Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
tmio_nand.c
Go to the documentation of this file.
1 /*
2  * Toshiba TMIO NAND flash controller driver
3  *
4  * Slightly murky pre-git history of the driver:
5  *
6  * Copyright (c) Ian Molton 2004, 2005, 2008
7  * Original work, independent of sharps code. Included hardware ECC support.
8  * Hard ECC did not work for writes in the early revisions.
9  * Copyright (c) Dirk Opfer 2005.
10  * Modifications developed from sharps code but
11  * NOT containing any, ported onto Ians base.
12  * Copyright (c) Chris Humbert 2005
13  * Copyright (c) Dmitry Baryshkov 2008
14  * Minor fixes
15  *
16  * Parts copyright Sebastian Carlier
17  *
18  * This file is licensed under
19  * the terms of the GNU General Public License version 2. This program
20  * is licensed "as is" without any warranty of any kind, whether express
21  * or implied.
22  *
23  */
24 
25 
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/tmio.h>
31 #include <linux/delay.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/interrupt.h>
35 #include <linux/ioport.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/slab.h>
41 
42 /*--------------------------------------------------------------------------*/
43 
44 /*
45  * NAND Flash Host Controller Configuration Register
46  */
47 #define CCR_COMMAND 0x04 /* w Command */
48 #define CCR_BASE 0x10 /* l NAND Flash Control Reg Base Addr */
49 #define CCR_INTP 0x3d /* b Interrupt Pin */
50 #define CCR_INTE 0x48 /* b Interrupt Enable */
51 #define CCR_EC 0x4a /* b Event Control */
52 #define CCR_ICC 0x4c /* b Internal Clock Control */
53 #define CCR_ECCC 0x5b /* b ECC Control */
54 #define CCR_NFTC 0x60 /* b NAND Flash Transaction Control */
55 #define CCR_NFM 0x61 /* b NAND Flash Monitor */
56 #define CCR_NFPSC 0x62 /* b NAND Flash Power Supply Control */
57 #define CCR_NFDC 0x63 /* b NAND Flash Detect Control */
58 
59 /*
60  * NAND Flash Control Register
61  */
62 #define FCR_DATA 0x00 /* bwl Data Register */
63 #define FCR_MODE 0x04 /* b Mode Register */
64 #define FCR_STATUS 0x05 /* b Status Register */
65 #define FCR_ISR 0x06 /* b Interrupt Status Register */
66 #define FCR_IMR 0x07 /* b Interrupt Mask Register */
67 
68 /* FCR_MODE Register Command List */
69 #define FCR_MODE_DATA 0x94 /* Data Data_Mode */
70 #define FCR_MODE_COMMAND 0x95 /* Data Command_Mode */
71 #define FCR_MODE_ADDRESS 0x96 /* Data Address_Mode */
72 
73 #define FCR_MODE_HWECC_CALC 0xB4 /* HW-ECC Data */
74 #define FCR_MODE_HWECC_RESULT 0xD4 /* HW-ECC Calc result Read_Mode */
75 #define FCR_MODE_HWECC_RESET 0xF4 /* HW-ECC Reset */
76 
77 #define FCR_MODE_POWER_ON 0x0C /* Power Supply ON to SSFDC card */
78 #define FCR_MODE_POWER_OFF 0x08 /* Power Supply OFF to SSFDC card */
79 
80 #define FCR_MODE_LED_OFF 0x00 /* LED OFF */
81 #define FCR_MODE_LED_ON 0x04 /* LED ON */
82 
83 #define FCR_MODE_EJECT_ON 0x68 /* Ejection events active */
84 #define FCR_MODE_EJECT_OFF 0x08 /* Ejection events ignored */
85 
86 #define FCR_MODE_LOCK 0x6C /* Lock_Mode. Eject Switch Invalid */
87 #define FCR_MODE_UNLOCK 0x0C /* UnLock_Mode. Eject Switch is valid */
88 
89 #define FCR_MODE_CONTROLLER_ID 0x40 /* Controller ID Read */
90 #define FCR_MODE_STANDBY 0x00 /* SSFDC card Changes Standby State */
91 
92 #define FCR_MODE_WE 0x80
93 #define FCR_MODE_ECC1 0x40
94 #define FCR_MODE_ECC0 0x20
95 #define FCR_MODE_CE 0x10
96 #define FCR_MODE_PCNT1 0x08
97 #define FCR_MODE_PCNT0 0x04
98 #define FCR_MODE_ALE 0x02
99 #define FCR_MODE_CLE 0x01
100 
101 #define FCR_STATUS_BUSY 0x80
102 
103 /*--------------------------------------------------------------------------*/
104 
105 struct tmio_nand {
106  struct mtd_info mtd;
107  struct nand_chip chip;
108 
110 
111  void __iomem *ccr;
112  void __iomem *fcr;
113  unsigned long fcr_base;
114 
115  unsigned int irq;
116 
117  /* for tmio_nand_read_byte */
119  unsigned read_good:1;
120 };
121 
122 #define mtd_to_tmio(m) container_of(m, struct tmio_nand, mtd)
123 
124 
125 /*--------------------------------------------------------------------------*/
126 
127 static void tmio_nand_hwcontrol(struct mtd_info *mtd, int cmd,
128  unsigned int ctrl)
129 {
130  struct tmio_nand *tmio = mtd_to_tmio(mtd);
131  struct nand_chip *chip = mtd->priv;
132 
133  if (ctrl & NAND_CTRL_CHANGE) {
134  u8 mode;
135 
136  if (ctrl & NAND_NCE) {
137  mode = FCR_MODE_DATA;
138 
139  if (ctrl & NAND_CLE)
140  mode |= FCR_MODE_CLE;
141  else
142  mode &= ~FCR_MODE_CLE;
143 
144  if (ctrl & NAND_ALE)
145  mode |= FCR_MODE_ALE;
146  else
147  mode &= ~FCR_MODE_ALE;
148  } else {
149  mode = FCR_MODE_STANDBY;
150  }
151 
152  tmio_iowrite8(mode, tmio->fcr + FCR_MODE);
153  tmio->read_good = 0;
154  }
155 
156  if (cmd != NAND_CMD_NONE)
157  tmio_iowrite8(cmd, chip->IO_ADDR_W);
158 }
159 
160 static int tmio_nand_dev_ready(struct mtd_info *mtd)
161 {
162  struct tmio_nand *tmio = mtd_to_tmio(mtd);
163 
164  return !(tmio_ioread8(tmio->fcr + FCR_STATUS) & FCR_STATUS_BUSY);
165 }
166 
167 static irqreturn_t tmio_irq(int irq, void *__tmio)
168 {
169  struct tmio_nand *tmio = __tmio;
170  struct nand_chip *nand_chip = &tmio->chip;
171 
172  /* disable RDYREQ interrupt */
173  tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
174 
175  if (unlikely(!waitqueue_active(&nand_chip->controller->wq)))
176  dev_warn(&tmio->dev->dev, "spurious interrupt\n");
177 
178  wake_up(&nand_chip->controller->wq);
179  return IRQ_HANDLED;
180 }
181 
182 /*
183  *The TMIO core has a RDYREQ interrupt on the posedge of #SMRB.
184  *This interrupt is normally disabled, but for long operations like
185  *erase and write, we enable it to wake us up. The irq handler
186  *disables the interrupt.
187  */
188 static int
189 tmio_nand_wait(struct mtd_info *mtd, struct nand_chip *nand_chip)
190 {
191  struct tmio_nand *tmio = mtd_to_tmio(mtd);
192  long timeout;
193 
194  /* enable RDYREQ interrupt */
195  tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
196  tmio_iowrite8(0x81, tmio->fcr + FCR_IMR);
197 
198  timeout = wait_event_timeout(nand_chip->controller->wq,
199  tmio_nand_dev_ready(mtd),
200  msecs_to_jiffies(nand_chip->state == FL_ERASING ? 400 : 20));
201 
202  if (unlikely(!tmio_nand_dev_ready(mtd))) {
203  tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
204  dev_warn(&tmio->dev->dev, "still busy with %s after %d ms\n",
205  nand_chip->state == FL_ERASING ? "erase" : "program",
206  nand_chip->state == FL_ERASING ? 400 : 20);
207 
208  } else if (unlikely(!timeout)) {
209  tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
210  dev_warn(&tmio->dev->dev, "timeout waiting for interrupt\n");
211  }
212 
213  nand_chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
214  return nand_chip->read_byte(mtd);
215 }
216 
217 /*
218  *The TMIO controller combines two 8-bit data bytes into one 16-bit
219  *word. This function separates them so nand_base.c works as expected,
220  *especially its NAND_CMD_READID routines.
221  *
222  *To prevent stale data from being read, tmio_nand_hwcontrol() clears
223  *tmio->read_good.
224  */
225 static u_char tmio_nand_read_byte(struct mtd_info *mtd)
226 {
227  struct tmio_nand *tmio = mtd_to_tmio(mtd);
228  unsigned int data;
229 
230  if (tmio->read_good--)
231  return tmio->read;
232 
233  data = tmio_ioread16(tmio->fcr + FCR_DATA);
234  tmio->read = data >> 8;
235  return data;
236 }
237 
238 /*
239  *The TMIO controller converts an 8-bit NAND interface to a 16-bit
240  *bus interface, so all data reads and writes must be 16-bit wide.
241  *Thus, we implement 16-bit versions of the read, write, and verify
242  *buffer functions.
243  */
244 static void
245 tmio_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
246 {
247  struct tmio_nand *tmio = mtd_to_tmio(mtd);
248 
249  tmio_iowrite16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
250 }
251 
252 static void tmio_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
253 {
254  struct tmio_nand *tmio = mtd_to_tmio(mtd);
255 
256  tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
257 }
258 
259 static void tmio_nand_enable_hwecc(struct mtd_info *mtd, int mode)
260 {
261  struct tmio_nand *tmio = mtd_to_tmio(mtd);
262 
264  tmio_ioread8(tmio->fcr + FCR_DATA); /* dummy read */
266 }
267 
268 static int tmio_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
269  u_char *ecc_code)
270 {
271  struct tmio_nand *tmio = mtd_to_tmio(mtd);
272  unsigned int ecc;
273 
275 
276  ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
277  ecc_code[1] = ecc; /* 000-255 LP7-0 */
278  ecc_code[0] = ecc >> 8; /* 000-255 LP15-8 */
279  ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
280  ecc_code[2] = ecc; /* 000-255 CP5-0,11b */
281  ecc_code[4] = ecc >> 8; /* 256-511 LP7-0 */
282  ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
283  ecc_code[3] = ecc; /* 256-511 LP15-8 */
284  ecc_code[5] = ecc >> 8; /* 256-511 CP5-0,11b */
285 
287  return 0;
288 }
289 
290 static int tmio_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
291  unsigned char *read_ecc, unsigned char *calc_ecc)
292 {
293  int r0, r1;
294 
295  /* assume ecc.size = 512 and ecc.bytes = 6 */
296  r0 = __nand_correct_data(buf, read_ecc, calc_ecc, 256);
297  if (r0 < 0)
298  return r0;
299  r1 = __nand_correct_data(buf + 256, read_ecc + 3, calc_ecc + 3, 256);
300  if (r1 < 0)
301  return r1;
302  return r0 + r1;
303 }
304 
305 static int tmio_hw_init(struct platform_device *dev, struct tmio_nand *tmio)
306 {
307  const struct mfd_cell *cell = mfd_get_cell(dev);
308  int ret;
309 
310  if (cell->enable) {
311  ret = cell->enable(dev);
312  if (ret)
313  return ret;
314  }
315 
316  /* (4Ch) CLKRUN Enable 1st spcrunc */
317  tmio_iowrite8(0x81, tmio->ccr + CCR_ICC);
318 
319  /* (10h)BaseAddress 0x1000 spba.spba2 */
320  tmio_iowrite16(tmio->fcr_base, tmio->ccr + CCR_BASE);
321  tmio_iowrite16(tmio->fcr_base >> 16, tmio->ccr + CCR_BASE + 2);
322 
323  /* (04h)Command Register I/O spcmd */
324  tmio_iowrite8(0x02, tmio->ccr + CCR_COMMAND);
325 
326  /* (62h) Power Supply Control ssmpwc */
327  /* HardPowerOFF - SuspendOFF - PowerSupplyWait_4MS */
328  tmio_iowrite8(0x02, tmio->ccr + CCR_NFPSC);
329 
330  /* (63h) Detect Control ssmdtc */
331  tmio_iowrite8(0x02, tmio->ccr + CCR_NFDC);
332 
333  /* Interrupt status register clear sintst */
334  tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
335 
336  /* After power supply, Media are reset smode */
340 
341  /* Standby Mode smode */
343 
344  mdelay(5);
345 
346  return 0;
347 }
348 
349 static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio)
350 {
351  const struct mfd_cell *cell = mfd_get_cell(dev);
352 
354  if (cell->disable)
355  cell->disable(dev);
356 }
357 
358 static int tmio_probe(struct platform_device *dev)
359 {
360  struct tmio_nand_data *data = dev->dev.platform_data;
361  struct resource *fcr = platform_get_resource(dev,
362  IORESOURCE_MEM, 0);
363  struct resource *ccr = platform_get_resource(dev,
364  IORESOURCE_MEM, 1);
365  int irq = platform_get_irq(dev, 0);
366  struct tmio_nand *tmio;
367  struct mtd_info *mtd;
368  struct nand_chip *nand_chip;
369  int retval;
370 
371  if (data == NULL)
372  dev_warn(&dev->dev, "NULL platform data!\n");
373 
374  tmio = kzalloc(sizeof *tmio, GFP_KERNEL);
375  if (!tmio) {
376  retval = -ENOMEM;
377  goto err_kzalloc;
378  }
379 
380  tmio->dev = dev;
381 
382  platform_set_drvdata(dev, tmio);
383  mtd = &tmio->mtd;
384  nand_chip = &tmio->chip;
385  mtd->priv = nand_chip;
386  mtd->name = "tmio-nand";
387 
388  tmio->ccr = ioremap(ccr->start, resource_size(ccr));
389  if (!tmio->ccr) {
390  retval = -EIO;
391  goto err_iomap_ccr;
392  }
393 
394  tmio->fcr_base = fcr->start & 0xfffff;
395  tmio->fcr = ioremap(fcr->start, resource_size(fcr));
396  if (!tmio->fcr) {
397  retval = -EIO;
398  goto err_iomap_fcr;
399  }
400 
401  retval = tmio_hw_init(dev, tmio);
402  if (retval)
403  goto err_hwinit;
404 
405  /* Set address of NAND IO lines */
406  nand_chip->IO_ADDR_R = tmio->fcr;
407  nand_chip->IO_ADDR_W = tmio->fcr;
408 
409  /* Set address of hardware control function */
410  nand_chip->cmd_ctrl = tmio_nand_hwcontrol;
411  nand_chip->dev_ready = tmio_nand_dev_ready;
412  nand_chip->read_byte = tmio_nand_read_byte;
413  nand_chip->write_buf = tmio_nand_write_buf;
414  nand_chip->read_buf = tmio_nand_read_buf;
415 
416  /* set eccmode using hardware ECC */
417  nand_chip->ecc.mode = NAND_ECC_HW;
418  nand_chip->ecc.size = 512;
419  nand_chip->ecc.bytes = 6;
420  nand_chip->ecc.strength = 2;
421  nand_chip->ecc.hwctl = tmio_nand_enable_hwecc;
422  nand_chip->ecc.calculate = tmio_nand_calculate_ecc;
423  nand_chip->ecc.correct = tmio_nand_correct_data;
424 
425  if (data)
426  nand_chip->badblock_pattern = data->badblock_pattern;
427 
428  /* 15 us command delay time */
429  nand_chip->chip_delay = 15;
430 
431  retval = request_irq(irq, &tmio_irq,
432  IRQF_DISABLED, dev_name(&dev->dev), tmio);
433  if (retval) {
434  dev_err(&dev->dev, "request_irq error %d\n", retval);
435  goto err_irq;
436  }
437 
438  tmio->irq = irq;
439  nand_chip->waitfunc = tmio_nand_wait;
440 
441  /* Scan to find existence of the device */
442  if (nand_scan(mtd, 1)) {
443  retval = -ENODEV;
444  goto err_scan;
445  }
446  /* Register the partitions */
447  retval = mtd_device_parse_register(mtd, NULL, NULL,
448  data ? data->partition : NULL,
449  data ? data->num_partitions : 0);
450  if (!retval)
451  return retval;
452 
453  nand_release(mtd);
454 
455 err_scan:
456  if (tmio->irq)
457  free_irq(tmio->irq, tmio);
458 err_irq:
459  tmio_hw_stop(dev, tmio);
460 err_hwinit:
461  iounmap(tmio->fcr);
462 err_iomap_fcr:
463  iounmap(tmio->ccr);
464 err_iomap_ccr:
465  kfree(tmio);
466 err_kzalloc:
467  return retval;
468 }
469 
470 static int tmio_remove(struct platform_device *dev)
471 {
472  struct tmio_nand *tmio = platform_get_drvdata(dev);
473 
474  nand_release(&tmio->mtd);
475  if (tmio->irq)
476  free_irq(tmio->irq, tmio);
477  tmio_hw_stop(dev, tmio);
478  iounmap(tmio->fcr);
479  iounmap(tmio->ccr);
480  kfree(tmio);
481  return 0;
482 }
483 
484 #ifdef CONFIG_PM
485 static int tmio_suspend(struct platform_device *dev, pm_message_t state)
486 {
487  const struct mfd_cell *cell = mfd_get_cell(dev);
488 
489  if (cell->suspend)
490  cell->suspend(dev);
491 
492  tmio_hw_stop(dev, platform_get_drvdata(dev));
493  return 0;
494 }
495 
496 static int tmio_resume(struct platform_device *dev)
497 {
498  const struct mfd_cell *cell = mfd_get_cell(dev);
499 
500  /* FIXME - is this required or merely another attack of the broken
501  * SHARP platform? Looks suspicious.
502  */
503  tmio_hw_init(dev, platform_get_drvdata(dev));
504 
505  if (cell->resume)
506  cell->resume(dev);
507 
508  return 0;
509 }
510 #else
511 #define tmio_suspend NULL
512 #define tmio_resume NULL
513 #endif
514 
515 static struct platform_driver tmio_driver = {
516  .driver.name = "tmio-nand",
517  .driver.owner = THIS_MODULE,
518  .probe = tmio_probe,
519  .remove = tmio_remove,
520  .suspend = tmio_suspend,
521  .resume = tmio_resume,
522 };
523 
524 module_platform_driver(tmio_driver);
525 
526 MODULE_LICENSE("GPL v2");
527 MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov");
528 MODULE_DESCRIPTION("NAND flash driver on Toshiba Mobile IO controller");
529 MODULE_ALIAS("platform:tmio-nand");