Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tas.c
Go to the documentation of this file.
1 /*
2  * Apple Onboard Audio driver for tas codec
3  *
4  * Copyright 2006 Johannes Berg <[email protected]>
5  *
6  * GPL v2, can be found in COPYING.
7  *
8  * Open questions:
9  * - How to distinguish between 3004 and versions?
10  *
11  * FIXMEs:
12  * - This codec driver doesn't honour the 'connected'
13  * property of the aoa_codec struct, hence if
14  * it is used in machines where not everything is
15  * connected it will display wrong mixer elements.
16  * - Driver assumes that the microphone is always
17  * monaureal and connected to the right channel of
18  * the input. This should also be a codec-dependent
19  * flag, maybe the codec should have 3 different
20  * bits for the three different possibilities how
21  * it can be hooked up...
22  * But as long as I don't see any hardware hooked
23  * up that way...
24  * - As Apple notes in their code, the tas3004 seems
25  * to delay the right channel by one sample. You can
26  * see this when for example recording stereo in
27  * audacity, or recording the tas output via cable
28  * on another machine (use a sinus generator or so).
29  * I tried programming the BiQuads but couldn't
30  * make the delay work, maybe someone can read the
31  * datasheet and fix it. The relevant Apple comment
32  * is in AppleTAS3004Audio.cpp lines 1637 ff. Note
33  * that their comment describing how they program
34  * the filters sucks...
35  *
36  * Other things:
37  * - this should actually register *two* aoa_codec
38  * structs since it has two inputs. Then it must
39  * use the prepare callback to forbid running the
40  * secondary output on a different clock.
41  * Also, whatever bus knows how to do this must
42  * provide two soundbus_dev devices and the fabric
43  * must be able to link them correctly.
44  *
45  * I don't even know if Apple ever uses the second
46  * port on the tas3004 though, I don't think their
47  * i2s controllers can even do it. OTOH, they all
48  * derive the clocks from common clocks, so it
49  * might just be possible. The framework allows the
50  * codec to refine the transfer_info items in the
51  * usable callback, so we can simply remove the
52  * rates the second instance is not using when it
53  * actually is in use.
54  * Maybe we'll need to make the sound busses have
55  * a 'clock group id' value so the codec can
56  * determine if the two outputs can be driven at
57  * the same time. But that is likely overkill, up
58  * to the fabric to not link them up incorrectly,
59  * and up to the hardware designer to not wire
60  * them up in some weird unusable way.
61  */
62 #include <stddef.h>
63 #include <linux/i2c.h>
64 #include <asm/pmac_low_i2c.h>
65 #include <asm/prom.h>
66 #include <linux/delay.h>
67 #include <linux/module.h>
68 #include <linux/mutex.h>
69 #include <linux/slab.h>
70 
71 MODULE_AUTHOR("Johannes Berg <[email protected]>");
72 MODULE_LICENSE("GPL");
73 MODULE_DESCRIPTION("tas codec driver for snd-aoa");
74 
75 #include "tas.h"
76 #include "tas-gain-table.h"
77 #include "tas-basstreble.h"
78 #include "../aoa.h"
79 #include "../soundbus/soundbus.h"
80 
81 #define PFX "snd-aoa-codec-tas: "
82 
83 
84 struct tas {
85  struct aoa_codec codec;
86  struct i2c_client *i2c;
87  u32 mute_l:1, mute_r:1 ,
89  drc_enabled:1,
90  hw_enabled:1;
92  u8 mixer_l[3], mixer_r[3];
95  int drc_range;
96  /* protects hardware access against concurrency from
97  * userspace when hitting controls and during
98  * codec init/suspend/resume */
99  struct mutex mtx;
100 };
101 
102 static int tas_reset_init(struct tas *tas);
103 
104 static struct tas *codec_to_tas(struct aoa_codec *codec)
105 {
106  return container_of(codec, struct tas, codec);
107 }
108 
109 static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data)
110 {
111  if (len == 1)
112  return i2c_smbus_write_byte_data(tas->i2c, reg, *data);
113  else
114  return i2c_smbus_write_i2c_block_data(tas->i2c, reg, len, data);
115 }
116 
117 static void tas3004_set_drc(struct tas *tas)
118 {
119  unsigned char val[6];
120 
121  if (tas->drc_enabled)
122  val[0] = 0x50; /* 3:1 above threshold */
123  else
124  val[0] = 0x51; /* disabled */
125  val[1] = 0x02; /* 1:1 below threshold */
126  if (tas->drc_range > 0xef)
127  val[2] = 0xef;
128  else if (tas->drc_range < 0)
129  val[2] = 0x00;
130  else
131  val[2] = tas->drc_range;
132  val[3] = 0xb0;
133  val[4] = 0x60;
134  val[5] = 0xa0;
135 
136  tas_write_reg(tas, TAS_REG_DRC, 6, val);
137 }
138 
139 static void tas_set_treble(struct tas *tas)
140 {
141  u8 tmp;
142 
143  tmp = tas3004_treble(tas->treble);
144  tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp);
145 }
146 
147 static void tas_set_bass(struct tas *tas)
148 {
149  u8 tmp;
150 
151  tmp = tas3004_bass(tas->bass);
152  tas_write_reg(tas, TAS_REG_BASS, 1, &tmp);
153 }
154 
155 static void tas_set_volume(struct tas *tas)
156 {
157  u8 block[6];
158  int tmp;
159  u8 left, right;
160 
161  left = tas->cached_volume_l;
162  right = tas->cached_volume_r;
163 
164  if (left > 177) left = 177;
165  if (right > 177) right = 177;
166 
167  if (tas->mute_l) left = 0;
168  if (tas->mute_r) right = 0;
169 
170  /* analysing the volume and mixer tables shows
171  * that they are similar enough when we shift
172  * the mixer table down by 4 bits. The error
173  * is miniscule, in just one item the error
174  * is 1, at a value of 0x07f17b (mixer table
175  * value is 0x07f17a) */
176  tmp = tas_gaintable[left];
177  block[0] = tmp>>20;
178  block[1] = tmp>>12;
179  block[2] = tmp>>4;
180  tmp = tas_gaintable[right];
181  block[3] = tmp>>20;
182  block[4] = tmp>>12;
183  block[5] = tmp>>4;
184  tas_write_reg(tas, TAS_REG_VOL, 6, block);
185 }
186 
187 static void tas_set_mixer(struct tas *tas)
188 {
189  u8 block[9];
190  int tmp, i;
191  u8 val;
192 
193  for (i=0;i<3;i++) {
194  val = tas->mixer_l[i];
195  if (val > 177) val = 177;
196  tmp = tas_gaintable[val];
197  block[3*i+0] = tmp>>16;
198  block[3*i+1] = tmp>>8;
199  block[3*i+2] = tmp;
200  }
201  tas_write_reg(tas, TAS_REG_LMIX, 9, block);
202 
203  for (i=0;i<3;i++) {
204  val = tas->mixer_r[i];
205  if (val > 177) val = 177;
206  tmp = tas_gaintable[val];
207  block[3*i+0] = tmp>>16;
208  block[3*i+1] = tmp>>8;
209  block[3*i+2] = tmp;
210  }
211  tas_write_reg(tas, TAS_REG_RMIX, 9, block);
212 }
213 
214 /* alsa stuff */
215 
216 static int tas_dev_register(struct snd_device *dev)
217 {
218  return 0;
219 }
220 
221 static struct snd_device_ops ops = {
222  .dev_register = tas_dev_register,
223 };
224 
225 static int tas_snd_vol_info(struct snd_kcontrol *kcontrol,
226  struct snd_ctl_elem_info *uinfo)
227 {
229  uinfo->count = 2;
230  uinfo->value.integer.min = 0;
231  uinfo->value.integer.max = 177;
232  return 0;
233 }
234 
235 static int tas_snd_vol_get(struct snd_kcontrol *kcontrol,
236  struct snd_ctl_elem_value *ucontrol)
237 {
238  struct tas *tas = snd_kcontrol_chip(kcontrol);
239 
240  mutex_lock(&tas->mtx);
241  ucontrol->value.integer.value[0] = tas->cached_volume_l;
242  ucontrol->value.integer.value[1] = tas->cached_volume_r;
243  mutex_unlock(&tas->mtx);
244  return 0;
245 }
246 
247 static int tas_snd_vol_put(struct snd_kcontrol *kcontrol,
248  struct snd_ctl_elem_value *ucontrol)
249 {
250  struct tas *tas = snd_kcontrol_chip(kcontrol);
251 
252  if (ucontrol->value.integer.value[0] < 0 ||
253  ucontrol->value.integer.value[0] > 177)
254  return -EINVAL;
255  if (ucontrol->value.integer.value[1] < 0 ||
256  ucontrol->value.integer.value[1] > 177)
257  return -EINVAL;
258 
259  mutex_lock(&tas->mtx);
260  if (tas->cached_volume_l == ucontrol->value.integer.value[0]
261  && tas->cached_volume_r == ucontrol->value.integer.value[1]) {
262  mutex_unlock(&tas->mtx);
263  return 0;
264  }
265 
266  tas->cached_volume_l = ucontrol->value.integer.value[0];
267  tas->cached_volume_r = ucontrol->value.integer.value[1];
268  if (tas->hw_enabled)
269  tas_set_volume(tas);
270  mutex_unlock(&tas->mtx);
271  return 1;
272 }
273 
274 static struct snd_kcontrol_new volume_control = {
276  .name = "Master Playback Volume",
278  .info = tas_snd_vol_info,
279  .get = tas_snd_vol_get,
280  .put = tas_snd_vol_put,
281 };
282 
283 #define tas_snd_mute_info snd_ctl_boolean_stereo_info
284 
285 static int tas_snd_mute_get(struct snd_kcontrol *kcontrol,
286  struct snd_ctl_elem_value *ucontrol)
287 {
288  struct tas *tas = snd_kcontrol_chip(kcontrol);
289 
290  mutex_lock(&tas->mtx);
291  ucontrol->value.integer.value[0] = !tas->mute_l;
292  ucontrol->value.integer.value[1] = !tas->mute_r;
293  mutex_unlock(&tas->mtx);
294  return 0;
295 }
296 
297 static int tas_snd_mute_put(struct snd_kcontrol *kcontrol,
298  struct snd_ctl_elem_value *ucontrol)
299 {
300  struct tas *tas = snd_kcontrol_chip(kcontrol);
301 
302  mutex_lock(&tas->mtx);
303  if (tas->mute_l == !ucontrol->value.integer.value[0]
304  && tas->mute_r == !ucontrol->value.integer.value[1]) {
305  mutex_unlock(&tas->mtx);
306  return 0;
307  }
308 
309  tas->mute_l = !ucontrol->value.integer.value[0];
310  tas->mute_r = !ucontrol->value.integer.value[1];
311  if (tas->hw_enabled)
312  tas_set_volume(tas);
313  mutex_unlock(&tas->mtx);
314  return 1;
315 }
316 
317 static struct snd_kcontrol_new mute_control = {
319  .name = "Master Playback Switch",
321  .info = tas_snd_mute_info,
322  .get = tas_snd_mute_get,
323  .put = tas_snd_mute_put,
324 };
325 
326 static int tas_snd_mixer_info(struct snd_kcontrol *kcontrol,
327  struct snd_ctl_elem_info *uinfo)
328 {
330  uinfo->count = 2;
331  uinfo->value.integer.min = 0;
332  uinfo->value.integer.max = 177;
333  return 0;
334 }
335 
336 static int tas_snd_mixer_get(struct snd_kcontrol *kcontrol,
337  struct snd_ctl_elem_value *ucontrol)
338 {
339  struct tas *tas = snd_kcontrol_chip(kcontrol);
340  int idx = kcontrol->private_value;
341 
342  mutex_lock(&tas->mtx);
343  ucontrol->value.integer.value[0] = tas->mixer_l[idx];
344  ucontrol->value.integer.value[1] = tas->mixer_r[idx];
345  mutex_unlock(&tas->mtx);
346 
347  return 0;
348 }
349 
350 static int tas_snd_mixer_put(struct snd_kcontrol *kcontrol,
351  struct snd_ctl_elem_value *ucontrol)
352 {
353  struct tas *tas = snd_kcontrol_chip(kcontrol);
354  int idx = kcontrol->private_value;
355 
356  mutex_lock(&tas->mtx);
357  if (tas->mixer_l[idx] == ucontrol->value.integer.value[0]
358  && tas->mixer_r[idx] == ucontrol->value.integer.value[1]) {
359  mutex_unlock(&tas->mtx);
360  return 0;
361  }
362 
363  tas->mixer_l[idx] = ucontrol->value.integer.value[0];
364  tas->mixer_r[idx] = ucontrol->value.integer.value[1];
365 
366  if (tas->hw_enabled)
367  tas_set_mixer(tas);
368  mutex_unlock(&tas->mtx);
369  return 1;
370 }
371 
372 #define MIXER_CONTROL(n,descr,idx) \
373 static struct snd_kcontrol_new n##_control = { \
374  .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
375  .name = descr " Playback Volume", \
376  .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
377  .info = tas_snd_mixer_info, \
378  .get = tas_snd_mixer_get, \
379  .put = tas_snd_mixer_put, \
380  .private_value = idx, \
381 }
382 
383 MIXER_CONTROL(pcm1, "PCM", 0);
384 MIXER_CONTROL(monitor, "Monitor", 2);
385 
386 static int tas_snd_drc_range_info(struct snd_kcontrol *kcontrol,
387  struct snd_ctl_elem_info *uinfo)
388 {
390  uinfo->count = 1;
391  uinfo->value.integer.min = 0;
392  uinfo->value.integer.max = TAS3004_DRC_MAX;
393  return 0;
394 }
395 
396 static int tas_snd_drc_range_get(struct snd_kcontrol *kcontrol,
397  struct snd_ctl_elem_value *ucontrol)
398 {
399  struct tas *tas = snd_kcontrol_chip(kcontrol);
400 
401  mutex_lock(&tas->mtx);
402  ucontrol->value.integer.value[0] = tas->drc_range;
403  mutex_unlock(&tas->mtx);
404  return 0;
405 }
406 
407 static int tas_snd_drc_range_put(struct snd_kcontrol *kcontrol,
408  struct snd_ctl_elem_value *ucontrol)
409 {
410  struct tas *tas = snd_kcontrol_chip(kcontrol);
411 
412  if (ucontrol->value.integer.value[0] < 0 ||
413  ucontrol->value.integer.value[0] > TAS3004_DRC_MAX)
414  return -EINVAL;
415 
416  mutex_lock(&tas->mtx);
417  if (tas->drc_range == ucontrol->value.integer.value[0]) {
418  mutex_unlock(&tas->mtx);
419  return 0;
420  }
421 
422  tas->drc_range = ucontrol->value.integer.value[0];
423  if (tas->hw_enabled)
424  tas3004_set_drc(tas);
425  mutex_unlock(&tas->mtx);
426  return 1;
427 }
428 
429 static struct snd_kcontrol_new drc_range_control = {
431  .name = "DRC Range",
433  .info = tas_snd_drc_range_info,
434  .get = tas_snd_drc_range_get,
435  .put = tas_snd_drc_range_put,
436 };
437 
438 #define tas_snd_drc_switch_info snd_ctl_boolean_mono_info
439 
440 static int tas_snd_drc_switch_get(struct snd_kcontrol *kcontrol,
441  struct snd_ctl_elem_value *ucontrol)
442 {
443  struct tas *tas = snd_kcontrol_chip(kcontrol);
444 
445  mutex_lock(&tas->mtx);
446  ucontrol->value.integer.value[0] = tas->drc_enabled;
447  mutex_unlock(&tas->mtx);
448  return 0;
449 }
450 
451 static int tas_snd_drc_switch_put(struct snd_kcontrol *kcontrol,
452  struct snd_ctl_elem_value *ucontrol)
453 {
454  struct tas *tas = snd_kcontrol_chip(kcontrol);
455 
456  mutex_lock(&tas->mtx);
457  if (tas->drc_enabled == ucontrol->value.integer.value[0]) {
458  mutex_unlock(&tas->mtx);
459  return 0;
460  }
461 
462  tas->drc_enabled = !!ucontrol->value.integer.value[0];
463  if (tas->hw_enabled)
464  tas3004_set_drc(tas);
465  mutex_unlock(&tas->mtx);
466  return 1;
467 }
468 
469 static struct snd_kcontrol_new drc_switch_control = {
471  .name = "DRC Range Switch",
473  .info = tas_snd_drc_switch_info,
474  .get = tas_snd_drc_switch_get,
475  .put = tas_snd_drc_switch_put,
476 };
477 
478 static int tas_snd_capture_source_info(struct snd_kcontrol *kcontrol,
479  struct snd_ctl_elem_info *uinfo)
480 {
481  static char *texts[] = { "Line-In", "Microphone" };
482 
484  uinfo->count = 1;
485  uinfo->value.enumerated.items = 2;
486  if (uinfo->value.enumerated.item > 1)
487  uinfo->value.enumerated.item = 1;
488  strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
489  return 0;
490 }
491 
492 static int tas_snd_capture_source_get(struct snd_kcontrol *kcontrol,
493  struct snd_ctl_elem_value *ucontrol)
494 {
495  struct tas *tas = snd_kcontrol_chip(kcontrol);
496 
497  mutex_lock(&tas->mtx);
498  ucontrol->value.enumerated.item[0] = !!(tas->acr & TAS_ACR_INPUT_B);
499  mutex_unlock(&tas->mtx);
500  return 0;
501 }
502 
503 static int tas_snd_capture_source_put(struct snd_kcontrol *kcontrol,
504  struct snd_ctl_elem_value *ucontrol)
505 {
506  struct tas *tas = snd_kcontrol_chip(kcontrol);
507  int oldacr;
508 
509  if (ucontrol->value.enumerated.item[0] > 1)
510  return -EINVAL;
511  mutex_lock(&tas->mtx);
512  oldacr = tas->acr;
513 
514  /*
515  * Despite what the data sheet says in one place, the
516  * TAS_ACR_B_MONAUREAL bit forces mono output even when
517  * input A (line in) is selected.
518  */
520  if (ucontrol->value.enumerated.item[0])
523  if (oldacr == tas->acr) {
524  mutex_unlock(&tas->mtx);
525  return 0;
526  }
527  if (tas->hw_enabled)
528  tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
529  mutex_unlock(&tas->mtx);
530  return 1;
531 }
532 
533 static struct snd_kcontrol_new capture_source_control = {
535  /* If we name this 'Input Source', it properly shows up in
536  * alsamixer as a selection, * but it's shown under the
537  * 'Playback' category.
538  * If I name it 'Capture Source', it shows up in strange
539  * ways (two bools of which one can be selected at a
540  * time) but at least it's shown in the 'Capture'
541  * category.
542  * I was told that this was due to backward compatibility,
543  * but I don't understand then why the mangling is *not*
544  * done when I name it "Input Source".....
545  */
546  .name = "Capture Source",
548  .info = tas_snd_capture_source_info,
549  .get = tas_snd_capture_source_get,
550  .put = tas_snd_capture_source_put,
551 };
552 
553 static int tas_snd_treble_info(struct snd_kcontrol *kcontrol,
554  struct snd_ctl_elem_info *uinfo)
555 {
557  uinfo->count = 1;
558  uinfo->value.integer.min = TAS3004_TREBLE_MIN;
559  uinfo->value.integer.max = TAS3004_TREBLE_MAX;
560  return 0;
561 }
562 
563 static int tas_snd_treble_get(struct snd_kcontrol *kcontrol,
564  struct snd_ctl_elem_value *ucontrol)
565 {
566  struct tas *tas = snd_kcontrol_chip(kcontrol);
567 
568  mutex_lock(&tas->mtx);
569  ucontrol->value.integer.value[0] = tas->treble;
570  mutex_unlock(&tas->mtx);
571  return 0;
572 }
573 
574 static int tas_snd_treble_put(struct snd_kcontrol *kcontrol,
575  struct snd_ctl_elem_value *ucontrol)
576 {
577  struct tas *tas = snd_kcontrol_chip(kcontrol);
578 
579  if (ucontrol->value.integer.value[0] < TAS3004_TREBLE_MIN ||
580  ucontrol->value.integer.value[0] > TAS3004_TREBLE_MAX)
581  return -EINVAL;
582  mutex_lock(&tas->mtx);
583  if (tas->treble == ucontrol->value.integer.value[0]) {
584  mutex_unlock(&tas->mtx);
585  return 0;
586  }
587 
588  tas->treble = ucontrol->value.integer.value[0];
589  if (tas->hw_enabled)
590  tas_set_treble(tas);
591  mutex_unlock(&tas->mtx);
592  return 1;
593 }
594 
595 static struct snd_kcontrol_new treble_control = {
597  .name = "Treble",
599  .info = tas_snd_treble_info,
600  .get = tas_snd_treble_get,
601  .put = tas_snd_treble_put,
602 };
603 
604 static int tas_snd_bass_info(struct snd_kcontrol *kcontrol,
605  struct snd_ctl_elem_info *uinfo)
606 {
608  uinfo->count = 1;
609  uinfo->value.integer.min = TAS3004_BASS_MIN;
610  uinfo->value.integer.max = TAS3004_BASS_MAX;
611  return 0;
612 }
613 
614 static int tas_snd_bass_get(struct snd_kcontrol *kcontrol,
615  struct snd_ctl_elem_value *ucontrol)
616 {
617  struct tas *tas = snd_kcontrol_chip(kcontrol);
618 
619  mutex_lock(&tas->mtx);
620  ucontrol->value.integer.value[0] = tas->bass;
621  mutex_unlock(&tas->mtx);
622  return 0;
623 }
624 
625 static int tas_snd_bass_put(struct snd_kcontrol *kcontrol,
626  struct snd_ctl_elem_value *ucontrol)
627 {
628  struct tas *tas = snd_kcontrol_chip(kcontrol);
629 
630  if (ucontrol->value.integer.value[0] < TAS3004_BASS_MIN ||
631  ucontrol->value.integer.value[0] > TAS3004_BASS_MAX)
632  return -EINVAL;
633  mutex_lock(&tas->mtx);
634  if (tas->bass == ucontrol->value.integer.value[0]) {
635  mutex_unlock(&tas->mtx);
636  return 0;
637  }
638 
639  tas->bass = ucontrol->value.integer.value[0];
640  if (tas->hw_enabled)
641  tas_set_bass(tas);
642  mutex_unlock(&tas->mtx);
643  return 1;
644 }
645 
646 static struct snd_kcontrol_new bass_control = {
648  .name = "Bass",
650  .info = tas_snd_bass_info,
651  .get = tas_snd_bass_get,
652  .put = tas_snd_bass_put,
653 };
654 
655 static struct transfer_info tas_transfers[] = {
656  {
657  /* input */
660  .transfer_in = 1,
661  },
662  {
663  /* output */
666  .transfer_in = 0,
667  },
668  {}
669 };
670 
671 static int tas_usable(struct codec_info_item *cii,
672  struct transfer_info *ti,
673  struct transfer_info *out)
674 {
675  return 1;
676 }
677 
678 static int tas_reset_init(struct tas *tas)
679 {
680  u8 tmp;
681 
682  tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
683  msleep(5);
684  tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
685  msleep(5);
686  tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 1);
687  msleep(20);
688  tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
689  msleep(10);
690  tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
691 
693  if (tas_write_reg(tas, TAS_REG_MCS, 1, &tmp))
694  goto outerr;
695 
696  tas->acr |= TAS_ACR_ANALOG_PDOWN;
697  if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
698  goto outerr;
699 
700  tmp = 0;
701  if (tas_write_reg(tas, TAS_REG_MCS2, 1, &tmp))
702  goto outerr;
703 
704  tas3004_set_drc(tas);
705 
706  /* Set treble & bass to 0dB */
708  tas->bass = TAS3004_BASS_ZERO;
709  tas_set_treble(tas);
710  tas_set_bass(tas);
711 
712  tas->acr &= ~TAS_ACR_ANALOG_PDOWN;
713  if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
714  goto outerr;
715 
716  return 0;
717  outerr:
718  return -ENODEV;
719 }
720 
721 static int tas_switch_clock(struct codec_info_item *cii, enum clock_switch clock)
722 {
723  struct tas *tas = cii->codec_data;
724 
725  switch(clock) {
727  /* Clocks are going away, mute mute mute */
728  tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
729  tas->hw_enabled = 0;
730  break;
731  case CLOCK_SWITCH_SLAVE:
732  /* Clocks are back, re-init the codec */
733  mutex_lock(&tas->mtx);
734  tas_reset_init(tas);
735  tas_set_volume(tas);
736  tas_set_mixer(tas);
737  tas->hw_enabled = 1;
738  tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
739  mutex_unlock(&tas->mtx);
740  break;
741  default:
742  /* doesn't happen as of now */
743  return -EINVAL;
744  }
745  return 0;
746 }
747 
748 #ifdef CONFIG_PM
749 /* we are controlled via i2c and assume that is always up
750  * If that wasn't the case, we'd have to suspend once
751  * our i2c device is suspended, and then take note of that! */
752 static int tas_suspend(struct tas *tas)
753 {
754  mutex_lock(&tas->mtx);
755  tas->hw_enabled = 0;
756  tas->acr |= TAS_ACR_ANALOG_PDOWN;
757  tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
758  mutex_unlock(&tas->mtx);
759  return 0;
760 }
761 
762 static int tas_resume(struct tas *tas)
763 {
764  /* reset codec */
765  mutex_lock(&tas->mtx);
766  tas_reset_init(tas);
767  tas_set_volume(tas);
768  tas_set_mixer(tas);
769  tas->hw_enabled = 1;
770  mutex_unlock(&tas->mtx);
771  return 0;
772 }
773 
774 static int _tas_suspend(struct codec_info_item *cii, pm_message_t state)
775 {
776  return tas_suspend(cii->codec_data);
777 }
778 
779 static int _tas_resume(struct codec_info_item *cii)
780 {
781  return tas_resume(cii->codec_data);
782 }
783 #else /* CONFIG_PM */
784 #define _tas_suspend NULL
785 #define _tas_resume NULL
786 #endif /* CONFIG_PM */
787 
788 static struct codec_info tas_codec_info = {
789  .transfers = tas_transfers,
790  /* in theory, we can drive it at 512 too...
791  * but so far the framework doesn't allow
792  * for that and I don't see much point in it. */
793  .sysclock_factor = 256,
794  /* same here, could be 32 for just one 16 bit format */
795  .bus_factor = 64,
796  .owner = THIS_MODULE,
797  .usable = tas_usable,
798  .switch_clock = tas_switch_clock,
799  .suspend = _tas_suspend,
800  .resume = _tas_resume,
801 };
802 
803 static int tas_init_codec(struct aoa_codec *codec)
804 {
805  struct tas *tas = codec_to_tas(codec);
806  int err;
807 
808  if (!tas->codec.gpio || !tas->codec.gpio->methods) {
809  printk(KERN_ERR PFX "gpios not assigned!!\n");
810  return -EINVAL;
811  }
812 
813  mutex_lock(&tas->mtx);
814  if (tas_reset_init(tas)) {
815  printk(KERN_ERR PFX "tas failed to initialise\n");
816  mutex_unlock(&tas->mtx);
817  return -ENXIO;
818  }
819  tas->hw_enabled = 1;
820  mutex_unlock(&tas->mtx);
821 
822  if (tas->codec.soundbus_dev->attach_codec(tas->codec.soundbus_dev,
823  aoa_get_card(),
824  &tas_codec_info, tas)) {
825  printk(KERN_ERR PFX "error attaching tas to soundbus\n");
826  return -ENODEV;
827  }
828 
829  if (aoa_snd_device_new(SNDRV_DEV_LOWLEVEL, tas, &ops)) {
830  printk(KERN_ERR PFX "failed to create tas snd device!\n");
831  return -ENODEV;
832  }
833  err = aoa_snd_ctl_add(snd_ctl_new1(&volume_control, tas));
834  if (err)
835  goto error;
836 
837  err = aoa_snd_ctl_add(snd_ctl_new1(&mute_control, tas));
838  if (err)
839  goto error;
840 
841  err = aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control, tas));
842  if (err)
843  goto error;
844 
845  err = aoa_snd_ctl_add(snd_ctl_new1(&monitor_control, tas));
846  if (err)
847  goto error;
848 
849  err = aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control, tas));
850  if (err)
851  goto error;
852 
853  err = aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control, tas));
854  if (err)
855  goto error;
856 
857  err = aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control, tas));
858  if (err)
859  goto error;
860 
861  err = aoa_snd_ctl_add(snd_ctl_new1(&treble_control, tas));
862  if (err)
863  goto error;
864 
865  err = aoa_snd_ctl_add(snd_ctl_new1(&bass_control, tas));
866  if (err)
867  goto error;
868 
869  return 0;
870  error:
871  tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
873  return err;
874 }
875 
876 static void tas_exit_codec(struct aoa_codec *codec)
877 {
878  struct tas *tas = codec_to_tas(codec);
879 
880  if (!tas->codec.soundbus_dev)
881  return;
882  tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
883 }
884 
885 
886 static int tas_i2c_probe(struct i2c_client *client,
887  const struct i2c_device_id *id)
888 {
889  struct device_node *node = client->dev.of_node;
890  struct tas *tas;
891 
892  tas = kzalloc(sizeof(struct tas), GFP_KERNEL);
893 
894  if (!tas)
895  return -ENOMEM;
896 
897  mutex_init(&tas->mtx);
898  tas->i2c = client;
899  i2c_set_clientdata(client, tas);
900 
901  /* seems that half is a saner default */
902  tas->drc_range = TAS3004_DRC_MAX / 2;
903 
904  strlcpy(tas->codec.name, "tas", MAX_CODEC_NAME_LEN);
905  tas->codec.owner = THIS_MODULE;
906  tas->codec.init = tas_init_codec;
907  tas->codec.exit = tas_exit_codec;
908  tas->codec.node = of_node_get(node);
909 
910  if (aoa_codec_register(&tas->codec)) {
911  goto fail;
912  }
914  "snd-aoa-codec-tas: tas found, addr 0x%02x on %s\n",
915  (unsigned int)client->addr, node->full_name);
916  return 0;
917  fail:
918  mutex_destroy(&tas->mtx);
919  kfree(tas);
920  return -EINVAL;
921 }
922 
923 static int tas_i2c_remove(struct i2c_client *client)
924 {
925  struct tas *tas = i2c_get_clientdata(client);
926  u8 tmp = TAS_ACR_ANALOG_PDOWN;
927 
929  of_node_put(tas->codec.node);
930 
931  /* power down codec chip */
932  tas_write_reg(tas, TAS_REG_ACR, 1, &tmp);
933 
934  mutex_destroy(&tas->mtx);
935  kfree(tas);
936  return 0;
937 }
938 
939 static const struct i2c_device_id tas_i2c_id[] = {
940  { "MAC,tas3004", 0 },
941  { }
942 };
943 MODULE_DEVICE_TABLE(i2c,tas_i2c_id);
944 
945 static struct i2c_driver tas_driver = {
946  .driver = {
947  .name = "aoa_codec_tas",
948  .owner = THIS_MODULE,
949  },
950  .probe = tas_i2c_probe,
951  .remove = tas_i2c_remove,
952  .id_table = tas_i2c_id,
953 };
954 
955 module_i2c_driver(tas_driver);