;
330  if (advertise & ADVERTISED_100baseT_Half)
331  adv |= ADVERTISE_100HALF;
332  if (advertise & ADVERTISED_100baseT_Full)
333  adv |= ADVERTISE_100FULL;
334  phy_write(phy, MII_ADVERTISE, adv);
335 
336  /* Start/Restart aneg */
337  ctl = phy_read(phy, MII_BMCR);
338  ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
339  phy_write(phy, MII_BMCR, ctl);
340 
341  return 0;
342 }
343 
344 static int genmii_setup_forced(struct mii_phy *phy, int speed, int fd)
345 {
346  u16 ctl;
347 
348  phy->autoneg = 0;
349  phy->speed = speed;
350  phy->duplex = fd;
351  phy->pause = 0;
352 
353  ctl = phy_read(phy, MII_BMCR);
355 
356  /* First reset the PHY */
357  phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
358 
359  /* Select speed & duplex */
360  switch(speed) {
361  case SPEED_10:
362  break;
363  case SPEED_100:
364  ctl |= BMCR_SPEED100;
365  break;
366  case SPEED_1000:
367  default:
368  return -EINVAL;
369  }
370  if (fd == DUPLEX_FULL)
371  ctl |= BMCR_FULLDPLX;
372  phy_write(phy, MII_BMCR, ctl);
373 
374  return 0;
375 }
376 
377 static int genmii_poll_link(struct mii_phy *phy)
378 {
379  u16 status;
380 
381  (void)phy_read(phy, MII_BMSR);
382  status = phy_read(phy, MII_BMSR);
383  if ((status & BMSR_LSTATUS) == 0)
384  return 0;
385  if (phy->autoneg && !(status & BMSR_ANEGCOMPLETE))
386  return 0;
387  return 1;
388 }
389 
390 static int genmii_read_link(struct mii_phy *phy)
391 {
392  u16 lpa;
393 
394  if (phy->autoneg) {
395  lpa = phy_read(phy, MII_LPA);
396 
397  if (lpa & (LPA_10FULL | LPA_100FULL))
398  phy->duplex = DUPLEX_FULL;
399  else
400  phy->duplex = DUPLEX_HALF;
401  if (lpa & (LPA_100FULL | LPA_100HALF))
402  phy->speed = SPEED_100;
403  else
404  phy->speed = SPEED_10;
405  phy->pause = 0;
406  }
407  /* On non-aneg, we assume what we put in BMCR is the speed,
408  * though magic-aneg shouldn't prevent this case from occurring
409  */
410 
411  return 0;
412 }
413 
414 static int generic_suspend(struct mii_phy* phy)
415 {
417 
418  return 0;
419 }
420 
421 static int bcm5421_init(struct mii_phy* phy)
422 {
423  u16 data;
424  unsigned int id;
425 
426  id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
427 
428  /* Revision 0 of 5421 needs some fixups */
429  if (id == 0x002060e0) {
430  /* This is borrowed from MacOS
431  */
432  phy_write(phy, 0x18, 0x1007);
433  data = phy_read(phy, 0x18);
434  phy_write(phy, 0x18, data | 0x0400);
435  phy_write(phy, 0x18, 0x0007);
436  data = phy_read(phy, 0x18);
437  phy_write(phy, 0x18, data | 0x0800);
438  phy_write(phy, 0x17, 0x000a);
439  data = phy_read(phy, 0x15);
440  phy_write(phy, 0x15, data | 0x0200);
441  }
442 
443  /* Pick up some init code from OF for K2 version */
444  if ((id & 0xfffffff0) == 0x002062e0) {
445  phy_write(phy, 4, 0x01e1);
446  phy_write(phy, 9, 0x0300);
447  }
448 
449  /* Check if we can enable automatic low power */
450 #ifdef CONFIG_PPC_PMAC
451  if (phy->platform_data) {
452  struct device_node *np = of_get_parent(phy->platform_data);
453  int can_low_power = 1;
454  if (np == NULL || of_get_property(np, "no-autolowpower", NULL))
455  can_low_power = 0;
456  if (can_low_power) {
457  /* Enable automatic low-power */
458  phy_write(phy, 0x1c, 0x9002);
459  phy_write(phy, 0x1c, 0xa821);
460  phy_write(phy, 0x1c, 0x941d);
461  }
462  }
463 #endif /* CONFIG_PPC_PMAC */
464 
465  return 0;
466 }
467 
468 static int bcm54xx_setup_aneg(struct mii_phy *phy, u32 advertise)
469 {
470  u16 ctl, adv;
471 
472  phy->autoneg = 1;
473  phy->speed = SPEED_10;
474  phy->duplex = DUPLEX_HALF;
475  phy->pause = 0;
476  phy->advertising = advertise;
477 
478  /* Setup standard advertise */
479  adv = phy_read(phy, MII_ADVERTISE);
480  adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
481  if (advertise & ADVERTISED_10baseT_Half)
482  adv |= ADVERTISE_10HALF;
483  if (advertise & ADVERTISED_10baseT_Full)
484  adv |= ADVERTISE_10FULL;
485  if (advertise & ADVERTISED_100baseT_Half)
486  adv |= ADVERTISE_100HALF;
487  if (advertise & ADVERTISED_100baseT_Full)
488  adv |= ADVERTISE_100FULL;
489  if (advertise & ADVERTISED_Pause)
490  adv |= ADVERTISE_PAUSE_CAP;
491  if (advertise & ADVERTISED_Asym_Pause)
492  adv |= ADVERTISE_PAUSE_ASYM;
493  phy_write(phy, MII_ADVERTISE, adv);
494 
495  /* Setup 1000BT advertise */
496  adv = phy_read(phy, MII_1000BASETCONTROL);
498  if (advertise & SUPPORTED_1000baseT_Half)
500  if (advertise & SUPPORTED_1000baseT_Full)
502  phy_write(phy, MII_1000BASETCONTROL, adv);
503 
504  /* Start/Restart aneg */
505  ctl = phy_read(phy, MII_BMCR);
506  ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
507  phy_write(phy, MII_BMCR, ctl);
508 
509  return 0;
510 }
511 
512 static int bcm54xx_setup_forced(struct mii_phy *phy, int speed, int fd)
513 {
514  u16 ctl;
515 
516  phy->autoneg = 0;
517  phy->speed = speed;
518  phy->duplex = fd;
519  phy->pause = 0;
520 
521  ctl = phy_read(phy, MII_BMCR);
523 
524  /* First reset the PHY */
525  phy_write(phy, MII_BMCR, ctl | BMCR_RESET);
526 
527  /* Select speed & duplex */
528  switch(speed) {
529  case SPEED_10:
530  break;
531  case SPEED_100:
532  ctl |= BMCR_SPEED100;
533  break;
534  case SPEED_1000:
535  ctl |= BMCR_SPD2;
536  }
537  if (fd == DUPLEX_FULL)
538  ctl |= BMCR_FULLDPLX;
539 
540  // XXX Should we set the sungem to GII now on 1000BT ?
541 
542  phy_write(phy, MII_BMCR, ctl);
543 
544  return 0;
545 }
546 
547 static int bcm54xx_read_link(struct mii_phy *phy)
548 {
549  int link_mode;
550  u16 val;
551 
552  if (phy->autoneg) {
553  val = phy_read(phy, MII_BCM5400_AUXSTATUS);
554  link_mode = ((val & MII_BCM5400_AUXSTATUS_LINKMODE_MASK) >>
556  phy->duplex = phy_BCM5400_link_table[link_mode][0] ?
558  phy->speed = phy_BCM5400_link_table[link_mode][2] ?
559  SPEED_1000 :
560  (phy_BCM5400_link_table[link_mode][1] ?
561  SPEED_100 : SPEED_10);
562  val = phy_read(phy, MII_LPA);
563  phy->pause = (phy->duplex == DUPLEX_FULL) &&
564  ((val & LPA_PAUSE) != 0);
565  }
566  /* On non-aneg, we assume what we put in BMCR is the speed,
567  * though magic-aneg shouldn't prevent this case from occurring
568  */
569 
570  return 0;
571 }
572 
573 static int marvell88e1111_init(struct mii_phy* phy)
574 {
575  u16 rev;
576 
577  /* magic init sequence for rev 0 */
578  rev = phy_read(phy, MII_PHYSID2) & 0x000f;
579  if (rev == 0) {
580  phy_write(phy, 0x1d, 0x000a);
581  phy_write(phy, 0x1e, 0x0821);
582 
583  phy_write(phy, 0x1d, 0x0006);
584  phy_write(phy, 0x1e, 0x8600);
585 
586  phy_write(phy, 0x1d, 0x000b);
587  phy_write(phy, 0x1e, 0x0100);
588 
589  phy_write(phy, 0x1d, 0x0004);
590  phy_write(phy, 0x1e, 0x4850);
591  }
592  return 0;
593 }
594 
595 #define BCM5421_MODE_MASK (1 << 5)
596 
597 static int bcm5421_poll_link(struct mii_phy* phy)
598 {
599  u32 phy_reg;
600  int mode;
601 
602  /* find out in what mode we are */
603  phy_write(phy, MII_NCONFIG, 0x1000);
604  phy_reg = phy_read(phy, MII_NCONFIG);
605 
606  mode = (phy_reg & BCM5421_MODE_MASK) >> 5;
607 
608  if ( mode == BCM54XX_COPPER)
609  return genmii_poll_link(phy);
610 
611  /* try to find out wether we have a link */
612  phy_write(phy, MII_NCONFIG, 0x2000);
613  phy_reg = phy_read(phy, MII_NCONFIG);
614 
615  if (phy_reg & 0x0020)
616  return 0;
617  else
618  return 1;
619 }
620 
621 static int bcm5421_read_link(struct mii_phy* phy)
622 {
623  u32 phy_reg;
624  int mode;
625 
626  /* find out in what mode we are */
627  phy_write(phy, MII_NCONFIG, 0x1000);
628  phy_reg = phy_read(phy, MII_NCONFIG);
629 
630  mode = (phy_reg & BCM5421_MODE_MASK ) >> 5;
631 
632  if ( mode == BCM54XX_COPPER)
633  return bcm54xx_read_link(phy);
634 
635  phy->speed = SPEED_1000;
636 
637  /* find out wether we are running half- or full duplex */
638  phy_write(phy, MII_NCONFIG, 0x2000);
639  phy_reg = phy_read(phy, MII_NCONFIG);
640 
641  if ( (phy_reg & 0x0080) >> 7)
642  phy->duplex |= DUPLEX_HALF;
643  else
644  phy->duplex |= DUPLEX_FULL;
645 
646  return 0;
647 }
648 
649 static int bcm5421_enable_fiber(struct mii_phy* phy, int autoneg)
650 {
651  /* enable fiber mode */
652  phy_write(phy, MII_NCONFIG, 0x9020);
653  /* LEDs active in both modes, autosense prio = fiber */
654  phy_write(phy, MII_NCONFIG, 0x945f);
655 
656  if (!autoneg) {
657  /* switch off fibre autoneg */
658  phy_write(phy, MII_NCONFIG, 0xfc01);
659  phy_write(phy, 0x0b, 0x0004);
660  }
661 
662  phy->autoneg = autoneg;
663 
664  return 0;
665 }
666 
667 #define BCM5461_FIBER_LINK (1 << 2)
668 #define BCM5461_MODE_MASK (3 << 1)
669 
670 static int bcm5461_poll_link(struct mii_phy* phy)
671 {
672  u32 phy_reg;
673  int mode;
674 
675  /* find out in what mode we are */
676  phy_write(phy, MII_NCONFIG, 0x7c00);
677  phy_reg = phy_read(phy, MII_NCONFIG);
678 
679  mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
680 
681  if ( mode == BCM54XX_COPPER)
682  return genmii_poll_link(phy);
683 
684  /* find out wether we have a link */
685  phy_write(phy, MII_NCONFIG, 0x7000);
686  phy_reg = phy_read(phy, MII_NCONFIG);
687 
688  if (phy_reg & BCM5461_FIBER_LINK)
689  return 1;
690  else
691  return 0;
692 }
693 
694 #define BCM5461_FIBER_DUPLEX (1 << 3)
695 
696 static int bcm5461_read_link(struct mii_phy* phy)
697 {
698  u32 phy_reg;
699  int mode;
700 
701  /* find out in what mode we are */
702  phy_write(phy, MII_NCONFIG, 0x7c00);
703  phy_reg = phy_read(phy, MII_NCONFIG);
704 
705  mode = (phy_reg & BCM5461_MODE_MASK ) >> 1;
706 
707  if ( mode == BCM54XX_COPPER) {
708  return bcm54xx_read_link(phy);
709  }
710 
711  phy->speed = SPEED_1000;
712 
713  /* find out wether we are running half- or full duplex */
714  phy_write(phy, MII_NCONFIG, 0x7000);
715  phy_reg = phy_read(phy, MII_NCONFIG);
716 
717  if (phy_reg & BCM5461_FIBER_DUPLEX)
718  phy->duplex |= DUPLEX_FULL;
719  else
720  phy->duplex |= DUPLEX_HALF;
721 
722  return 0;
723 }
724 
725 static int bcm5461_enable_fiber(struct mii_phy* phy, int autoneg)
726 {
727  /* select fiber mode, enable 1000 base-X registers */
728  phy_write(phy, MII_NCONFIG, 0xfc0b);
729 
730  if (autoneg) {
731  /* enable fiber with no autonegotiation */
732  phy_write(phy, MII_ADVERTISE, 0x01e0);
733  phy_write(phy, MII_BMCR, 0x1140);
734  } else {
735  /* enable fiber with autonegotiation */
736  phy_write(phy, MII_BMCR, 0x0140);
737  }
738 
739  phy->autoneg = autoneg;
740 
741  return 0;
742 }
743 
744 static int marvell_setup_aneg(struct mii_phy *phy, u32 advertise)
745 {
746  u16 ctl, adv;
747 
748  phy->autoneg = 1;
749  phy->speed = SPEED_10;
750  phy->duplex = DUPLEX_HALF;
751  phy->pause = 0;
752  phy->advertising = advertise;
753 
754  /* Setup standard advertise */
755  adv = phy_read(phy, MII_ADVERTISE);
756  adv &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
757  if (advertise & ADVERTISED_10baseT_Half)
758  adv |= ADVERTISE_10HALF;
759  if (advertise & ADVERTISED_10baseT_Full)
760  adv |= ADVERTISE_10FULL;
761  if (advertise & ADVERTISED_100baseT_Half)
762  adv |= ADVERTISE_100HALF;
763  if (advertise & ADVERTISED_100baseT_Full)
764  adv |= ADVERTISE_100FULL;
765  if (advertise & ADVERTISED_Pause)
766  adv |= ADVERTISE_PAUSE_CAP;
767  if (advertise & ADVERTISED_Asym_Pause)
768  adv |= ADVERTISE_PAUSE_ASYM;
769  phy_write(phy, MII_ADVERTISE, adv);
770 
771  /* Setup 1000BT advertise & enable crossover detect
772  * XXX How do we advertise 1000BT ? Darwin source is
773  * confusing here, they read from specific control and
774  * write to control... Someone has specs for those
775  * beasts ?
776  */
781  if (advertise & SUPPORTED_1000baseT_Half)
783  if (advertise & SUPPORTED_1000baseT_Full)
785  phy_write(phy, MII_1000BASETCONTROL, adv);
786 
787  /* Start/Restart aneg */
788  ctl = phy_read(phy, MII_BMCR);
789  ctl |= (BMCR_ANENABLE | BMCR_ANRESTART);
790  phy_write(phy, MII_BMCR, ctl);
791 
792  return 0;
793 }
794 
795 static int marvell_setup_forced(struct mii_phy *phy, int speed, int fd)
796 {
797  u16 ctl, ctl2;
798 
799  phy->autoneg = 0;
800  phy->speed = speed;
801  phy->duplex = fd;
802  phy->pause = 0;
803 
804  ctl = phy_read(phy, MII_BMCR);
806  ctl |= BMCR_RESET;
807 
808  /* Select speed & duplex */
809  switch(speed) {
810  case SPEED_10:
811  break;
812  case SPEED_100:
813  ctl |= BMCR_SPEED100;
814  break;
815  /* I'm not sure about the one below, again, Darwin source is
816  * quite confusing and I lack chip specs
817  */
818  case SPEED_1000:
819  ctl |= BMCR_SPD2;
820  }
821  if (fd == DUPLEX_FULL)
822  ctl |= BMCR_FULLDPLX;
823 
824  /* Disable crossover. Again, the way Apple does it is strange,
825  * though I don't assume they are wrong ;)
826  */
832  if (speed == SPEED_1000)
833  ctl2 |= (fd == DUPLEX_FULL) ?
836  phy_write(phy, MII_1000BASETCONTROL, ctl2);
837 
838  // XXX Should we set the sungem to GII now on 1000BT ?
839 
840  phy_write(phy, MII_BMCR, ctl);
841 
842  return 0;
843 }
844 
845 static int marvell_read_link(struct mii_phy *phy)
846 {
847  u16 status, pmask;
848 
849  if (phy->autoneg) {
850  status = phy_read(phy, MII_M1011_PHY_SPEC_STATUS);
851  if ((status & MII_M1011_PHY_SPEC_STATUS_RESOLVED) == 0)
852  return -EAGAIN;
853  if (status & MII_M1011_PHY_SPEC_STATUS_1000)
854  phy->speed = SPEED_1000;
855  else if (status & MII_M1011_PHY_SPEC_STATUS_100)
856  phy->speed = SPEED_100;
857  else
858  phy->speed = SPEED_10;
860  phy->duplex = DUPLEX_FULL;
861  else
862  phy->duplex = DUPLEX_HALF;
865  phy->pause = (status & pmask) == pmask;
866  }
867  /* On non-aneg, we assume what we put in BMCR is the speed,
868  * though magic-aneg shouldn't prevent this case from occurring
869  */
870 
871  return 0;
872 }
873 
874 #define MII_BASIC_FEATURES \
875  (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | \
876  SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | \
877  SUPPORTED_Autoneg | SUPPORTED_TP | SUPPORTED_MII | \
878  SUPPORTED_Pause)
879 
880 /* On gigabit capable PHYs, we advertise Pause support but not asym pause
881  * support for now as I'm not sure it's supported and Darwin doesn't do
882  * it neither. --BenH.
883  */
884 #define MII_GBIT_FEATURES \
885  (MII_BASIC_FEATURES | \
886  SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full)
887 
888 /* Broadcom BCM 5201 */
889 static struct mii_phy_ops bcm5201_phy_ops = {
890  .init = bcm5201_init,
891  .suspend = bcm5201_suspend,
892  .setup_aneg = genmii_setup_aneg,
893  .setup_forced = genmii_setup_forced,
894  .poll_link = genmii_poll_link,
895  .read_link = genmii_read_link,
896 };
897 
898 static struct mii_phy_def bcm5201_phy_def = {
899  .phy_id = 0x00406210,
900  .phy_id_mask = 0xfffffff0,
901  .name = "BCM5201",
902  .features = MII_BASIC_FEATURES,
903  .magic_aneg = 1,
904  .ops = &bcm5201_phy_ops
905 };
906 
907 /* Broadcom BCM 5221 */
908 static struct mii_phy_ops bcm5221_phy_ops = {
909  .suspend = bcm5221_suspend,
910  .init = bcm5221_init,
911  .setup_aneg = genmii_setup_aneg,
912  .setup_forced = genmii_setup_forced,
913  .poll_link = genmii_poll_link,
914  .read_link = genmii_read_link,
915 };
916 
917 static struct mii_phy_def bcm5221_phy_def = {
918  .phy_id = 0x004061e0,
919  .phy_id_mask = 0xfffffff0,
920  .name = "BCM5221",
921  .features = MII_BASIC_FEATURES,
922  .magic_aneg = 1,
923  .ops = &bcm5221_phy_ops
924 };
925 
926 /* Broadcom BCM 5241 */
927 static struct mii_phy_ops bcm5241_phy_ops = {
928  .suspend = bcm5241_suspend,
929  .init = bcm5241_init,
930  .setup_aneg = genmii_setup_aneg,
931  .setup_forced = genmii_setup_forced,
932  .poll_link = genmii_poll_link,
933  .read_link = genmii_read_link,
934 };
935 static struct mii_phy_def bcm5241_phy_def = {
936  .phy_id = 0x0143bc30,
937  .phy_id_mask = 0xfffffff0,
938  .name = "BCM5241",
939  .features = MII_BASIC_FEATURES,
940  .magic_aneg = 1,
941  .ops = &bcm5241_phy_ops
942 };
943 
944 /* Broadcom BCM 5400 */
945 static struct mii_phy_ops bcm5400_phy_ops = {
946  .init = bcm5400_init,
947  .suspend = bcm5400_suspend,
948  .setup_aneg = bcm54xx_setup_aneg,
949  .setup_forced = bcm54xx_setup_forced,
950  .poll_link = genmii_poll_link,
951  .read_link = bcm54xx_read_link,
952 };
953 
954 static struct mii_phy_def bcm5400_phy_def = {
955  .phy_id = 0x00206040,
956  .phy_id_mask = 0xfffffff0,
957  .name = "BCM5400",
958  .features = MII_GBIT_FEATURES,
959  .magic_aneg = 1,
960  .ops = &bcm5400_phy_ops
961 };
962 
963 /* Broadcom BCM 5401 */
964 static struct mii_phy_ops bcm5401_phy_ops = {
965  .init = bcm5401_init,
966  .suspend = bcm5401_suspend,
967  .setup_aneg = bcm54xx_setup_aneg,
968  .setup_forced = bcm54xx_setup_forced,
969  .poll_link = genmii_poll_link,
970  .read_link = bcm54xx_read_link,
971 };
972 
973 static struct mii_phy_def bcm5401_phy_def = {
974  .phy_id = 0x00206050,
975  .phy_id_mask = 0xfffffff0,
976  .name = "BCM5401",
977  .features = MII_GBIT_FEATURES,
978  .magic_aneg = 1,
979  .ops = &bcm5401_phy_ops
980 };
981 
982 /* Broadcom BCM 5411 */
983 static struct mii_phy_ops bcm5411_phy_ops = {
984  .init = bcm5411_init,
985  .suspend = generic_suspend,
986  .setup_aneg = bcm54xx_setup_aneg,
987  .setup_forced = bcm54xx_setup_forced,
988  .poll_link = genmii_poll_link,
989  .read_link = bcm54xx_read_link,
990 };
991 
992 static struct mii_phy_def bcm5411_phy_def = {
993  .phy_id = 0x00206070,
994  .phy_id_mask = 0xfffffff0,
995  .name = "BCM5411",
996  .features = MII_GBIT_FEATURES,
997  .magic_aneg = 1,
998  .ops = &bcm5411_phy_ops
999 };
1000 
1001 /* Broadcom BCM 5421 */
1002 static struct mii_phy_ops bcm5421_phy_ops = {
1003  .init = bcm5421_init,
1004  .suspend = generic_suspend,
1005  .setup_aneg = bcm54xx_setup_aneg,
1006  .setup_forced = bcm54xx_setup_forced,
1007  .poll_link = bcm5421_poll_link,
1008  .read_link = bcm5421_read_link,
1009  .enable_fiber = bcm5421_enable_fiber,
1010 };
1011 
1012 static struct mii_phy_def bcm5421_phy_def = {
1013  .phy_id = 0x002060e0,
1014  .phy_id_mask = 0xfffffff0,
1015  .name = "BCM5421",
1016  .features = MII_GBIT_FEATURES,
1017  .magic_aneg = 1,
1018  .ops = &bcm5421_phy_ops
1019 };
1020 
1021 /* Broadcom BCM 5421 built-in K2 */
1022 static struct mii_phy_ops bcm5421k2_phy_ops = {
1023  .init = bcm5421_init,
1024  .suspend = generic_suspend,
1025  .setup_aneg = bcm54xx_setup_aneg,
1026  .setup_forced = bcm54xx_setup_forced,
1027  .poll_link = genmii_poll_link,
1028  .read_link = bcm54xx_read_link,
1029 };
1030 
1031 static struct mii_phy_def bcm5421k2_phy_def = {
1032  .phy_id = 0x002062e0,
1033  .phy_id_mask = 0xfffffff0,
1034  .name = "BCM5421-K2",
1035  .features = MII_GBIT_FEATURES,
1036  .magic_aneg = 1,
1037  .ops = &bcm5421k2_phy_ops
1038 };
1039 
1040 static struct mii_phy_ops bcm5461_phy_ops = {
1041  .init = bcm5421_init,
1042  .suspend = generic_suspend,
1043  .setup_aneg = bcm54xx_setup_aneg,
1044  .setup_forced = bcm54xx_setup_forced,
1045  .poll_link = bcm5461_poll_link,
1046  .read_link = bcm5461_read_link,
1047  .enable_fiber = bcm5461_enable_fiber,
1048 };
1049 
1050 static struct mii_phy_def bcm5461_phy_def = {
1051  .phy_id = 0x002060c0,
1052  .phy_id_mask = 0xfffffff0,
1053  .name = "BCM5461",
1054  .features = MII_GBIT_FEATURES,
1055  .magic_aneg = 1,
1056  .ops = &bcm5461_phy_ops
1057 };
1058 
1059 /* Broadcom BCM 5462 built-in Vesta */
1060 static struct mii_phy_ops bcm5462V_phy_ops = {
1061  .init = bcm5421_init,
1062  .suspend = generic_suspend,
1063  .setup_aneg = bcm54xx_setup_aneg,
1064  .setup_forced = bcm54xx_setup_forced,
1065  .poll_link = genmii_poll_link,
1066  .read_link = bcm54xx_read_link,
1067 };
1068 
1069 static struct mii_phy_def bcm5462V_phy_def = {
1070  .phy_id = 0x002060d0,
1071  .phy_id_mask = 0xfffffff0,
1072  .name = "BCM5462-Vesta",
1073  .features = MII_GBIT_FEATURES,
1074  .magic_aneg = 1,
1075  .ops = &bcm5462V_phy_ops
1076 };
1077 
1078 /* Marvell 88E1101 amd 88E1111 */
1079 static struct mii_phy_ops marvell88e1101_phy_ops = {
1080  .suspend = generic_suspend,
1081  .setup_aneg = marvell_setup_aneg,
1082  .setup_forced = marvell_setup_forced,
1083  .poll_link = genmii_poll_link,
1084  .read_link = marvell_read_link
1085 };
1086 
1087 static struct mii_phy_ops marvell88e1111_phy_ops = {
1088  .init = marvell88e1111_init,
1089  .suspend = generic_suspend,
1090  .setup_aneg = marvell_setup_aneg,
1091  .setup_forced = marvell_setup_forced,
1092  .poll_link = genmii_poll_link,
1093  .read_link = marvell_read_link
1094 };
1095 
1096 /* two revs in darwin for the 88e1101 ... I could use a datasheet
1097  * to get the proper names...
1098  */
1099 static struct mii_phy_def marvell88e1101v1_phy_def = {
1100  .phy_id = 0x01410c20,
1101  .phy_id_mask = 0xfffffff0,
1102  .name = "Marvell 88E1101v1",
1103  .features = MII_GBIT_FEATURES,
1104  .magic_aneg = 1,
1105  .ops = &marvell88e1101_phy_ops
1106 };
1107 static struct mii_phy_def marvell88e1101v2_phy_def = {
1108  .phy_id = 0x01410c60,
1109  .phy_id_mask = 0xfffffff0,
1110  .name = "Marvell 88E1101v2",
1111  .features = MII_GBIT_FEATURES,
1112  .magic_aneg = 1,
1113  .ops = &marvell88e1101_phy_ops
1114 };
1115 static struct mii_phy_def marvell88e1111_phy_def = {
1116  .phy_id = 0x01410cc0,
1117  .phy_id_mask = 0xfffffff0,
1118  .name = "Marvell 88E1111",
1119  .features = MII_GBIT_FEATURES,
1120  .magic_aneg = 1,
1121  .ops = &marvell88e1111_phy_ops
1122 };
1123 
1124 /* Generic implementation for most 10/100 PHYs */
1125 static struct mii_phy_ops generic_phy_ops = {
1126  .setup_aneg = genmii_setup_aneg,
1127  .setup_forced = genmii_setup_forced,
1128  .poll_link = genmii_poll_link,
1129  .read_link = genmii_read_link
1130 };
1131 
1132 static struct mii_phy_def genmii_phy_def = {
1133  .phy_id = 0x00000000,
1134  .phy_id_mask = 0x00000000,
1135  .name = "Generic MII",
1136  .features = MII_BASIC_FEATURES,
1137  .magic_aneg = 0,
1138  .ops = &generic_phy_ops
1139 };
1140 
1141 static struct mii_phy_def* mii_phy_table[] = {
1142  &bcm5201_phy_def,
1143  &bcm5221_phy_def,
1144  &bcm5241_phy_def,
1145  &bcm5400_phy_def,
1146  &bcm5401_phy_def,
1147  &bcm5411_phy_def,
1148  &bcm5421_phy_def,
1149  &bcm5421k2_phy_def,
1150  &bcm5461_phy_def,
1151  &bcm5462V_phy_def,
1152  &marvell88e1101v1_phy_def,
1153  &marvell88e1101v2_phy_def,
1154  &marvell88e1111_phy_def,
1155  &genmii_phy_def,
1156  NULL
1157 };
1158 
1159 int sungem_phy_probe(struct mii_phy *phy, int mii_id)
1160 {
1161  int rc;
1162  u32 id;
1163  struct mii_phy_def* def;
1164  int i;
1165 
1166  /* We do not reset the mii_phy structure as the driver
1167  * may re-probe the PHY regulary
1168  */
1169  phy->mii_id = mii_id;
1170 
1171  /* Take PHY out of isloate mode and reset it. */
1172  rc = reset_one_mii_phy(phy, mii_id);
1173  if (rc)
1174  goto fail;
1175 
1176  /* Read ID and find matching entry */
1177  id = (phy_read(phy, MII_PHYSID1) << 16 | phy_read(phy, MII_PHYSID2));
1178  printk(KERN_DEBUG KBUILD_MODNAME ": " "PHY ID: %x, addr: %x\n",
1179  id, mii_id);
1180  for (i=0; (def = mii_phy_table[i]) != NULL; i++)
1181  if ((id & def->phy_id_mask) == def->phy_id)
1182  break;
1183  /* Should never be NULL (we have a generic entry), but... */
1184  if (def == NULL)
1185  goto fail;
1186 
1187  phy->def = def;
1188 
1189  return 0;
1190 fail:
1191  phy->speed = 0;
1192  phy->duplex = 0;
1193  phy->pause = 0;
1194  phy->advertising = 0;
1195  return -ENODEV;
1196 }
1197 
1199 MODULE_LICENSE("GPL");