Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tcp_minisocks.c
Go to the documentation of this file.
1 /*
2  * INET An implementation of the TCP/IP protocol suite for the LINUX
3  * operating system. INET is implemented using the BSD Socket
4  * interface as the means of communication with the user level.
5  *
6  * Implementation of the Transmission Control Protocol(TCP).
7  *
8  * Authors: Ross Biro
9  * Fred N. van Kempen, <[email protected]>
10  * Mark Evans, <[email protected]>
11  * Corey Minyard <[email protected]>
12  * Florian La Roche, <[email protected]>
13  * Charles Hedrick, <[email protected]>
14  * Linus Torvalds, <[email protected]>
15  * Alan Cox, <[email protected]>
16  * Matthew Dillon, <[email protected]>
17  * Arnt Gulbrandsen, <[email protected]>
18  * Jorge Cwik, <[email protected]>
19  */
20 
21 #include <linux/mm.h>
22 #include <linux/module.h>
23 #include <linux/slab.h>
24 #include <linux/sysctl.h>
25 #include <linux/workqueue.h>
26 #include <net/tcp.h>
27 #include <net/inet_common.h>
28 #include <net/xfrm.h>
29 
31 EXPORT_SYMBOL(sysctl_tcp_syncookies);
32 
34 
36  .sysctl_max_tw_buckets = NR_FILE * 2,
38  .death_lock = __SPIN_LOCK_UNLOCKED(tcp_death_row.death_lock),
39  .hashinfo = &tcp_hashinfo,
40  .tw_timer = TIMER_INITIALIZER(inet_twdr_hangman, 0,
41  (unsigned long)&tcp_death_row),
42  .twkill_work = __WORK_INITIALIZER(tcp_death_row.twkill_work,
44 /* Short-time timewait calendar */
45 
46  .twcal_hand = -1,
47  .twcal_timer = TIMER_INITIALIZER(inet_twdr_twcal_tick, 0,
48  (unsigned long)&tcp_death_row),
49 };
50 EXPORT_SYMBOL_GPL(tcp_death_row);
51 
52 static bool tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win)
53 {
54  if (seq == s_win)
55  return true;
56  if (after(end_seq, s_win) && before(seq, e_win))
57  return true;
58  return seq == e_win && seq == end_seq;
59 }
60 
61 /*
62  * * Main purpose of TIME-WAIT state is to close connection gracefully,
63  * when one of ends sits in LAST-ACK or CLOSING retransmitting FIN
64  * (and, probably, tail of data) and one or more our ACKs are lost.
65  * * What is TIME-WAIT timeout? It is associated with maximal packet
66  * lifetime in the internet, which results in wrong conclusion, that
67  * it is set to catch "old duplicate segments" wandering out of their path.
68  * It is not quite correct. This timeout is calculated so that it exceeds
69  * maximal retransmission timeout enough to allow to lose one (or more)
70  * segments sent by peer and our ACKs. This time may be calculated from RTO.
71  * * When TIME-WAIT socket receives RST, it means that another end
72  * finally closed and we are allowed to kill TIME-WAIT too.
73  * * Second purpose of TIME-WAIT is catching old duplicate segments.
74  * Well, certainly it is pure paranoia, but if we load TIME-WAIT
75  * with this semantics, we MUST NOT kill TIME-WAIT state with RSTs.
76  * * If we invented some more clever way to catch duplicates
77  * (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs.
78  *
79  * The algorithm below is based on FORMAL INTERPRETATION of RFCs.
80  * When you compare it to RFCs, please, read section SEGMENT ARRIVES
81  * from the very beginning.
82  *
83  * NOTE. With recycling (and later with fin-wait-2) TW bucket
84  * is _not_ stateless. It means, that strictly speaking we must
85  * spinlock it. I do not want! Well, probability of misbehaviour
86  * is ridiculously low and, seems, we could use some mb() tricks
87  * to avoid misread sequence numbers, states etc. --ANK
88  *
89  * We don't need to initialize tmp_out.sack_ok as we don't use the results
90  */
91 enum tcp_tw_status
93  const struct tcphdr *th)
94 {
95  struct tcp_options_received tmp_opt;
96  const u8 *hash_location;
97  struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
98  bool paws_reject = false;
99 
100  tmp_opt.saw_tstamp = 0;
101  if (th->doff > (sizeof(*th) >> 2) && tcptw->tw_ts_recent_stamp) {
102  tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
103 
104  if (tmp_opt.saw_tstamp) {
105  tmp_opt.ts_recent = tcptw->tw_ts_recent;
106  tmp_opt.ts_recent_stamp = tcptw->tw_ts_recent_stamp;
107  paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
108  }
109  }
110 
111  if (tw->tw_substate == TCP_FIN_WAIT2) {
112  /* Just repeat all the checks of tcp_rcv_state_process() */
113 
114  /* Out of window, send ACK */
115  if (paws_reject ||
116  !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
117  tcptw->tw_rcv_nxt,
118  tcptw->tw_rcv_nxt + tcptw->tw_rcv_wnd))
119  return TCP_TW_ACK;
120 
121  if (th->rst)
122  goto kill;
123 
124  if (th->syn && !before(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt))
125  goto kill_with_rst;
126 
127  /* Dup ACK? */
128  if (!th->ack ||
129  !after(TCP_SKB_CB(skb)->end_seq, tcptw->tw_rcv_nxt) ||
130  TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) {
131  inet_twsk_put(tw);
132  return TCP_TW_SUCCESS;
133  }
134 
135  /* New data or FIN. If new data arrive after half-duplex close,
136  * reset.
137  */
138  if (!th->fin ||
139  TCP_SKB_CB(skb)->end_seq != tcptw->tw_rcv_nxt + 1) {
140 kill_with_rst:
141  inet_twsk_deschedule(tw, &tcp_death_row);
142  inet_twsk_put(tw);
143  return TCP_TW_RST;
144  }
145 
146  /* FIN arrived, enter true time-wait state. */
148  tcptw->tw_rcv_nxt = TCP_SKB_CB(skb)->end_seq;
149  if (tmp_opt.saw_tstamp) {
150  tcptw->tw_ts_recent_stamp = get_seconds();
151  tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
152  }
153 
154  if (tcp_death_row.sysctl_tw_recycle &&
155  tcptw->tw_ts_recent_stamp &&
157  inet_twsk_schedule(tw, &tcp_death_row, tw->tw_timeout,
159  else
160  inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
162  return TCP_TW_ACK;
163  }
164 
165  /*
166  * Now real TIME-WAIT state.
167  *
168  * RFC 1122:
169  * "When a connection is [...] on TIME-WAIT state [...]
170  * [a TCP] MAY accept a new SYN from the remote TCP to
171  * reopen the connection directly, if it:
172  *
173  * (1) assigns its initial sequence number for the new
174  * connection to be larger than the largest sequence
175  * number it used on the previous connection incarnation,
176  * and
177  *
178  * (2) returns to TIME-WAIT state if the SYN turns out
179  * to be an old duplicate".
180  */
181 
182  if (!paws_reject &&
183  (TCP_SKB_CB(skb)->seq == tcptw->tw_rcv_nxt &&
184  (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) {
185  /* In window segment, it may be only reset or bare ack. */
186 
187  if (th->rst) {
188  /* This is TIME_WAIT assassination, in two flavors.
189  * Oh well... nobody has a sufficient solution to this
190  * protocol bug yet.
191  */
192  if (sysctl_tcp_rfc1337 == 0) {
193 kill:
194  inet_twsk_deschedule(tw, &tcp_death_row);
195  inet_twsk_put(tw);
196  return TCP_TW_SUCCESS;
197  }
198  }
199  inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
201 
202  if (tmp_opt.saw_tstamp) {
203  tcptw->tw_ts_recent = tmp_opt.rcv_tsval;
204  tcptw->tw_ts_recent_stamp = get_seconds();
205  }
206 
207  inet_twsk_put(tw);
208  return TCP_TW_SUCCESS;
209  }
210 
211  /* Out of window segment.
212 
213  All the segments are ACKed immediately.
214 
215  The only exception is new SYN. We accept it, if it is
216  not old duplicate and we are not in danger to be killed
217  by delayed old duplicates. RFC check is that it has
218  newer sequence number works at rates <40Mbit/sec.
219  However, if paws works, it is reliable AND even more,
220  we even may relax silly seq space cutoff.
221 
222  RED-PEN: we violate main RFC requirement, if this SYN will appear
223  old duplicate (i.e. we receive RST in reply to SYN-ACK),
224  we must return socket to time-wait state. It is not good,
225  but not fatal yet.
226  */
227 
228  if (th->syn && !th->rst && !th->ack && !paws_reject &&
229  (after(TCP_SKB_CB(skb)->seq, tcptw->tw_rcv_nxt) ||
230  (tmp_opt.saw_tstamp &&
231  (s32)(tcptw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) {
232  u32 isn = tcptw->tw_snd_nxt + 65535 + 2;
233  if (isn == 0)
234  isn++;
235  TCP_SKB_CB(skb)->when = isn;
236  return TCP_TW_SYN;
237  }
238 
239  if (paws_reject)
241 
242  if (!th->rst) {
243  /* In this case we must reset the TIMEWAIT timer.
244  *
245  * If it is ACKless SYN it may be both old duplicate
246  * and new good SYN with random sequence number <rcv_nxt.
247  * Do not reschedule in the last case.
248  */
249  if (paws_reject || th->ack)
250  inet_twsk_schedule(tw, &tcp_death_row, TCP_TIMEWAIT_LEN,
252 
253  /* Send ACK. Note, we do not put the bucket,
254  * it will be released by caller.
255  */
256  return TCP_TW_ACK;
257  }
258  inet_twsk_put(tw);
259  return TCP_TW_SUCCESS;
260 }
262 
263 /*
264  * Move a socket to time-wait or dead fin-wait-2 state.
265  */
266 void tcp_time_wait(struct sock *sk, int state, int timeo)
267 {
268  struct inet_timewait_sock *tw = NULL;
269  const struct inet_connection_sock *icsk = inet_csk(sk);
270  const struct tcp_sock *tp = tcp_sk(sk);
271  bool recycle_ok = false;
272 
273  if (tcp_death_row.sysctl_tw_recycle && tp->rx_opt.ts_recent_stamp)
274  recycle_ok = tcp_remember_stamp(sk);
275 
276  if (tcp_death_row.tw_count < tcp_death_row.sysctl_max_tw_buckets)
277  tw = inet_twsk_alloc(sk, state);
278 
279  if (tw != NULL) {
280  struct tcp_timewait_sock *tcptw = tcp_twsk((struct sock *)tw);
281  const int rto = (icsk->icsk_rto << 2) - (icsk->icsk_rto >> 1);
282  struct inet_sock *inet = inet_sk(sk);
283 
284  tw->tw_transparent = inet->transparent;
285  tw->tw_rcv_wscale = tp->rx_opt.rcv_wscale;
286  tcptw->tw_rcv_nxt = tp->rcv_nxt;
287  tcptw->tw_snd_nxt = tp->snd_nxt;
288  tcptw->tw_rcv_wnd = tcp_receive_window(tp);
289  tcptw->tw_ts_recent = tp->rx_opt.ts_recent;
290  tcptw->tw_ts_recent_stamp = tp->rx_opt.ts_recent_stamp;
291 
292 #if IS_ENABLED(CONFIG_IPV6)
293  if (tw->tw_family == PF_INET6) {
294  struct ipv6_pinfo *np = inet6_sk(sk);
295  struct inet6_timewait_sock *tw6;
296 
297  tw->tw_ipv6_offset = inet6_tw_offset(sk->sk_prot);
298  tw6 = inet6_twsk((struct sock *)tw);
299  tw6->tw_v6_daddr = np->daddr;
300  tw6->tw_v6_rcv_saddr = np->rcv_saddr;
301  tw->tw_tclass = np->tclass;
302  tw->tw_ipv6only = np->ipv6only;
303  }
304 #endif
305 
306 #ifdef CONFIG_TCP_MD5SIG
307  /*
308  * The timewait bucket does not have the key DB from the
309  * sock structure. We just make a quick copy of the
310  * md5 key being used (if indeed we are using one)
311  * so the timewait ack generating code has the key.
312  */
313  do {
314  struct tcp_md5sig_key *key;
315  tcptw->tw_md5_key = NULL;
316  key = tp->af_specific->md5_lookup(sk, sk);
317  if (key != NULL) {
318  tcptw->tw_md5_key = kmemdup(key, sizeof(*key), GFP_ATOMIC);
319  if (tcptw->tw_md5_key && tcp_alloc_md5sig_pool(sk) == NULL)
320  BUG();
321  }
322  } while (0);
323 #endif
324 
325  /* Linkage updates. */
327 
328  /* Get the TIME_WAIT timeout firing. */
329  if (timeo < rto)
330  timeo = rto;
331 
332  if (recycle_ok) {
333  tw->tw_timeout = rto;
334  } else {
336  if (state == TCP_TIME_WAIT)
337  timeo = TCP_TIMEWAIT_LEN;
338  }
339 
340  inet_twsk_schedule(tw, &tcp_death_row, timeo,
342  inet_twsk_put(tw);
343  } else {
344  /* Sorry, if we're out of memory, just CLOSE this
345  * socket up. We've got bigger problems than
346  * non-graceful socket closings.
347  */
349  }
350 
351  tcp_update_metrics(sk);
352  tcp_done(sk);
353 }
354 
356 {
357 #ifdef CONFIG_TCP_MD5SIG
358  struct tcp_timewait_sock *twsk = tcp_twsk(sk);
359 
360  if (twsk->tw_md5_key) {
362  kfree_rcu(twsk->tw_md5_key, rcu);
363  }
364 #endif
365 }
367 
368 static inline void TCP_ECN_openreq_child(struct tcp_sock *tp,
369  struct request_sock *req)
370 {
371  tp->ecn_flags = inet_rsk(req)->ecn_ok ? TCP_ECN_OK : 0;
372 }
373 
374 /* This is not only more efficient than what we used to do, it eliminates
375  * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM
376  *
377  * Actually, we could lots of memory writes here. tp of listening
378  * socket contains all necessary default parameters.
379  */
380 struct sock *tcp_create_openreq_child(struct sock *sk, struct request_sock *req, struct sk_buff *skb)
381 {
382  struct sock *newsk = inet_csk_clone_lock(sk, req, GFP_ATOMIC);
383 
384  if (newsk != NULL) {
385  const struct inet_request_sock *ireq = inet_rsk(req);
386  struct tcp_request_sock *treq = tcp_rsk(req);
387  struct inet_connection_sock *newicsk = inet_csk(newsk);
388  struct tcp_sock *newtp = tcp_sk(newsk);
389  struct tcp_sock *oldtp = tcp_sk(sk);
390  struct tcp_cookie_values *oldcvp = oldtp->cookie_values;
391 
392  /* TCP Cookie Transactions require space for the cookie pair,
393  * as it differs for each connection. There is no need to
394  * copy any s_data_payload stored at the original socket.
395  * Failure will prevent resuming the connection.
396  *
397  * Presumed copied, in order of appearance:
398  * cookie_in_always, cookie_out_never
399  */
400  if (oldcvp != NULL) {
401  struct tcp_cookie_values *newcvp =
402  kzalloc(sizeof(*newtp->cookie_values),
403  GFP_ATOMIC);
404 
405  if (newcvp != NULL) {
406  kref_init(&newcvp->kref);
407  newcvp->cookie_desired =
408  oldcvp->cookie_desired;
409  newtp->cookie_values = newcvp;
410  } else {
411  /* Not Yet Implemented */
412  newtp->cookie_values = NULL;
413  }
414  }
415 
416  /* Now setup tcp_sock */
417  newtp->pred_flags = 0;
418 
419  newtp->rcv_wup = newtp->copied_seq =
420  newtp->rcv_nxt = treq->rcv_isn + 1;
421 
422  newtp->snd_sml = newtp->snd_una =
423  newtp->snd_nxt = newtp->snd_up =
424  treq->snt_isn + 1 + tcp_s_data_size(oldtp);
425 
426  tcp_prequeue_init(newtp);
427  INIT_LIST_HEAD(&newtp->tsq_node);
428 
429  tcp_init_wl(newtp, treq->rcv_isn);
430 
431  newtp->srtt = 0;
432  newtp->mdev = TCP_TIMEOUT_INIT;
433  newicsk->icsk_rto = TCP_TIMEOUT_INIT;
434 
435  newtp->packets_out = 0;
436  newtp->retrans_out = 0;
437  newtp->sacked_out = 0;
438  newtp->fackets_out = 0;
440  tcp_enable_early_retrans(newtp);
441 
442  /* So many TCP implementations out there (incorrectly) count the
443  * initial SYN frame in their delayed-ACK and congestion control
444  * algorithms that we must have the following bandaid to talk
445  * efficiently to them. -DaveM
446  */
447  newtp->snd_cwnd = TCP_INIT_CWND;
448  newtp->snd_cwnd_cnt = 0;
449  newtp->bytes_acked = 0;
450 
451  newtp->frto_counter = 0;
452  newtp->frto_highmark = 0;
453 
454  if (newicsk->icsk_ca_ops != &tcp_init_congestion_ops &&
455  !try_module_get(newicsk->icsk_ca_ops->owner))
457 
458  tcp_set_ca_state(newsk, TCP_CA_Open);
459  tcp_init_xmit_timers(newsk);
460  skb_queue_head_init(&newtp->out_of_order_queue);
461  newtp->write_seq = newtp->pushed_seq =
462  treq->snt_isn + 1 + tcp_s_data_size(oldtp);
463 
464  newtp->rx_opt.saw_tstamp = 0;
465 
466  newtp->rx_opt.dsack = 0;
467  newtp->rx_opt.num_sacks = 0;
468 
469  newtp->urg_data = 0;
470 
471  if (sock_flag(newsk, SOCK_KEEPOPEN))
473  keepalive_time_when(newtp));
474 
475  newtp->rx_opt.tstamp_ok = ireq->tstamp_ok;
476  if ((newtp->rx_opt.sack_ok = ireq->sack_ok) != 0) {
477  if (sysctl_tcp_fack)
478  tcp_enable_fack(newtp);
479  }
480  newtp->window_clamp = req->window_clamp;
481  newtp->rcv_ssthresh = req->rcv_wnd;
482  newtp->rcv_wnd = req->rcv_wnd;
483  newtp->rx_opt.wscale_ok = ireq->wscale_ok;
484  if (newtp->rx_opt.wscale_ok) {
485  newtp->rx_opt.snd_wscale = ireq->snd_wscale;
486  newtp->rx_opt.rcv_wscale = ireq->rcv_wscale;
487  } else {
488  newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0;
489  newtp->window_clamp = min(newtp->window_clamp, 65535U);
490  }
491  newtp->snd_wnd = (ntohs(tcp_hdr(skb)->window) <<
492  newtp->rx_opt.snd_wscale);
493  newtp->max_window = newtp->snd_wnd;
494 
495  if (newtp->rx_opt.tstamp_ok) {
496  newtp->rx_opt.ts_recent = req->ts_recent;
497  newtp->rx_opt.ts_recent_stamp = get_seconds();
498  newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
499  } else {
500  newtp->rx_opt.ts_recent_stamp = 0;
501  newtp->tcp_header_len = sizeof(struct tcphdr);
502  }
503 #ifdef CONFIG_TCP_MD5SIG
504  newtp->md5sig_info = NULL; /*XXX*/
505  if (newtp->af_specific->md5_lookup(sk, newsk))
507 #endif
508  if (skb->len >= TCP_MSS_DEFAULT + newtp->tcp_header_len)
509  newicsk->icsk_ack.last_seg_size = skb->len - newtp->tcp_header_len;
510  newtp->rx_opt.mss_clamp = req->mss;
511  TCP_ECN_openreq_child(newtp, req);
512  newtp->fastopen_rsk = NULL;
513  newtp->syn_data_acked = 0;
514 
515  TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_PASSIVEOPENS);
516  }
517  return newsk;
518 }
520 
521 /*
522  * Process an incoming packet for SYN_RECV sockets represented as a
523  * request_sock. Normally sk is the listener socket but for TFO it
524  * points to the child socket.
525  *
526  * XXX (TFO) - The current impl contains a special check for ack
527  * validation and inside tcp_v4_reqsk_send_ack(). Can we do better?
528  *
529  * We don't need to initialize tmp_opt.sack_ok as we don't use the results
530  */
531 
532 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
533  struct request_sock *req,
534  struct request_sock **prev,
535  bool fastopen)
536 {
537  struct tcp_options_received tmp_opt;
538  const u8 *hash_location;
539  struct sock *child;
540  const struct tcphdr *th = tcp_hdr(skb);
542  bool paws_reject = false;
543 
544  BUG_ON(fastopen == (sk->sk_state == TCP_LISTEN));
545 
546  tmp_opt.saw_tstamp = 0;
547  if (th->doff > (sizeof(struct tcphdr)>>2)) {
548  tcp_parse_options(skb, &tmp_opt, &hash_location, 0, NULL);
549 
550  if (tmp_opt.saw_tstamp) {
551  tmp_opt.ts_recent = req->ts_recent;
552  /* We do not store true stamp, but it is not required,
553  * it can be estimated (approximately)
554  * from another data.
555  */
556  tmp_opt.ts_recent_stamp = get_seconds() - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans);
557  paws_reject = tcp_paws_reject(&tmp_opt, th->rst);
558  }
559  }
560 
561  /* Check for pure retransmitted SYN. */
562  if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn &&
563  flg == TCP_FLAG_SYN &&
564  !paws_reject) {
565  /*
566  * RFC793 draws (Incorrectly! It was fixed in RFC1122)
567  * this case on figure 6 and figure 8, but formal
568  * protocol description says NOTHING.
569  * To be more exact, it says that we should send ACK,
570  * because this segment (at least, if it has no data)
571  * is out of window.
572  *
573  * CONCLUSION: RFC793 (even with RFC1122) DOES NOT
574  * describe SYN-RECV state. All the description
575  * is wrong, we cannot believe to it and should
576  * rely only on common sense and implementation
577  * experience.
578  *
579  * Enforce "SYN-ACK" according to figure 8, figure 6
580  * of RFC793, fixed by RFC1122.
581  *
582  * Note that even if there is new data in the SYN packet
583  * they will be thrown away too.
584  */
585  req->rsk_ops->rtx_syn_ack(sk, req, NULL);
586  return NULL;
587  }
588 
589  /* Further reproduces section "SEGMENT ARRIVES"
590  for state SYN-RECEIVED of RFC793.
591  It is broken, however, it does not work only
592  when SYNs are crossed.
593 
594  You would think that SYN crossing is impossible here, since
595  we should have a SYN_SENT socket (from connect()) on our end,
596  but this is not true if the crossed SYNs were sent to both
597  ends by a malicious third party. We must defend against this,
598  and to do that we first verify the ACK (as per RFC793, page
599  36) and reset if it is invalid. Is this a true full defense?
600  To convince ourselves, let us consider a way in which the ACK
601  test can still pass in this 'malicious crossed SYNs' case.
602  Malicious sender sends identical SYNs (and thus identical sequence
603  numbers) to both A and B:
604 
605  A: gets SYN, seq=7
606  B: gets SYN, seq=7
607 
608  By our good fortune, both A and B select the same initial
609  send sequence number of seven :-)
610 
611  A: sends SYN|ACK, seq=7, ack_seq=8
612  B: sends SYN|ACK, seq=7, ack_seq=8
613 
614  So we are now A eating this SYN|ACK, ACK test passes. So
615  does sequence test, SYN is truncated, and thus we consider
616  it a bare ACK.
617 
618  If icsk->icsk_accept_queue.rskq_defer_accept, we silently drop this
619  bare ACK. Otherwise, we create an established connection. Both
620  ends (listening sockets) accept the new incoming connection and try
621  to talk to each other. 8-)
622 
623  Note: This case is both harmless, and rare. Possibility is about the
624  same as us discovering intelligent life on another plant tomorrow.
625 
626  But generally, we should (RFC lies!) to accept ACK
627  from SYNACK both here and in tcp_rcv_state_process().
628  tcp_rcv_state_process() does not, hence, we do not too.
629 
630  Note that the case is absolutely generic:
631  we cannot optimize anything here without
632  violating protocol. All the checks must be made
633  before attempt to create socket.
634  */
635 
636  /* RFC793 page 36: "If the connection is in any non-synchronized state ...
637  * and the incoming segment acknowledges something not yet
638  * sent (the segment carries an unacceptable ACK) ...
639  * a reset is sent."
640  *
641  * Invalid ACK: reset will be sent by listening socket.
642  * Note that the ACK validity check for a Fast Open socket is done
643  * elsewhere and is checked directly against the child socket rather
644  * than req because user data may have been sent out.
645  */
646  if ((flg & TCP_FLAG_ACK) && !fastopen &&
647  (TCP_SKB_CB(skb)->ack_seq !=
648  tcp_rsk(req)->snt_isn + 1 + tcp_s_data_size(tcp_sk(sk))))
649  return sk;
650 
651  /* Also, it would be not so bad idea to check rcv_tsecr, which
652  * is essentially ACK extension and too early or too late values
653  * should cause reset in unsynchronized states.
654  */
655 
656  /* RFC793: "first check sequence number". */
657 
658  if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq,
659  tcp_rsk(req)->rcv_nxt, tcp_rsk(req)->rcv_nxt + req->rcv_wnd)) {
660  /* Out of window: send ACK and drop. */
661  if (!(flg & TCP_FLAG_RST))
662  req->rsk_ops->send_ack(sk, skb, req);
663  if (paws_reject)
665  return NULL;
666  }
667 
668  /* In sequence, PAWS is OK. */
669 
670  if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, tcp_rsk(req)->rcv_nxt))
671  req->ts_recent = tmp_opt.rcv_tsval;
672 
673  if (TCP_SKB_CB(skb)->seq == tcp_rsk(req)->rcv_isn) {
674  /* Truncate SYN, it is out of window starting
675  at tcp_rsk(req)->rcv_isn + 1. */
676  flg &= ~TCP_FLAG_SYN;
677  }
678 
679  /* RFC793: "second check the RST bit" and
680  * "fourth, check the SYN bit"
681  */
682  if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) {
683  TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
684  goto embryonic_reset;
685  }
686 
687  /* ACK sequence verified above, just make sure ACK is
688  * set. If ACK not set, just silently drop the packet.
689  *
690  * XXX (TFO) - if we ever allow "data after SYN", the
691  * following check needs to be removed.
692  */
693  if (!(flg & TCP_FLAG_ACK))
694  return NULL;
695 
696  /* Got ACK for our SYNACK, so update baseline for SYNACK RTT sample. */
697  if (tmp_opt.saw_tstamp && tmp_opt.rcv_tsecr)
698  tcp_rsk(req)->snt_synack = tmp_opt.rcv_tsecr;
699  else if (req->retrans) /* don't take RTT sample if retrans && ~TS */
700  tcp_rsk(req)->snt_synack = 0;
701 
702  /* For Fast Open no more processing is needed (sk is the
703  * child socket).
704  */
705  if (fastopen)
706  return sk;
707 
708  /* While TCP_DEFER_ACCEPT is active, drop bare ACK. */
709  if (req->retrans < inet_csk(sk)->icsk_accept_queue.rskq_defer_accept &&
710  TCP_SKB_CB(skb)->end_seq == tcp_rsk(req)->rcv_isn + 1) {
711  inet_rsk(req)->acked = 1;
713  return NULL;
714  }
715 
716  /* OK, ACK is valid, create big socket and
717  * feed this segment to it. It will repeat all
718  * the tests. THIS SEGMENT MUST MOVE SOCKET TO
719  * ESTABLISHED STATE. If it will be dropped after
720  * socket is created, wait for troubles.
721  */
722  child = inet_csk(sk)->icsk_af_ops->syn_recv_sock(sk, skb, req, NULL);
723  if (child == NULL)
724  goto listen_overflow;
725 
726  inet_csk_reqsk_queue_unlink(sk, req, prev);
727  inet_csk_reqsk_queue_removed(sk, req);
728 
729  inet_csk_reqsk_queue_add(sk, req, child);
730  return child;
731 
732 listen_overflow:
734  inet_rsk(req)->acked = 1;
735  return NULL;
736  }
737 
738 embryonic_reset:
739  if (!(flg & TCP_FLAG_RST)) {
740  /* Received a bad SYN pkt - for TFO We try not to reset
741  * the local connection unless it's really necessary to
742  * avoid becoming vulnerable to outside attack aiming at
743  * resetting legit local connections.
744  */
745  req->rsk_ops->send_reset(sk, skb);
746  } else if (fastopen) { /* received a valid RST pkt */
747  reqsk_fastopen_remove(sk, req, true);
748  tcp_reset(sk);
749  }
750  if (!fastopen) {
751  inet_csk_reqsk_queue_drop(sk, req, prev);
753  }
754  return NULL;
755 }
757 
758 /*
759  * Queue segment on the new socket if the new socket is active,
760  * otherwise we just shortcircuit this and continue with
761  * the new socket.
762  *
763  * For the vast majority of cases child->sk_state will be TCP_SYN_RECV
764  * when entering. But other states are possible due to a race condition
765  * where after __inet_lookup_established() fails but before the listener
766  * locked is obtained, other packets cause the same connection to
767  * be created.
768  */
769 
770 int tcp_child_process(struct sock *parent, struct sock *child,
771  struct sk_buff *skb)
772 {
773  int ret = 0;
774  int state = child->sk_state;
775 
776  if (!sock_owned_by_user(child)) {
777  ret = tcp_rcv_state_process(child, skb, tcp_hdr(skb),
778  skb->len);
779  /* Wakeup parent, send SIGIO */
780  if (state == TCP_SYN_RECV && child->sk_state != state)
781  parent->sk_data_ready(parent, 0);
782  } else {
783  /* Alas, it is possible again, because we do lookup
784  * in main socket hash table and lock on listening
785  * socket does not protect us more.
786  */
787  __sk_add_backlog(child, skb);
788  }
789 
790  bh_unlock_sock(child);
791  sock_put(child);
792  return ret;
793 }