Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
pci-dma.c
Go to the documentation of this file.
1 /*
2  * Copyright 2010 Tilera Corporation. All Rights Reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public License
6  * as published by the Free Software Foundation, version 2.
7  *
8  * This program is distributed in the hope that it will be useful, but
9  * WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
11  * NON INFRINGEMENT. See the GNU General Public License for
12  * more details.
13  */
14 
15 #include <linux/mm.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/swiotlb.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
20 #include <asm/tlbflush.h>
21 #include <asm/homecache.h>
22 
23 /* Generic DMA mapping functions: */
24 
25 /*
26  * Allocate what Linux calls "coherent" memory. On TILEPro this is
27  * uncached memory; on TILE-Gx it is hash-for-home memory.
28  */
29 #ifdef __tilepro__
30 #define PAGE_HOME_DMA PAGE_HOME_UNCACHED
31 #else
32 #define PAGE_HOME_DMA PAGE_HOME_HASH
33 #endif
34 
35 static void *tile_dma_alloc_coherent(struct device *dev, size_t size,
37  struct dma_attrs *attrs)
38 {
39  u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
40  int node = dev_to_node(dev);
41  int order = get_order(size);
42  struct page *pg;
44 
45  gfp |= __GFP_ZERO;
46 
47  /*
48  * If the mask specifies that the memory be in the first 4 GB, then
49  * we force the allocation to come from the DMA zone. We also
50  * force the node to 0 since that's the only node where the DMA
51  * zone isn't empty. If the mask size is smaller than 32 bits, we
52  * may still not be able to guarantee a suitable memory address, in
53  * which case we will return NULL. But such devices are uncommon.
54  */
55  if (dma_mask <= DMA_BIT_MASK(32)) {
56  gfp |= GFP_DMA;
57  node = 0;
58  }
59 
60  pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
61  if (pg == NULL)
62  return NULL;
63 
64  addr = page_to_phys(pg);
65  if (addr + size > dma_mask) {
66  __homecache_free_pages(pg, order);
67  return NULL;
68  }
69 
70  *dma_handle = addr;
71 
72  return page_address(pg);
73 }
74 
75 /*
76  * Free memory that was allocated with tile_dma_alloc_coherent.
77  */
78 static void tile_dma_free_coherent(struct device *dev, size_t size,
80  struct dma_attrs *attrs)
81 {
82  homecache_free_pages((unsigned long)vaddr, get_order(size));
83 }
84 
85 /*
86  * The map routines "map" the specified address range for DMA
87  * accesses. The memory belongs to the device after this call is
88  * issued, until it is unmapped with dma_unmap_single.
89  *
90  * We don't need to do any mapping, we just flush the address range
91  * out of the cache and return a DMA address.
92  *
93  * The unmap routines do whatever is necessary before the processor
94  * accesses the memory again, and must be called before the driver
95  * touches the memory. We can get away with a cache invalidate if we
96  * can count on nothing having been touched.
97  */
98 
99 /* Set up a single page for DMA access. */
100 static void __dma_prep_page(struct page *page, unsigned long offset,
101  size_t size, enum dma_data_direction direction)
102 {
103  /*
104  * Flush the page from cache if necessary.
105  * On tilegx, data is delivered to hash-for-home L3; on tilepro,
106  * data is delivered direct to memory.
107  *
108  * NOTE: If we were just doing DMA_TO_DEVICE we could optimize
109  * this to be a "flush" not a "finv" and keep some of the
110  * state in cache across the DMA operation, but it doesn't seem
111  * worth creating the necessary flush_buffer_xxx() infrastructure.
112  */
113  int home = page_home(page);
114  switch (home) {
115  case PAGE_HOME_HASH:
116 #ifdef __tilegx__
117  return;
118 #endif
119  break;
120  case PAGE_HOME_UNCACHED:
121 #ifdef __tilepro__
122  return;
123 #endif
124  break;
125  case PAGE_HOME_IMMUTABLE:
126  /* Should be going to the device only. */
127  BUG_ON(direction == DMA_FROM_DEVICE ||
128  direction == DMA_BIDIRECTIONAL);
129  return;
131  /* Incoherent anyway, so no need to work hard here. */
132  return;
133  default:
134  BUG_ON(home < 0 || home >= NR_CPUS);
135  break;
136  }
137  homecache_finv_page(page);
138 
139 #ifdef DEBUG_ALIGNMENT
140  /* Warn if the region isn't cacheline aligned. */
141  if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1)))
142  pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n",
143  PFN_PHYS(page_to_pfn(page)) + offset, size);
144 #endif
145 }
146 
147 /* Make the page ready to be read by the core. */
148 static void __dma_complete_page(struct page *page, unsigned long offset,
149  size_t size, enum dma_data_direction direction)
150 {
151 #ifdef __tilegx__
152  switch (page_home(page)) {
153  case PAGE_HOME_HASH:
154  /* I/O device delivered data the way the cpu wanted it. */
155  break;
157  /* Incoherent anyway, so no need to work hard here. */
158  break;
159  case PAGE_HOME_IMMUTABLE:
160  /* Extra read-only copies are not a problem. */
161  break;
162  default:
163  /* Flush the bogus hash-for-home I/O entries to memory. */
164  homecache_finv_map_page(page, PAGE_HOME_HASH);
165  break;
166  }
167 #endif
168 }
169 
170 static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size,
171  enum dma_data_direction direction)
172 {
173  struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
174  unsigned long offset = dma_addr & (PAGE_SIZE - 1);
175  size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
176 
177  while (size != 0) {
178  __dma_prep_page(page, offset, bytes, direction);
179  size -= bytes;
180  ++page;
181  offset = 0;
182  bytes = min((size_t)PAGE_SIZE, size);
183  }
184 }
185 
186 static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size,
187  enum dma_data_direction direction)
188 {
189  struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
190  unsigned long offset = dma_addr & (PAGE_SIZE - 1);
191  size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
192 
193  while (size != 0) {
194  __dma_complete_page(page, offset, bytes, direction);
195  size -= bytes;
196  ++page;
197  offset = 0;
198  bytes = min((size_t)PAGE_SIZE, size);
199  }
200 }
201 
202 static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist,
203  int nents, enum dma_data_direction direction,
204  struct dma_attrs *attrs)
205 {
206  struct scatterlist *sg;
207  int i;
208 
209  BUG_ON(!valid_dma_direction(direction));
210 
211  WARN_ON(nents == 0 || sglist->length == 0);
212 
213  for_each_sg(sglist, sg, nents, i) {
214  sg->dma_address = sg_phys(sg);
215  __dma_prep_pa_range(sg->dma_address, sg->length, direction);
216 #ifdef CONFIG_NEED_SG_DMA_LENGTH
217  sg->dma_length = sg->length;
218 #endif
219  }
220 
221  return nents;
222 }
223 
224 static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
225  int nents, enum dma_data_direction direction,
226  struct dma_attrs *attrs)
227 {
228  struct scatterlist *sg;
229  int i;
230 
231  BUG_ON(!valid_dma_direction(direction));
232  for_each_sg(sglist, sg, nents, i) {
233  sg->dma_address = sg_phys(sg);
234  __dma_complete_pa_range(sg->dma_address, sg->length,
235  direction);
236  }
237 }
238 
239 static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page,
240  unsigned long offset, size_t size,
241  enum dma_data_direction direction,
242  struct dma_attrs *attrs)
243 {
244  BUG_ON(!valid_dma_direction(direction));
245 
246  BUG_ON(offset + size > PAGE_SIZE);
247  __dma_prep_page(page, offset, size, direction);
248 
249  return page_to_pa(page) + offset;
250 }
251 
252 static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
253  size_t size, enum dma_data_direction direction,
254  struct dma_attrs *attrs)
255 {
256  BUG_ON(!valid_dma_direction(direction));
257 
258  __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
259  dma_address & PAGE_OFFSET, size, direction);
260 }
261 
262 static void tile_dma_sync_single_for_cpu(struct device *dev,
263  dma_addr_t dma_handle,
264  size_t size,
265  enum dma_data_direction direction)
266 {
267  BUG_ON(!valid_dma_direction(direction));
268 
269  __dma_complete_pa_range(dma_handle, size, direction);
270 }
271 
272 static void tile_dma_sync_single_for_device(struct device *dev,
273  dma_addr_t dma_handle, size_t size,
274  enum dma_data_direction direction)
275 {
276  __dma_prep_pa_range(dma_handle, size, direction);
277 }
278 
279 static void tile_dma_sync_sg_for_cpu(struct device *dev,
280  struct scatterlist *sglist, int nelems,
281  enum dma_data_direction direction)
282 {
283  struct scatterlist *sg;
284  int i;
285 
286  BUG_ON(!valid_dma_direction(direction));
287  WARN_ON(nelems == 0 || sglist->length == 0);
288 
289  for_each_sg(sglist, sg, nelems, i) {
291  sg_dma_len(sg), direction);
292  }
293 }
294 
295 static void tile_dma_sync_sg_for_device(struct device *dev,
296  struct scatterlist *sglist, int nelems,
297  enum dma_data_direction direction)
298 {
299  struct scatterlist *sg;
300  int i;
301 
302  BUG_ON(!valid_dma_direction(direction));
303  WARN_ON(nelems == 0 || sglist->length == 0);
304 
305  for_each_sg(sglist, sg, nelems, i) {
307  sg_dma_len(sg), direction);
308  }
309 }
310 
311 static inline int
312 tile_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
313 {
314  return 0;
315 }
316 
317 static inline int
318 tile_dma_supported(struct device *dev, u64 mask)
319 {
320  return 1;
321 }
322 
323 static struct dma_map_ops tile_default_dma_map_ops = {
324  .alloc = tile_dma_alloc_coherent,
325  .free = tile_dma_free_coherent,
326  .map_page = tile_dma_map_page,
327  .unmap_page = tile_dma_unmap_page,
328  .map_sg = tile_dma_map_sg,
329  .unmap_sg = tile_dma_unmap_sg,
330  .sync_single_for_cpu = tile_dma_sync_single_for_cpu,
331  .sync_single_for_device = tile_dma_sync_single_for_device,
332  .sync_sg_for_cpu = tile_dma_sync_sg_for_cpu,
333  .sync_sg_for_device = tile_dma_sync_sg_for_device,
334  .mapping_error = tile_dma_mapping_error,
335  .dma_supported = tile_dma_supported
336 };
337 
338 struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops;
339 EXPORT_SYMBOL(tile_dma_map_ops);
340 
341 /* Generic PCI DMA mapping functions */
342 
343 static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size,
344  dma_addr_t *dma_handle, gfp_t gfp,
345  struct dma_attrs *attrs)
346 {
347  int node = dev_to_node(dev);
348  int order = get_order(size);
349  struct page *pg;
351 
352  gfp |= __GFP_ZERO;
353 
354  pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
355  if (pg == NULL)
356  return NULL;
357 
358  addr = page_to_phys(pg);
359 
360  *dma_handle = phys_to_dma(dev, addr);
361 
362  return page_address(pg);
363 }
364 
365 /*
366  * Free memory that was allocated with tile_pci_dma_alloc_coherent.
367  */
368 static void tile_pci_dma_free_coherent(struct device *dev, size_t size,
369  void *vaddr, dma_addr_t dma_handle,
370  struct dma_attrs *attrs)
371 {
372  homecache_free_pages((unsigned long)vaddr, get_order(size));
373 }
374 
375 static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist,
376  int nents, enum dma_data_direction direction,
377  struct dma_attrs *attrs)
378 {
379  struct scatterlist *sg;
380  int i;
381 
382  BUG_ON(!valid_dma_direction(direction));
383 
384  WARN_ON(nents == 0 || sglist->length == 0);
385 
386  for_each_sg(sglist, sg, nents, i) {
387  sg->dma_address = sg_phys(sg);
388  __dma_prep_pa_range(sg->dma_address, sg->length, direction);
389 
390  sg->dma_address = phys_to_dma(dev, sg->dma_address);
391 #ifdef CONFIG_NEED_SG_DMA_LENGTH
392  sg->dma_length = sg->length;
393 #endif
394  }
395 
396  return nents;
397 }
398 
399 static void tile_pci_dma_unmap_sg(struct device *dev,
400  struct scatterlist *sglist, int nents,
401  enum dma_data_direction direction,
402  struct dma_attrs *attrs)
403 {
404  struct scatterlist *sg;
405  int i;
406 
407  BUG_ON(!valid_dma_direction(direction));
408  for_each_sg(sglist, sg, nents, i) {
409  sg->dma_address = sg_phys(sg);
410  __dma_complete_pa_range(sg->dma_address, sg->length,
411  direction);
412  }
413 }
414 
415 static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page,
416  unsigned long offset, size_t size,
417  enum dma_data_direction direction,
418  struct dma_attrs *attrs)
419 {
420  BUG_ON(!valid_dma_direction(direction));
421 
422  BUG_ON(offset + size > PAGE_SIZE);
423  __dma_prep_page(page, offset, size, direction);
424 
425  return phys_to_dma(dev, page_to_pa(page) + offset);
426 }
427 
428 static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
429  size_t size,
430  enum dma_data_direction direction,
431  struct dma_attrs *attrs)
432 {
433  BUG_ON(!valid_dma_direction(direction));
434 
435  dma_address = dma_to_phys(dev, dma_address);
436 
437  __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
438  dma_address & PAGE_OFFSET, size, direction);
439 }
440 
441 static void tile_pci_dma_sync_single_for_cpu(struct device *dev,
442  dma_addr_t dma_handle,
443  size_t size,
444  enum dma_data_direction direction)
445 {
446  BUG_ON(!valid_dma_direction(direction));
447 
448  dma_handle = dma_to_phys(dev, dma_handle);
449 
450  __dma_complete_pa_range(dma_handle, size, direction);
451 }
452 
453 static void tile_pci_dma_sync_single_for_device(struct device *dev,
454  dma_addr_t dma_handle,
455  size_t size,
456  enum dma_data_direction
457  direction)
458 {
459  dma_handle = dma_to_phys(dev, dma_handle);
460 
461  __dma_prep_pa_range(dma_handle, size, direction);
462 }
463 
464 static void tile_pci_dma_sync_sg_for_cpu(struct device *dev,
465  struct scatterlist *sglist,
466  int nelems,
467  enum dma_data_direction direction)
468 {
469  struct scatterlist *sg;
470  int i;
471 
472  BUG_ON(!valid_dma_direction(direction));
473  WARN_ON(nelems == 0 || sglist->length == 0);
474 
475  for_each_sg(sglist, sg, nelems, i) {
477  sg_dma_len(sg), direction);
478  }
479 }
480 
481 static void tile_pci_dma_sync_sg_for_device(struct device *dev,
482  struct scatterlist *sglist,
483  int nelems,
484  enum dma_data_direction direction)
485 {
486  struct scatterlist *sg;
487  int i;
488 
489  BUG_ON(!valid_dma_direction(direction));
490  WARN_ON(nelems == 0 || sglist->length == 0);
491 
492  for_each_sg(sglist, sg, nelems, i) {
494  sg_dma_len(sg), direction);
495  }
496 }
497 
498 static inline int
499 tile_pci_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
500 {
501  return 0;
502 }
503 
504 static inline int
505 tile_pci_dma_supported(struct device *dev, u64 mask)
506 {
507  return 1;
508 }
509 
510 static struct dma_map_ops tile_pci_default_dma_map_ops = {
511  .alloc = tile_pci_dma_alloc_coherent,
512  .free = tile_pci_dma_free_coherent,
513  .map_page = tile_pci_dma_map_page,
514  .unmap_page = tile_pci_dma_unmap_page,
515  .map_sg = tile_pci_dma_map_sg,
516  .unmap_sg = tile_pci_dma_unmap_sg,
517  .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
518  .sync_single_for_device = tile_pci_dma_sync_single_for_device,
519  .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
520  .sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
521  .mapping_error = tile_pci_dma_mapping_error,
522  .dma_supported = tile_pci_dma_supported
523 };
524 
525 struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops;
526 EXPORT_SYMBOL(gx_pci_dma_map_ops);
527 
528 /* PCI DMA mapping functions for legacy PCI devices */
529 
530 #ifdef CONFIG_SWIOTLB
531 static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size,
532  dma_addr_t *dma_handle, gfp_t gfp,
533  struct dma_attrs *attrs)
534 {
535  gfp |= GFP_DMA;
536  return swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
537 }
538 
539 static void tile_swiotlb_free_coherent(struct device *dev, size_t size,
540  void *vaddr, dma_addr_t dma_addr,
541  struct dma_attrs *attrs)
542 {
543  swiotlb_free_coherent(dev, size, vaddr, dma_addr);
544 }
545 
546 static struct dma_map_ops pci_swiotlb_dma_ops = {
547  .alloc = tile_swiotlb_alloc_coherent,
548  .free = tile_swiotlb_free_coherent,
549  .map_page = swiotlb_map_page,
550  .unmap_page = swiotlb_unmap_page,
551  .map_sg = swiotlb_map_sg_attrs,
552  .unmap_sg = swiotlb_unmap_sg_attrs,
553  .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
554  .sync_single_for_device = swiotlb_sync_single_for_device,
555  .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
556  .sync_sg_for_device = swiotlb_sync_sg_for_device,
557  .dma_supported = swiotlb_dma_supported,
558  .mapping_error = swiotlb_dma_mapping_error,
559 };
560 
561 struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops;
562 #else
564 #endif
565 EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops);
566 
567 #ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
568 int dma_set_coherent_mask(struct device *dev, u64 mask)
569 {
570  struct dma_map_ops *dma_ops = get_dma_ops(dev);
571 
572  /* Handle legacy PCI devices with limited memory addressability. */
573  if (((dma_ops == gx_pci_dma_map_ops) ||
574  (dma_ops == gx_legacy_pci_dma_map_ops)) &&
575  (mask <= DMA_BIT_MASK(32))) {
576  if (mask > dev->archdata.max_direct_dma_addr)
577  mask = dev->archdata.max_direct_dma_addr;
578  }
579 
580  if (!dma_supported(dev, mask))
581  return -EIO;
582  dev->coherent_dma_mask = mask;
583  return 0;
584 }
586 #endif