Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tile-srom.c
Go to the documentation of this file.
1 /*
2  * Copyright 2011 Tilera Corporation. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation, version 2.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  * NON INFRINGEMENT. See the GNU General Public License for
12  * more details.
13  *
14  * SPI Flash ROM driver
15  *
16  * This source code is derived from code provided in "Linux Device
17  * Drivers, Third Edition", by Jonathan Corbet, Alessandro Rubini, and
18  * Greg Kroah-Hartman, published by O'Reilly Media, Inc.
19  */
20 
21 #include <linux/module.h>
22 #include <linux/moduleparam.h>
23 #include <linux/init.h>
24 #include <linux/kernel.h> /* printk() */
25 #include <linux/slab.h> /* kmalloc() */
26 #include <linux/fs.h> /* everything... */
27 #include <linux/errno.h> /* error codes */
28 #include <linux/types.h> /* size_t */
29 #include <linux/proc_fs.h>
30 #include <linux/fcntl.h> /* O_ACCMODE */
31 #include <linux/aio.h>
32 #include <linux/pagemap.h>
33 #include <linux/hugetlb.h>
34 #include <linux/uaccess.h>
35 #include <linux/platform_device.h>
36 #include <hv/hypervisor.h>
37 #include <linux/ioctl.h>
38 #include <linux/cdev.h>
39 #include <linux/delay.h>
40 #include <hv/drv_srom_intf.h>
41 
42 /*
43  * Size of our hypervisor I/O requests. We break up large transfers
44  * so that we don't spend large uninterrupted spans of time in the
45  * hypervisor. Erasing an SROM sector takes a significant fraction of
46  * a second, so if we allowed the user to, say, do one I/O to write the
47  * entire ROM, we'd get soft lockup timeouts, or worse.
48  */
49 #define SROM_CHUNK_SIZE ((size_t)4096)
50 
51 /*
52  * When hypervisor is busy (e.g. erasing), poll the status periodically.
53  */
54 
55 /*
56  * Interval to poll the state in msec
57  */
58 #define SROM_WAIT_TRY_INTERVAL 20
59 
60 /*
61  * Maximum times to poll the state
62  */
63 #define SROM_MAX_WAIT_TRY_TIMES 1000
64 
65 struct srom_dev {
66  int hv_devhdl; /* Handle for hypervisor device */
67  u32 total_size; /* Size of this device */
68  u32 sector_size; /* Size of a sector */
69  u32 page_size; /* Size of a page */
70  struct mutex lock; /* Allow only one accessor at a time */
71 };
72 
73 static int srom_major; /* Dynamic major by default */
74 module_param(srom_major, int, 0);
75 MODULE_AUTHOR("Tilera Corporation");
76 MODULE_LICENSE("GPL");
77 
78 static int srom_devs; /* Number of SROM partitions */
79 static struct cdev srom_cdev;
80 static struct class *srom_class;
81 static struct srom_dev *srom_devices;
82 
83 /*
84  * Handle calling the hypervisor and managing EAGAIN/EBUSY.
85  */
86 
87 static ssize_t _srom_read(int hv_devhdl, void *buf,
88  loff_t off, size_t count)
89 {
91  for (;;) {
92  retval = hv_dev_pread(hv_devhdl, 0, (HV_VirtAddr)buf,
93  count, off);
94  if (retval >= 0)
95  return retval;
96  if (retval == HV_EAGAIN)
97  continue;
98  if (retval == HV_EBUSY && --retries > 0) {
100  continue;
101  }
102  pr_err("_srom_read: error %d\n", retval);
103  return -EIO;
104  }
105 }
106 
107 static ssize_t _srom_write(int hv_devhdl, const void *buf,
108  loff_t off, size_t count)
109 {
110  int retval, retries = SROM_MAX_WAIT_TRY_TIMES;
111  for (;;) {
112  retval = hv_dev_pwrite(hv_devhdl, 0, (HV_VirtAddr)buf,
113  count, off);
114  if (retval >= 0)
115  return retval;
116  if (retval == HV_EAGAIN)
117  continue;
118  if (retval == HV_EBUSY && --retries > 0) {
120  continue;
121  }
122  pr_err("_srom_write: error %d\n", retval);
123  return -EIO;
124  }
125 }
126 
134 static int srom_open(struct inode *inode, struct file *filp)
135 {
136  filp->private_data = &srom_devices[iminor(inode)];
137  return 0;
138 }
139 
140 
148 static int srom_release(struct inode *inode, struct file *filp)
149 {
150  struct srom_dev *srom = filp->private_data;
151  char dummy;
152 
153  /* Make sure we've flushed anything written to the ROM. */
154  mutex_lock(&srom->lock);
155  if (srom->hv_devhdl >= 0)
156  _srom_write(srom->hv_devhdl, &dummy, SROM_FLUSH_OFF, 1);
157  mutex_unlock(&srom->lock);
158 
159  filp->private_data = NULL;
160 
161  return 0;
162 }
163 
164 
174 static ssize_t srom_read(struct file *filp, char __user *buf,
175  size_t count, loff_t *f_pos)
176 {
177  int retval = 0;
178  void *kernbuf;
179  struct srom_dev *srom = filp->private_data;
180 
181  kernbuf = kmalloc(SROM_CHUNK_SIZE, GFP_KERNEL);
182  if (!kernbuf)
183  return -ENOMEM;
184 
185  if (mutex_lock_interruptible(&srom->lock)) {
186  retval = -ERESTARTSYS;
187  kfree(kernbuf);
188  return retval;
189  }
190 
191  while (count) {
192  int hv_retval;
193  int bytes_this_pass = min(count, SROM_CHUNK_SIZE);
194 
195  hv_retval = _srom_read(srom->hv_devhdl, kernbuf,
196  *f_pos, bytes_this_pass);
197  if (hv_retval <= 0) {
198  if (retval == 0)
199  retval = hv_retval;
200  break;
201  }
202 
203  if (copy_to_user(buf, kernbuf, hv_retval) != 0) {
204  retval = -EFAULT;
205  break;
206  }
207 
208  retval += hv_retval;
209  *f_pos += hv_retval;
210  buf += hv_retval;
211  count -= hv_retval;
212  }
213 
214  mutex_unlock(&srom->lock);
215  kfree(kernbuf);
216 
217  return retval;
218 }
219 
229 static ssize_t srom_write(struct file *filp, const char __user *buf,
230  size_t count, loff_t *f_pos)
231 {
232  int retval = 0;
233  void *kernbuf;
234  struct srom_dev *srom = filp->private_data;
235 
236  kernbuf = kmalloc(SROM_CHUNK_SIZE, GFP_KERNEL);
237  if (!kernbuf)
238  return -ENOMEM;
239 
240  if (mutex_lock_interruptible(&srom->lock)) {
241  retval = -ERESTARTSYS;
242  kfree(kernbuf);
243  return retval;
244  }
245 
246  while (count) {
247  int hv_retval;
248  int bytes_this_pass = min(count, SROM_CHUNK_SIZE);
249 
250  if (copy_from_user(kernbuf, buf, bytes_this_pass) != 0) {
251  retval = -EFAULT;
252  break;
253  }
254 
255  hv_retval = _srom_write(srom->hv_devhdl, kernbuf,
256  *f_pos, bytes_this_pass);
257  if (hv_retval <= 0) {
258  if (retval == 0)
259  retval = hv_retval;
260  break;
261  }
262 
263  retval += hv_retval;
264  *f_pos += hv_retval;
265  buf += hv_retval;
266  count -= hv_retval;
267  }
268 
269  mutex_unlock(&srom->lock);
270  kfree(kernbuf);
271 
272  return retval;
273 }
274 
275 /* Provide our own implementation so we can use srom->total_size. */
276 loff_t srom_llseek(struct file *filp, loff_t offset, int origin)
277 {
278  struct srom_dev *srom = filp->private_data;
279 
280  if (mutex_lock_interruptible(&srom->lock))
281  return -ERESTARTSYS;
282 
283  switch (origin) {
284  case SEEK_END:
285  offset += srom->total_size;
286  break;
287  case SEEK_CUR:
288  offset += filp->f_pos;
289  break;
290  }
291 
293  offset = -EINVAL;
294  } else {
295  filp->f_pos = offset;
296  filp->f_version = 0;
297  }
298 
299  mutex_unlock(&srom->lock);
300 
301  return offset;
302 }
303 
304 static ssize_t total_show(struct device *dev,
305  struct device_attribute *attr, char *buf)
306 {
307  struct srom_dev *srom = dev_get_drvdata(dev);
308  return sprintf(buf, "%u\n", srom->total_size);
309 }
310 
311 static ssize_t sector_show(struct device *dev,
312  struct device_attribute *attr, char *buf)
313 {
314  struct srom_dev *srom = dev_get_drvdata(dev);
315  return sprintf(buf, "%u\n", srom->sector_size);
316 }
317 
318 static ssize_t page_show(struct device *dev,
319  struct device_attribute *attr, char *buf)
320 {
321  struct srom_dev *srom = dev_get_drvdata(dev);
322  return sprintf(buf, "%u\n", srom->page_size);
323 }
324 
325 static struct device_attribute srom_dev_attrs[] = {
326  __ATTR(total_size, S_IRUGO, total_show, NULL),
327  __ATTR(sector_size, S_IRUGO, sector_show, NULL),
328  __ATTR(page_size, S_IRUGO, page_show, NULL),
330 };
331 
332 static char *srom_devnode(struct device *dev, umode_t *mode)
333 {
334  *mode = S_IRUGO | S_IWUSR;
335  return kasprintf(GFP_KERNEL, "srom/%s", dev_name(dev));
336 }
337 
338 /*
339  * The fops
340  */
341 static const struct file_operations srom_fops = {
342  .owner = THIS_MODULE,
343  .llseek = srom_llseek,
344  .read = srom_read,
345  .write = srom_write,
346  .open = srom_open,
347  .release = srom_release,
348 };
349 
355 static int srom_setup_minor(struct srom_dev *srom, int index)
356 {
357  struct device *dev;
358  int devhdl = srom->hv_devhdl;
359 
360  mutex_init(&srom->lock);
361 
362  if (_srom_read(devhdl, &srom->total_size,
363  SROM_TOTAL_SIZE_OFF, sizeof(srom->total_size)) < 0)
364  return -EIO;
365  if (_srom_read(devhdl, &srom->sector_size,
366  SROM_SECTOR_SIZE_OFF, sizeof(srom->sector_size)) < 0)
367  return -EIO;
368  if (_srom_read(devhdl, &srom->page_size,
369  SROM_PAGE_SIZE_OFF, sizeof(srom->page_size)) < 0)
370  return -EIO;
371 
372  dev = device_create(srom_class, &platform_bus,
373  MKDEV(srom_major, index), srom, "%d", index);
374  return IS_ERR(dev) ? PTR_ERR(dev) : 0;
375 }
376 
378 static int srom_init(void)
379 {
380  int result, i;
381  dev_t dev = MKDEV(srom_major, 0);
382 
383  /*
384  * Start with a plausible number of partitions; the krealloc() call
385  * below will yield about log(srom_devs) additional allocations.
386  */
387  srom_devices = kzalloc(4 * sizeof(struct srom_dev), GFP_KERNEL);
388 
389  /* Discover the number of srom partitions. */
390  for (i = 0; ; i++) {
391  int devhdl;
392  char buf[20];
393  struct srom_dev *new_srom_devices =
394  krealloc(srom_devices, (i+1) * sizeof(struct srom_dev),
396  if (!new_srom_devices) {
397  result = -ENOMEM;
398  goto fail_mem;
399  }
400  srom_devices = new_srom_devices;
401  sprintf(buf, "srom/0/%d", i);
402  devhdl = hv_dev_open((HV_VirtAddr)buf, 0);
403  if (devhdl < 0) {
404  if (devhdl != HV_ENODEV)
405  pr_notice("srom/%d: hv_dev_open failed: %d.\n",
406  i, devhdl);
407  break;
408  }
409  srom_devices[i].hv_devhdl = devhdl;
410  }
411  srom_devs = i;
412 
413  /* Bail out early if we have no partitions at all. */
414  if (srom_devs == 0) {
415  result = -ENODEV;
416  goto fail_mem;
417  }
418 
419  /* Register our major, and accept a dynamic number. */
420  if (srom_major)
421  result = register_chrdev_region(dev, srom_devs, "srom");
422  else {
423  result = alloc_chrdev_region(&dev, 0, srom_devs, "srom");
424  srom_major = MAJOR(dev);
425  }
426  if (result < 0)
427  goto fail_mem;
428 
429  /* Register a character device. */
430  cdev_init(&srom_cdev, &srom_fops);
431  srom_cdev.owner = THIS_MODULE;
432  srom_cdev.ops = &srom_fops;
433  result = cdev_add(&srom_cdev, dev, srom_devs);
434  if (result < 0)
435  goto fail_chrdev;
436 
437  /* Create a sysfs class. */
438  srom_class = class_create(THIS_MODULE, "srom");
439  if (IS_ERR(srom_class)) {
440  result = PTR_ERR(srom_class);
441  goto fail_cdev;
442  }
443  srom_class->dev_attrs = srom_dev_attrs;
444  srom_class->devnode = srom_devnode;
445 
446  /* Do per-partition initialization */
447  for (i = 0; i < srom_devs; i++) {
448  result = srom_setup_minor(srom_devices + i, i);
449  if (result < 0)
450  goto fail_class;
451  }
452 
453  return 0;
454 
455 fail_class:
456  for (i = 0; i < srom_devs; i++)
457  device_destroy(srom_class, MKDEV(srom_major, i));
458  class_destroy(srom_class);
459 fail_cdev:
460  cdev_del(&srom_cdev);
461 fail_chrdev:
462  unregister_chrdev_region(dev, srom_devs);
463 fail_mem:
464  kfree(srom_devices);
465  return result;
466 }
467 
469 static void srom_cleanup(void)
470 {
471  int i;
472  for (i = 0; i < srom_devs; i++)
473  device_destroy(srom_class, MKDEV(srom_major, i));
474  class_destroy(srom_class);
475  cdev_del(&srom_cdev);
476  unregister_chrdev_region(MKDEV(srom_major, 0), srom_devs);
477  kfree(srom_devices);
478 }
479 
480 module_init(srom_init);
481 module_exit(srom_cleanup);