Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tcp_cubic.c
Go to the documentation of this file.
1 /*
2  * TCP CUBIC: Binary Increase Congestion control for TCP v2.3
3  * Home page:
4  * http://netsrv.csc.ncsu.edu/twiki/bin/view/Main/BIC
5  * This is from the implementation of CUBIC TCP in
6  * Sangtae Ha, Injong Rhee and Lisong Xu,
7  * "CUBIC: A New TCP-Friendly High-Speed TCP Variant"
8  * in ACM SIGOPS Operating System Review, July 2008.
9  * Available from:
10  * http://netsrv.csc.ncsu.edu/export/cubic_a_new_tcp_2008.pdf
11  *
12  * CUBIC integrates a new slow start algorithm, called HyStart.
13  * The details of HyStart are presented in
14  * Sangtae Ha and Injong Rhee,
15  * "Taming the Elephants: New TCP Slow Start", NCSU TechReport 2008.
16  * Available from:
17  * http://netsrv.csc.ncsu.edu/export/hystart_techreport_2008.pdf
18  *
19  * All testing results are available from:
20  * http://netsrv.csc.ncsu.edu/wiki/index.php/TCP_Testing
21  *
22  * Unless CUBIC is enabled and congestion window is large
23  * this behaves the same as the original Reno.
24  */
25 
26 #include <linux/mm.h>
27 #include <linux/module.h>
28 #include <linux/math64.h>
29 #include <net/tcp.h>
30 
31 #define BICTCP_BETA_SCALE 1024 /* Scale factor beta calculation
32  * max_cwnd = snd_cwnd * beta
33  */
34 #define BICTCP_HZ 10 /* BIC HZ 2^10 = 1024 */
35 
36 /* Two methods of hybrid slow start */
37 #define HYSTART_ACK_TRAIN 0x1
38 #define HYSTART_DELAY 0x2
39 
40 /* Number of delay samples for detecting the increase of delay */
41 #define HYSTART_MIN_SAMPLES 8
42 #define HYSTART_DELAY_MIN (4U<<3)
43 #define HYSTART_DELAY_MAX (16U<<3)
44 #define HYSTART_DELAY_THRESH(x) clamp(x, HYSTART_DELAY_MIN, HYSTART_DELAY_MAX)
45 
46 static int fast_convergence __read_mostly = 1;
47 static int beta __read_mostly = 717; /* = 717/1024 (BICTCP_BETA_SCALE) */
48 static int initial_ssthresh __read_mostly;
49 static int bic_scale __read_mostly = 41;
50 static int tcp_friendliness __read_mostly = 1;
51 
52 static int hystart __read_mostly = 1;
53 static int hystart_detect __read_mostly = HYSTART_ACK_TRAIN | HYSTART_DELAY;
54 static int hystart_low_window __read_mostly = 16;
55 static int hystart_ack_delta __read_mostly = 2;
56 
57 static u32 cube_rtt_scale __read_mostly;
58 static u32 beta_scale __read_mostly;
59 static u64 cube_factor __read_mostly;
60 
61 /* Note parameters that are used for precomputing scale factors are read-only */
62 module_param(fast_convergence, int, 0644);
63 MODULE_PARM_DESC(fast_convergence, "turn on/off fast convergence");
64 module_param(beta, int, 0644);
65 MODULE_PARM_DESC(beta, "beta for multiplicative increase");
66 module_param(initial_ssthresh, int, 0644);
67 MODULE_PARM_DESC(initial_ssthresh, "initial value of slow start threshold");
68 module_param(bic_scale, int, 0444);
69 MODULE_PARM_DESC(bic_scale, "scale (scaled by 1024) value for bic function (bic_scale/1024)");
70 module_param(tcp_friendliness, int, 0644);
71 MODULE_PARM_DESC(tcp_friendliness, "turn on/off tcp friendliness");
72 module_param(hystart, int, 0644);
73 MODULE_PARM_DESC(hystart, "turn on/off hybrid slow start algorithm");
74 module_param(hystart_detect, int, 0644);
75 MODULE_PARM_DESC(hystart_detect, "hyrbrid slow start detection mechanisms"
76  " 1: packet-train 2: delay 3: both packet-train and delay");
77 module_param(hystart_low_window, int, 0644);
78 MODULE_PARM_DESC(hystart_low_window, "lower bound cwnd for hybrid slow start");
79 module_param(hystart_ack_delta, int, 0644);
80 MODULE_PARM_DESC(hystart_ack_delta, "spacing between ack's indicating train (msecs)");
81 
82 /* BIC TCP Parameters */
83 struct bictcp {
84  u32 cnt; /* increase cwnd by 1 after ACKs */
85  u32 last_max_cwnd; /* last maximum snd_cwnd */
86  u32 loss_cwnd; /* congestion window at last loss */
87  u32 last_cwnd; /* the last snd_cwnd */
88  u32 last_time; /* time when updated last_cwnd */
89  u32 bic_origin_point;/* origin point of bic function */
90  u32 bic_K; /* time to origin point from the beginning of the current epoch */
91  u32 delay_min; /* min delay (msec << 3) */
92  u32 epoch_start; /* beginning of an epoch */
93  u32 ack_cnt; /* number of acks */
94  u32 tcp_cwnd; /* estimated tcp cwnd */
95 #define ACK_RATIO_SHIFT 4
96 #define ACK_RATIO_LIMIT (32u << ACK_RATIO_SHIFT)
97  u16 delayed_ack; /* estimate the ratio of Packets/ACKs << 4 */
98  u8 sample_cnt; /* number of samples to decide curr_rtt */
99  u8 found; /* the exit point is found? */
100  u32 round_start; /* beginning of each round */
101  u32 end_seq; /* end_seq of the round */
102  u32 last_ack; /* last time when the ACK spacing is close */
103  u32 curr_rtt; /* the minimum rtt of current round */
104 };
105 
106 static inline void bictcp_reset(struct bictcp *ca)
107 {
108  ca->cnt = 0;
109  ca->last_max_cwnd = 0;
110  ca->last_cwnd = 0;
111  ca->last_time = 0;
112  ca->bic_origin_point = 0;
113  ca->bic_K = 0;
114  ca->delay_min = 0;
115  ca->epoch_start = 0;
116  ca->delayed_ack = 2 << ACK_RATIO_SHIFT;
117  ca->ack_cnt = 0;
118  ca->tcp_cwnd = 0;
119  ca->found = 0;
120 }
121 
122 static inline u32 bictcp_clock(void)
123 {
124 #if HZ < 1000
125  return ktime_to_ms(ktime_get_real());
126 #else
127  return jiffies_to_msecs(jiffies);
128 #endif
129 }
130 
131 static inline void bictcp_hystart_reset(struct sock *sk)
132 {
133  struct tcp_sock *tp = tcp_sk(sk);
134  struct bictcp *ca = inet_csk_ca(sk);
135 
136  ca->round_start = ca->last_ack = bictcp_clock();
137  ca->end_seq = tp->snd_nxt;
138  ca->curr_rtt = 0;
139  ca->sample_cnt = 0;
140 }
141 
142 static void bictcp_init(struct sock *sk)
143 {
144  struct bictcp *ca = inet_csk_ca(sk);
145 
146  bictcp_reset(ca);
147  ca->loss_cwnd = 0;
148 
149  if (hystart)
150  bictcp_hystart_reset(sk);
151 
152  if (!hystart && initial_ssthresh)
153  tcp_sk(sk)->snd_ssthresh = initial_ssthresh;
154 }
155 
156 /* calculate the cubic root of x using a table lookup followed by one
157  * Newton-Raphson iteration.
158  * Avg err ~= 0.195%
159  */
160 static u32 cubic_root(u64 a)
161 {
162  u32 x, b, shift;
163  /*
164  * cbrt(x) MSB values for x MSB values in [0..63].
165  * Precomputed then refined by hand - Willy Tarreau
166  *
167  * For x in [0..63],
168  * v = cbrt(x << 18) - 1
169  * cbrt(x) = (v[x] + 10) >> 6
170  */
171  static const u8 v[] = {
172  /* 0x00 */ 0, 54, 54, 54, 118, 118, 118, 118,
173  /* 0x08 */ 123, 129, 134, 138, 143, 147, 151, 156,
174  /* 0x10 */ 157, 161, 164, 168, 170, 173, 176, 179,
175  /* 0x18 */ 181, 185, 187, 190, 192, 194, 197, 199,
176  /* 0x20 */ 200, 202, 204, 206, 209, 211, 213, 215,
177  /* 0x28 */ 217, 219, 221, 222, 224, 225, 227, 229,
178  /* 0x30 */ 231, 232, 234, 236, 237, 239, 240, 242,
179  /* 0x38 */ 244, 245, 246, 248, 250, 251, 252, 254,
180  };
181 
182  b = fls64(a);
183  if (b < 7) {
184  /* a in [0..63] */
185  return ((u32)v[(u32)a] + 35) >> 6;
186  }
187 
188  b = ((b * 84) >> 8) - 1;
189  shift = (a >> (b * 3));
190 
191  x = ((u32)(((u32)v[shift] + 10) << b)) >> 6;
192 
193  /*
194  * Newton-Raphson iteration
195  * 2
196  * x = ( 2 * x + a / x ) / 3
197  * k+1 k k
198  */
199  x = (2 * x + (u32)div64_u64(a, (u64)x * (u64)(x - 1)));
200  x = ((x * 341) >> 10);
201  return x;
202 }
203 
204 /*
205  * Compute congestion window to use.
206  */
207 static inline void bictcp_update(struct bictcp *ca, u32 cwnd)
208 {
209  u64 offs;
210  u32 delta, t, bic_target, max_cnt;
211 
212  ca->ack_cnt++; /* count the number of ACKs */
213 
214  if (ca->last_cwnd == cwnd &&
215  (s32)(tcp_time_stamp - ca->last_time) <= HZ / 32)
216  return;
217 
218  ca->last_cwnd = cwnd;
219  ca->last_time = tcp_time_stamp;
220 
221  if (ca->epoch_start == 0) {
222  ca->epoch_start = tcp_time_stamp; /* record the beginning of an epoch */
223  ca->ack_cnt = 1; /* start counting */
224  ca->tcp_cwnd = cwnd; /* syn with cubic */
225 
226  if (ca->last_max_cwnd <= cwnd) {
227  ca->bic_K = 0;
228  ca->bic_origin_point = cwnd;
229  } else {
230  /* Compute new K based on
231  * (wmax-cwnd) * (srtt>>3 / HZ) / c * 2^(3*bictcp_HZ)
232  */
233  ca->bic_K = cubic_root(cube_factor
234  * (ca->last_max_cwnd - cwnd));
235  ca->bic_origin_point = ca->last_max_cwnd;
236  }
237  }
238 
239  /* cubic function - calc*/
240  /* calculate c * time^3 / rtt,
241  * while considering overflow in calculation of time^3
242  * (so time^3 is done by using 64 bit)
243  * and without the support of division of 64bit numbers
244  * (so all divisions are done by using 32 bit)
245  * also NOTE the unit of those veriables
246  * time = (t - K) / 2^bictcp_HZ
247  * c = bic_scale >> 10
248  * rtt = (srtt >> 3) / HZ
249  * !!! The following code does not have overflow problems,
250  * if the cwnd < 1 million packets !!!
251  */
252 
253  /* change the unit from HZ to bictcp_HZ */
254  t = ((tcp_time_stamp + msecs_to_jiffies(ca->delay_min>>3)
255  - ca->epoch_start) << BICTCP_HZ) / HZ;
256 
257  if (t < ca->bic_K) /* t - K */
258  offs = ca->bic_K - t;
259  else
260  offs = t - ca->bic_K;
261 
262  /* c/rtt * (t-K)^3 */
263  delta = (cube_rtt_scale * offs * offs * offs) >> (10+3*BICTCP_HZ);
264  if (t < ca->bic_K) /* below origin*/
265  bic_target = ca->bic_origin_point - delta;
266  else /* above origin*/
267  bic_target = ca->bic_origin_point + delta;
268 
269  /* cubic function - calc bictcp_cnt*/
270  if (bic_target > cwnd) {
271  ca->cnt = cwnd / (bic_target - cwnd);
272  } else {
273  ca->cnt = 100 * cwnd; /* very small increment*/
274  }
275 
276  /*
277  * The initial growth of cubic function may be too conservative
278  * when the available bandwidth is still unknown.
279  */
280  if (ca->last_max_cwnd == 0 && ca->cnt > 20)
281  ca->cnt = 20; /* increase cwnd 5% per RTT */
282 
283  /* TCP Friendly */
284  if (tcp_friendliness) {
285  u32 scale = beta_scale;
286  delta = (cwnd * scale) >> 3;
287  while (ca->ack_cnt > delta) { /* update tcp cwnd */
288  ca->ack_cnt -= delta;
289  ca->tcp_cwnd++;
290  }
291 
292  if (ca->tcp_cwnd > cwnd){ /* if bic is slower than tcp */
293  delta = ca->tcp_cwnd - cwnd;
294  max_cnt = cwnd / delta;
295  if (ca->cnt > max_cnt)
296  ca->cnt = max_cnt;
297  }
298  }
299 
300  ca->cnt = (ca->cnt << ACK_RATIO_SHIFT) / ca->delayed_ack;
301  if (ca->cnt == 0) /* cannot be zero */
302  ca->cnt = 1;
303 }
304 
305 static void bictcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
306 {
307  struct tcp_sock *tp = tcp_sk(sk);
308  struct bictcp *ca = inet_csk_ca(sk);
309 
310  if (!tcp_is_cwnd_limited(sk, in_flight))
311  return;
312 
313  if (tp->snd_cwnd <= tp->snd_ssthresh) {
314  if (hystart && after(ack, ca->end_seq))
315  bictcp_hystart_reset(sk);
316  tcp_slow_start(tp);
317  } else {
318  bictcp_update(ca, tp->snd_cwnd);
319  tcp_cong_avoid_ai(tp, ca->cnt);
320  }
321 
322 }
323 
324 static u32 bictcp_recalc_ssthresh(struct sock *sk)
325 {
326  const struct tcp_sock *tp = tcp_sk(sk);
327  struct bictcp *ca = inet_csk_ca(sk);
328 
329  ca->epoch_start = 0; /* end of epoch */
330 
331  /* Wmax and fast convergence */
332  if (tp->snd_cwnd < ca->last_max_cwnd && fast_convergence)
333  ca->last_max_cwnd = (tp->snd_cwnd * (BICTCP_BETA_SCALE + beta))
334  / (2 * BICTCP_BETA_SCALE);
335  else
336  ca->last_max_cwnd = tp->snd_cwnd;
337 
338  ca->loss_cwnd = tp->snd_cwnd;
339 
340  return max((tp->snd_cwnd * beta) / BICTCP_BETA_SCALE, 2U);
341 }
342 
343 static u32 bictcp_undo_cwnd(struct sock *sk)
344 {
345  struct bictcp *ca = inet_csk_ca(sk);
346 
347  return max(tcp_sk(sk)->snd_cwnd, ca->loss_cwnd);
348 }
349 
350 static void bictcp_state(struct sock *sk, u8 new_state)
351 {
352  if (new_state == TCP_CA_Loss) {
353  bictcp_reset(inet_csk_ca(sk));
354  bictcp_hystart_reset(sk);
355  }
356 }
357 
358 static void hystart_update(struct sock *sk, u32 delay)
359 {
360  struct tcp_sock *tp = tcp_sk(sk);
361  struct bictcp *ca = inet_csk_ca(sk);
362 
363  if (!(ca->found & hystart_detect)) {
364  u32 now = bictcp_clock();
365 
366  /* first detection parameter - ack-train detection */
367  if ((s32)(now - ca->last_ack) <= hystart_ack_delta) {
368  ca->last_ack = now;
369  if ((s32)(now - ca->round_start) > ca->delay_min >> 4)
370  ca->found |= HYSTART_ACK_TRAIN;
371  }
372 
373  /* obtain the minimum delay of more than sampling packets */
374  if (ca->sample_cnt < HYSTART_MIN_SAMPLES) {
375  if (ca->curr_rtt == 0 || ca->curr_rtt > delay)
376  ca->curr_rtt = delay;
377 
378  ca->sample_cnt++;
379  } else {
380  if (ca->curr_rtt > ca->delay_min +
382  ca->found |= HYSTART_DELAY;
383  }
384  /*
385  * Either one of two conditions are met,
386  * we exit from slow start immediately.
387  */
388  if (ca->found & hystart_detect)
389  tp->snd_ssthresh = tp->snd_cwnd;
390  }
391 }
392 
393 /* Track delayed acknowledgment ratio using sliding window
394  * ratio = (15*ratio + sample) / 16
395  */
396 static void bictcp_acked(struct sock *sk, u32 cnt, s32 rtt_us)
397 {
398  const struct inet_connection_sock *icsk = inet_csk(sk);
399  const struct tcp_sock *tp = tcp_sk(sk);
400  struct bictcp *ca = inet_csk_ca(sk);
401  u32 delay;
402 
403  if (icsk->icsk_ca_state == TCP_CA_Open) {
404  u32 ratio = ca->delayed_ack;
405 
406  ratio -= ca->delayed_ack >> ACK_RATIO_SHIFT;
407  ratio += cnt;
408 
409  ca->delayed_ack = min(ratio, ACK_RATIO_LIMIT);
410  }
411 
412  /* Some calls are for duplicates without timetamps */
413  if (rtt_us < 0)
414  return;
415 
416  /* Discard delay samples right after fast recovery */
417  if ((s32)(tcp_time_stamp - ca->epoch_start) < HZ)
418  return;
419 
420  delay = (rtt_us << 3) / USEC_PER_MSEC;
421  if (delay == 0)
422  delay = 1;
423 
424  /* first time call or link delay decreases */
425  if (ca->delay_min == 0 || ca->delay_min > delay)
426  ca->delay_min = delay;
427 
428  /* hystart triggers when cwnd is larger than some threshold */
429  if (hystart && tp->snd_cwnd <= tp->snd_ssthresh &&
430  tp->snd_cwnd >= hystart_low_window)
431  hystart_update(sk, delay);
432 }
433 
434 static struct tcp_congestion_ops cubictcp __read_mostly = {
435  .init = bictcp_init,
436  .ssthresh = bictcp_recalc_ssthresh,
437  .cong_avoid = bictcp_cong_avoid,
438  .set_state = bictcp_state,
439  .undo_cwnd = bictcp_undo_cwnd,
440  .pkts_acked = bictcp_acked,
441  .owner = THIS_MODULE,
442  .name = "cubic",
443 };
444 
445 static int __init cubictcp_register(void)
446 {
447  BUILD_BUG_ON(sizeof(struct bictcp) > ICSK_CA_PRIV_SIZE);
448 
449  /* Precompute a bunch of the scaling factors that are used per-packet
450  * based on SRTT of 100ms
451  */
452 
453  beta_scale = 8*(BICTCP_BETA_SCALE+beta)/ 3 / (BICTCP_BETA_SCALE - beta);
454 
455  cube_rtt_scale = (bic_scale * 10); /* 1024*c/rtt */
456 
457  /* calculate the "K" for (wmax-cwnd) = c/rtt * K^3
458  * so K = cubic_root( (wmax-cwnd)*rtt/c )
459  * the unit of K is bictcp_HZ=2^10, not HZ
460  *
461  * c = bic_scale >> 10
462  * rtt = 100ms
463  *
464  * the following code has been designed and tested for
465  * cwnd < 1 million packets
466  * RTT < 100 seconds
467  * HZ < 1,000,00 (corresponding to 10 nano-second)
468  */
469 
470  /* 1/c * 2^2*bictcp_HZ * srtt */
471  cube_factor = 1ull << (10+3*BICTCP_HZ); /* 2^40 */
472 
473  /* divide by bic_scale and by constant Srtt (100ms) */
474  do_div(cube_factor, bic_scale * 10);
475 
476  /* hystart needs ms clock resolution */
477  if (hystart && HZ < 1000)
478  cubictcp.flags |= TCP_CONG_RTT_STAMP;
479 
480  return tcp_register_congestion_control(&cubictcp);
481 }
482 
483 static void __exit cubictcp_unregister(void)
484 {
486 }
487 
488 module_init(cubictcp_register);
489 module_exit(cubictcp_unregister);
490 
491 MODULE_AUTHOR("Sangtae Ha, Stephen Hemminger");
492 MODULE_LICENSE("GPL");
493 MODULE_DESCRIPTION("CUBIC TCP");
494 MODULE_VERSION("2.3");