Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
swiotlb-xen.c
Go to the documentation of this file.
1 /*
2  * Copyright 2010
3  * by Konrad Rzeszutek Wilk <[email protected]>
4  *
5  * This code provides a IOMMU for Xen PV guests with PCI passthrough.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License v2.0 as published by
9  * the Free Software Foundation
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14  * GNU General Public License for more details.
15  *
16  * PV guests under Xen are running in an non-contiguous memory architecture.
17  *
18  * When PCI pass-through is utilized, this necessitates an IOMMU for
19  * translating bus (DMA) to virtual and vice-versa and also providing a
20  * mechanism to have contiguous pages for device drivers operations (say DMA
21  * operations).
22  *
23  * Specifically, under Xen the Linux idea of pages is an illusion. It
24  * assumes that pages start at zero and go up to the available memory. To
25  * help with that, the Linux Xen MMU provides a lookup mechanism to
26  * translate the page frame numbers (PFN) to machine frame numbers (MFN)
27  * and vice-versa. The MFN are the "real" frame numbers. Furthermore
28  * memory is not contiguous. Xen hypervisor stitches memory for guests
29  * from different pools, which means there is no guarantee that PFN==MFN
30  * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
31  * allocated in descending order (high to low), meaning the guest might
32  * never get any MFN's under the 4GB mark.
33  *
34  */
35 
36 #include <linux/bootmem.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/export.h>
39 #include <xen/swiotlb-xen.h>
40 #include <xen/page.h>
41 #include <xen/xen-ops.h>
42 #include <xen/hvc-console.h>
43 /*
44  * Used to do a quick range check in swiotlb_tbl_unmap_single and
45  * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
46  * API.
47  */
48 
49 static char *xen_io_tlb_start, *xen_io_tlb_end;
50 static unsigned long xen_io_tlb_nslabs;
51 /*
52  * Quick lookup value of the bus address of the IOTLB.
53  */
54 
55 static u64 start_dma_addr;
56 
57 static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
58 {
59  return phys_to_machine(XPADDR(paddr)).maddr;
60 }
61 
62 static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
63 {
64  return machine_to_phys(XMADDR(baddr)).paddr;
65 }
66 
67 static dma_addr_t xen_virt_to_bus(void *address)
68 {
69  return xen_phys_to_bus(virt_to_phys(address));
70 }
71 
72 static int check_pages_physically_contiguous(unsigned long pfn,
73  unsigned int offset,
74  size_t length)
75 {
76  unsigned long next_mfn;
77  int i;
78  int nr_pages;
79 
80  next_mfn = pfn_to_mfn(pfn);
81  nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
82 
83  for (i = 1; i < nr_pages; i++) {
84  if (pfn_to_mfn(++pfn) != ++next_mfn)
85  return 0;
86  }
87  return 1;
88 }
89 
90 static int range_straddles_page_boundary(phys_addr_t p, size_t size)
91 {
92  unsigned long pfn = PFN_DOWN(p);
93  unsigned int offset = p & ~PAGE_MASK;
94 
95  if (offset + size <= PAGE_SIZE)
96  return 0;
97  if (check_pages_physically_contiguous(pfn, offset, size))
98  return 0;
99  return 1;
100 }
101 
102 static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
103 {
104  unsigned long mfn = PFN_DOWN(dma_addr);
105  unsigned long pfn = mfn_to_local_pfn(mfn);
107 
108  /* If the address is outside our domain, it CAN
109  * have the same virtual address as another address
110  * in our domain. Therefore _only_ check address within our domain.
111  */
112  if (pfn_valid(pfn)) {
113  paddr = PFN_PHYS(pfn);
114  return paddr >= virt_to_phys(xen_io_tlb_start) &&
115  paddr < virt_to_phys(xen_io_tlb_end);
116  }
117  return 0;
118 }
119 
120 static int max_dma_bits = 32;
121 
122 static int
123 xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
124 {
125  int i, rc;
126  int dma_bits;
127 
129 
130  i = 0;
131  do {
132  int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
133 
134  do {
136  (unsigned long)buf + (i << IO_TLB_SHIFT),
137  get_order(slabs << IO_TLB_SHIFT),
138  dma_bits);
139  } while (rc && dma_bits++ < max_dma_bits);
140  if (rc)
141  return rc;
142 
143  i += slabs;
144  } while (i < nslabs);
145  return 0;
146 }
147 static unsigned long xen_set_nslabs(unsigned long nr_tbl)
148 {
149  if (!nr_tbl) {
150  xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
151  xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
152  } else
153  xen_io_tlb_nslabs = nr_tbl;
154 
155  return xen_io_tlb_nslabs << IO_TLB_SHIFT;
156 }
157 
162 };
163 
164 static const char *xen_swiotlb_error(enum xen_swiotlb_err err)
165 {
166  switch (err) {
167  case XEN_SWIOTLB_ENOMEM:
168  return "Cannot allocate Xen-SWIOTLB buffer\n";
169  case XEN_SWIOTLB_EFIXUP:
170  return "Failed to get contiguous memory for DMA from Xen!\n"\
171  "You either: don't have the permissions, do not have"\
172  " enough free memory under 4GB, or the hypervisor memory"\
173  " is too fragmented!";
174  default:
175  break;
176  }
177  return "";
178 }
179 int __ref xen_swiotlb_init(int verbose, bool early)
180 {
181  unsigned long bytes, order;
182  int rc = -ENOMEM;
184  unsigned int repeat = 3;
185 
186  xen_io_tlb_nslabs = swiotlb_nr_tbl();
187 retry:
188  bytes = xen_set_nslabs(xen_io_tlb_nslabs);
189  order = get_order(xen_io_tlb_nslabs << IO_TLB_SHIFT);
190  /*
191  * Get IO TLB memory from any location.
192  */
193  if (early)
194  xen_io_tlb_start = alloc_bootmem_pages(PAGE_ALIGN(bytes));
195  else {
196 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
197 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
198  while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
199  xen_io_tlb_start = (void *)__get_free_pages(__GFP_NOWARN, order);
200  if (xen_io_tlb_start)
201  break;
202  order--;
203  }
204  if (order != get_order(bytes)) {
205  pr_warn("Warning: only able to allocate %ld MB "
206  "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
207  xen_io_tlb_nslabs = SLABS_PER_PAGE << order;
208  bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
209  }
210  }
211  if (!xen_io_tlb_start) {
212  m_ret = XEN_SWIOTLB_ENOMEM;
213  goto error;
214  }
215  xen_io_tlb_end = xen_io_tlb_start + bytes;
216  /*
217  * And replace that memory with pages under 4GB.
218  */
219  rc = xen_swiotlb_fixup(xen_io_tlb_start,
220  bytes,
221  xen_io_tlb_nslabs);
222  if (rc) {
223  if (early)
224  free_bootmem(__pa(xen_io_tlb_start), PAGE_ALIGN(bytes));
225  else {
226  free_pages((unsigned long)xen_io_tlb_start, order);
227  xen_io_tlb_start = NULL;
228  }
229  m_ret = XEN_SWIOTLB_EFIXUP;
230  goto error;
231  }
232  start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
233  if (early) {
234  swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
235  rc = 0;
236  } else
237  rc = swiotlb_late_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs);
238  return rc;
239 error:
240  if (repeat--) {
241  xen_io_tlb_nslabs = max(1024UL, /* Min is 2MB */
242  (xen_io_tlb_nslabs >> 1));
243  printk(KERN_INFO "Xen-SWIOTLB: Lowering to %luMB\n",
244  (xen_io_tlb_nslabs << IO_TLB_SHIFT) >> 20);
245  goto retry;
246  }
247  pr_err("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
248  if (early)
249  panic("%s (rc:%d)", xen_swiotlb_error(m_ret), rc);
250  else
251  free_pages((unsigned long)xen_io_tlb_start, order);
252  return rc;
253 }
254 void *
255 xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
257  struct dma_attrs *attrs)
258 {
259  void *ret;
260  int order = get_order(size);
261  u64 dma_mask = DMA_BIT_MASK(32);
262  unsigned long vstart;
265 
266  /*
267  * Ignore region specifiers - the kernel's ideas of
268  * pseudo-phys memory layout has nothing to do with the
269  * machine physical layout. We can't allocate highmem
270  * because we can't return a pointer to it.
271  */
272  flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
273 
274  if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
275  return ret;
276 
277  vstart = __get_free_pages(flags, order);
278  ret = (void *)vstart;
279 
280  if (!ret)
281  return ret;
282 
283  if (hwdev && hwdev->coherent_dma_mask)
284  dma_mask = dma_alloc_coherent_mask(hwdev, flags);
285 
286  phys = virt_to_phys(ret);
287  dev_addr = xen_phys_to_bus(phys);
288  if (((dev_addr + size - 1 <= dma_mask)) &&
289  !range_straddles_page_boundary(phys, size))
290  *dma_handle = dev_addr;
291  else {
292  if (xen_create_contiguous_region(vstart, order,
293  fls64(dma_mask)) != 0) {
294  free_pages(vstart, order);
295  return NULL;
296  }
297  *dma_handle = virt_to_machine(ret).maddr;
298  }
299  memset(ret, 0, size);
300  return ret;
301 }
303 
304 void
305 xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
306  dma_addr_t dev_addr, struct dma_attrs *attrs)
307 {
308  int order = get_order(size);
310  u64 dma_mask = DMA_BIT_MASK(32);
311 
312  if (dma_release_from_coherent(hwdev, order, vaddr))
313  return;
314 
315  if (hwdev && hwdev->coherent_dma_mask)
316  dma_mask = hwdev->coherent_dma_mask;
317 
318  phys = virt_to_phys(vaddr);
319 
320  if (((dev_addr + size - 1 > dma_mask)) ||
321  range_straddles_page_boundary(phys, size))
322  xen_destroy_contiguous_region((unsigned long)vaddr, order);
323 
324  free_pages((unsigned long)vaddr, order);
325 }
327 
328 
329 /*
330  * Map a single buffer of the indicated size for DMA in streaming mode. The
331  * physical address to use is returned.
332  *
333  * Once the device is given the dma address, the device owns this memory until
334  * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
335  */
337  unsigned long offset, size_t size,
338  enum dma_data_direction dir,
339  struct dma_attrs *attrs)
340 {
342  dma_addr_t dev_addr = xen_phys_to_bus(phys);
343  void *map;
344 
345  BUG_ON(dir == DMA_NONE);
346  /*
347  * If the address happens to be in the device's DMA window,
348  * we can safely return the device addr and not worry about bounce
349  * buffering it.
350  */
351  if (dma_capable(dev, dev_addr, size) &&
352  !range_straddles_page_boundary(phys, size) && !swiotlb_force)
353  return dev_addr;
354 
355  /*
356  * Oh well, have to allocate and map a bounce buffer.
357  */
358  map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
359  if (!map)
360  return DMA_ERROR_CODE;
361 
362  dev_addr = xen_virt_to_bus(map);
363 
364  /*
365  * Ensure that the address returned is DMA'ble
366  */
367  if (!dma_capable(dev, dev_addr, size)) {
368  swiotlb_tbl_unmap_single(dev, map, size, dir);
369  dev_addr = 0;
370  }
371  return dev_addr;
372 }
374 
375 /*
376  * Unmap a single streaming mode DMA translation. The dma_addr and size must
377  * match what was provided for in a previous xen_swiotlb_map_page call. All
378  * other usages are undefined.
379  *
380  * After this call, reads by the cpu to the buffer are guaranteed to see
381  * whatever the device wrote there.
382  */
383 static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
384  size_t size, enum dma_data_direction dir)
385 {
386  phys_addr_t paddr = xen_bus_to_phys(dev_addr);
387 
388  BUG_ON(dir == DMA_NONE);
389 
390  /* NOTE: We use dev_addr here, not paddr! */
391  if (is_xen_swiotlb_buffer(dev_addr)) {
392  swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
393  return;
394  }
395 
396  if (dir != DMA_FROM_DEVICE)
397  return;
398 
399  /*
400  * phys_to_virt doesn't work with hihgmem page but we could
401  * call dma_mark_clean() with hihgmem page here. However, we
402  * are fine since dma_mark_clean() is null on POWERPC. We can
403  * make dma_mark_clean() take a physical address if necessary.
404  */
405  dma_mark_clean(phys_to_virt(paddr), size);
406 }
407 
408 void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
409  size_t size, enum dma_data_direction dir,
410  struct dma_attrs *attrs)
411 {
412  xen_unmap_single(hwdev, dev_addr, size, dir);
413 }
415 
416 /*
417  * Make physical memory consistent for a single streaming mode DMA translation
418  * after a transfer.
419  *
420  * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
421  * using the cpu, yet do not wish to teardown the dma mapping, you must
422  * call this function before doing so. At the next point you give the dma
423  * address back to the card, you must first perform a
424  * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
425  */
426 static void
427 xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
428  size_t size, enum dma_data_direction dir,
429  enum dma_sync_target target)
430 {
431  phys_addr_t paddr = xen_bus_to_phys(dev_addr);
432 
433  BUG_ON(dir == DMA_NONE);
434 
435  /* NOTE: We use dev_addr here, not paddr! */
436  if (is_xen_swiotlb_buffer(dev_addr)) {
437  swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
438  target);
439  return;
440  }
441 
442  if (dir != DMA_FROM_DEVICE)
443  return;
444 
445  dma_mark_clean(phys_to_virt(paddr), size);
446 }
447 
448 void
450  size_t size, enum dma_data_direction dir)
451 {
452  xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
453 }
455 
456 void
458  size_t size, enum dma_data_direction dir)
459 {
460  xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
461 }
463 
464 /*
465  * Map a set of buffers described by scatterlist in streaming mode for DMA.
466  * This is the scatter-gather version of the above xen_swiotlb_map_page
467  * interface. Here the scatter gather list elements are each tagged with the
468  * appropriate dma address and length. They are obtained via
469  * sg_dma_{address,length}(SG).
470  *
471  * NOTE: An implementation may be able to use a smaller number of
472  * DMA address/length pairs than there are SG table elements.
473  * (for example via virtual mapping capabilities)
474  * The routine returns the number of addr/length pairs actually
475  * used, at most nents.
476  *
477  * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
478  * same here.
479  */
480 int
482  int nelems, enum dma_data_direction dir,
483  struct dma_attrs *attrs)
484 {
485  struct scatterlist *sg;
486  int i;
487 
488  BUG_ON(dir == DMA_NONE);
489 
490  for_each_sg(sgl, sg, nelems, i) {
491  phys_addr_t paddr = sg_phys(sg);
492  dma_addr_t dev_addr = xen_phys_to_bus(paddr);
493 
494  if (swiotlb_force ||
495  !dma_capable(hwdev, dev_addr, sg->length) ||
496  range_straddles_page_boundary(paddr, sg->length)) {
497  void *map = swiotlb_tbl_map_single(hwdev,
498  start_dma_addr,
499  sg_phys(sg),
500  sg->length, dir);
501  if (!map) {
502  /* Don't panic here, we expect map_sg users
503  to do proper error handling. */
504  xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
505  attrs);
506  sgl[0].dma_length = 0;
507  return DMA_ERROR_CODE;
508  }
509  sg->dma_address = xen_virt_to_bus(map);
510  } else
511  sg->dma_address = dev_addr;
512  sg->dma_length = sg->length;
513  }
514  return nelems;
515 }
517 
518 /*
519  * Unmap a set of streaming mode DMA translations. Again, cpu read rules
520  * concerning calls here are the same as for swiotlb_unmap_page() above.
521  */
522 void
524  int nelems, enum dma_data_direction dir,
525  struct dma_attrs *attrs)
526 {
527  struct scatterlist *sg;
528  int i;
529 
530  BUG_ON(dir == DMA_NONE);
531 
532  for_each_sg(sgl, sg, nelems, i)
533  xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
534 
535 }
537 
538 /*
539  * Make physical memory consistent for a set of streaming mode DMA translations
540  * after a transfer.
541  *
542  * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
543  * and usage.
544  */
545 static void
546 xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
547  int nelems, enum dma_data_direction dir,
548  enum dma_sync_target target)
549 {
550  struct scatterlist *sg;
551  int i;
552 
553  for_each_sg(sgl, sg, nelems, i)
554  xen_swiotlb_sync_single(hwdev, sg->dma_address,
555  sg->dma_length, dir, target);
556 }
557 
558 void
560  int nelems, enum dma_data_direction dir)
561 {
562  xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
563 }
565 
566 void
568  int nelems, enum dma_data_direction dir)
569 {
570  xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
571 }
573 
574 int
576 {
577  return !dma_addr;
578 }
580 
581 /*
582  * Return whether the given device DMA address mask can be supported
583  * properly. For example, if your device can only drive the low 24-bits
584  * during bus mastering, then you would pass 0x00ffffff as the mask to
585  * this function.
586  */
587 int
589 {
590  return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
591 }