Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
ucc_uart.c
Go to the documentation of this file.
1 /*
2  * Freescale QUICC Engine UART device driver
3  *
4  * Author: Timur Tabi <[email protected]>
5  *
6  * Copyright 2007 Freescale Semiconductor, Inc. This file is licensed under
7  * the terms of the GNU General Public License version 2. This program
8  * is licensed "as is" without any warranty of any kind, whether express
9  * or implied.
10  *
11  * This driver adds support for UART devices via Freescale's QUICC Engine
12  * found on some Freescale SOCs.
13  *
14  * If Soft-UART support is needed but not already present, then this driver
15  * will request and upload the "Soft-UART" microcode upon probe. The
16  * filename of the microcode should be fsl_qe_ucode_uart_X_YZ.bin, where "X"
17  * is the name of the SOC (e.g. 8323), and YZ is the revision of the SOC,
18  * (e.g. "11" for 1.1).
19  */
20 
21 #include <linux/module.h>
22 #include <linux/serial.h>
23 #include <linux/serial_core.h>
24 #include <linux/slab.h>
25 #include <linux/tty.h>
26 #include <linux/tty_flip.h>
27 #include <linux/io.h>
28 #include <linux/of_platform.h>
29 #include <linux/dma-mapping.h>
30 
31 #include <linux/fs_uart_pd.h>
32 #include <asm/ucc_slow.h>
33 
34 #include <linux/firmware.h>
35 #include <asm/reg.h>
36 
37 /*
38  * The GUMR flag for Soft UART. This would normally be defined in qe.h,
39  * but Soft-UART is a hack and we want to keep everything related to it in
40  * this file.
41  */
42 #define UCC_SLOW_GUMR_H_SUART 0x00004000 /* Soft-UART */
43 
44 /*
45  * soft_uart is 1 if we need to use Soft-UART mode
46  */
47 static int soft_uart;
48 /*
49  * firmware_loaded is 1 if the firmware has been loaded, 0 otherwise.
50  */
51 static int firmware_loaded;
52 
53 /* Enable this macro to configure all serial ports in internal loopback
54  mode */
55 /* #define LOOPBACK */
56 
57 /* The major and minor device numbers are defined in
58  * http://www.lanana.org/docs/device-list/devices-2.6+.txt. For the QE
59  * UART, we have major number 204 and minor numbers 46 - 49, which are the
60  * same as for the CPM2. This decision was made because no Freescale part
61  * has both a CPM and a QE.
62  */
63 #define SERIAL_QE_MAJOR 204
64 #define SERIAL_QE_MINOR 46
65 
66 /* Since we only have minor numbers 46 - 49, there is a hard limit of 4 ports */
67 #define UCC_MAX_UART 4
68 
69 /* The number of buffer descriptors for receiving characters. */
70 #define RX_NUM_FIFO 4
71 
72 /* The number of buffer descriptors for transmitting characters. */
73 #define TX_NUM_FIFO 4
74 
75 /* The maximum size of the character buffer for a single RX BD. */
76 #define RX_BUF_SIZE 32
77 
78 /* The maximum size of the character buffer for a single TX BD. */
79 #define TX_BUF_SIZE 32
80 
81 /*
82  * The number of jiffies to wait after receiving a close command before the
83  * device is actually closed. This allows the last few characters to be
84  * sent over the wire.
85  */
86 #define UCC_WAIT_CLOSING 100
87 
88 struct ucc_uart_pram {
89  struct ucc_slow_pram common;
90  u8 res1[8]; /* reserved */
91  __be16 maxidl; /* Maximum idle chars */
92  __be16 idlc; /* temp idle counter */
93  __be16 brkcr; /* Break count register */
94  __be16 parec; /* receive parity error counter */
95  __be16 frmec; /* receive framing error counter */
96  __be16 nosec; /* receive noise counter */
97  __be16 brkec; /* receive break condition counter */
98  __be16 brkln; /* last received break length */
99  __be16 uaddr[2]; /* UART address character 1 & 2 */
100  __be16 rtemp; /* Temp storage */
101  __be16 toseq; /* Transmit out of sequence char */
102  __be16 cchars[8]; /* control characters 1-8 */
103  __be16 rccm; /* receive control character mask */
104  __be16 rccr; /* receive control character register */
105  __be16 rlbc; /* receive last break character */
106  __be16 res2; /* reserved */
107  __be32 res3; /* reserved, should be cleared */
108  u8 res4; /* reserved, should be cleared */
109  u8 res5[3]; /* reserved, should be cleared */
110  __be32 res6; /* reserved, should be cleared */
111  __be32 res7; /* reserved, should be cleared */
112  __be32 res8; /* reserved, should be cleared */
113  __be32 res9; /* reserved, should be cleared */
114  __be32 res10; /* reserved, should be cleared */
115  __be32 res11; /* reserved, should be cleared */
116  __be32 res12; /* reserved, should be cleared */
117  __be32 res13; /* reserved, should be cleared */
118 /* The rest is for Soft-UART only */
119  __be16 supsmr; /* 0x90, Shadow UPSMR */
120  __be16 res92; /* 0x92, reserved, initialize to 0 */
121  __be32 rx_state; /* 0x94, RX state, initialize to 0 */
122  __be32 rx_cnt; /* 0x98, RX count, initialize to 0 */
123  u8 rx_length; /* 0x9C, Char length, set to 1+CL+PEN+1+SL */
124  u8 rx_bitmark; /* 0x9D, reserved, initialize to 0 */
125  u8 rx_temp_dlst_qe; /* 0x9E, reserved, initialize to 0 */
126  u8 res14[0xBC - 0x9F]; /* reserved */
127  __be32 dump_ptr; /* 0xBC, Dump pointer */
128  __be32 rx_frame_rem; /* 0xC0, reserved, initialize to 0 */
129  u8 rx_frame_rem_size; /* 0xC4, reserved, initialize to 0 */
130  u8 tx_mode; /* 0xC5, mode, 0=AHDLC, 1=UART */
131  __be16 tx_state; /* 0xC6, TX state */
132  u8 res15[0xD0 - 0xC8]; /* reserved */
133  __be32 resD0; /* 0xD0, reserved, initialize to 0 */
134  u8 resD4; /* 0xD4, reserved, initialize to 0 */
135  __be16 resD5; /* 0xD5, reserved, initialize to 0 */
136 } __attribute__ ((packed));
138 /* SUPSMR definitions, for Soft-UART only */
139 #define UCC_UART_SUPSMR_SL 0x8000
140 #define UCC_UART_SUPSMR_RPM_MASK 0x6000
141 #define UCC_UART_SUPSMR_RPM_ODD 0x0000
142 #define UCC_UART_SUPSMR_RPM_LOW 0x2000
143 #define UCC_UART_SUPSMR_RPM_EVEN 0x4000
144 #define UCC_UART_SUPSMR_RPM_HIGH 0x6000
145 #define UCC_UART_SUPSMR_PEN 0x1000
146 #define UCC_UART_SUPSMR_TPM_MASK 0x0C00
147 #define UCC_UART_SUPSMR_TPM_ODD 0x0000
148 #define UCC_UART_SUPSMR_TPM_LOW 0x0400
149 #define UCC_UART_SUPSMR_TPM_EVEN 0x0800
150 #define UCC_UART_SUPSMR_TPM_HIGH 0x0C00
151 #define UCC_UART_SUPSMR_FRZ 0x0100
152 #define UCC_UART_SUPSMR_UM_MASK 0x00c0
153 #define UCC_UART_SUPSMR_UM_NORMAL 0x0000
154 #define UCC_UART_SUPSMR_UM_MAN_MULTI 0x0040
155 #define UCC_UART_SUPSMR_UM_AUTO_MULTI 0x00c0
156 #define UCC_UART_SUPSMR_CL_MASK 0x0030
157 #define UCC_UART_SUPSMR_CL_8 0x0030
158 #define UCC_UART_SUPSMR_CL_7 0x0020
159 #define UCC_UART_SUPSMR_CL_6 0x0010
160 #define UCC_UART_SUPSMR_CL_5 0x0000
162 #define UCC_UART_TX_STATE_AHDLC 0x00
163 #define UCC_UART_TX_STATE_UART 0x01
164 #define UCC_UART_TX_STATE_X1 0x00
165 #define UCC_UART_TX_STATE_X16 0x80
166 
167 #define UCC_UART_PRAM_ALIGNMENT 0x100
169 #define UCC_UART_SIZE_OF_BD UCC_SLOW_SIZE_OF_BD
170 #define NUM_CONTROL_CHARS 8
172 /* Private per-port data structure */
173 struct uart_qe_port {
174  struct uart_port port;
175  struct ucc_slow __iomem *uccp;
179  struct device_node *np;
180  unsigned int ucc_num; /* First ucc is 0, not 1 */
188  struct qe_bd *rx_bd_base;
189  struct qe_bd *rx_cur;
190  struct qe_bd *tx_bd_base;
191  struct qe_bd *tx_cur;
192  unsigned char *tx_buf;
193  unsigned char *rx_buf;
194  void *bd_virt; /* virtual address of the BD buffers */
195  dma_addr_t bd_dma_addr; /* bus address of the BD buffers */
196  unsigned int bd_size; /* size of BD buffer space */
197 };
198 
199 static struct uart_driver ucc_uart_driver = {
200  .owner = THIS_MODULE,
201  .driver_name = "ucc_uart",
202  .dev_name = "ttyQE",
203  .major = SERIAL_QE_MAJOR,
204  .minor = SERIAL_QE_MINOR,
205  .nr = UCC_MAX_UART,
206 };
207 
208 /*
209  * Virtual to physical address translation.
210  *
211  * Given the virtual address for a character buffer, this function returns
212  * the physical (DMA) equivalent.
213  */
214 static inline dma_addr_t cpu2qe_addr(void *addr, struct uart_qe_port *qe_port)
215 {
216  if (likely((addr >= qe_port->bd_virt)) &&
217  (addr < (qe_port->bd_virt + qe_port->bd_size)))
218  return qe_port->bd_dma_addr + (addr - qe_port->bd_virt);
219 
220  /* something nasty happened */
221  printk(KERN_ERR "%s: addr=%p\n", __func__, addr);
222  BUG();
223  return 0;
224 }
225 
226 /*
227  * Physical to virtual address translation.
228  *
229  * Given the physical (DMA) address for a character buffer, this function
230  * returns the virtual equivalent.
231  */
232 static inline void *qe2cpu_addr(dma_addr_t addr, struct uart_qe_port *qe_port)
233 {
234  /* sanity check */
235  if (likely((addr >= qe_port->bd_dma_addr) &&
236  (addr < (qe_port->bd_dma_addr + qe_port->bd_size))))
237  return qe_port->bd_virt + (addr - qe_port->bd_dma_addr);
238 
239  /* something nasty happened */
240  printk(KERN_ERR "%s: addr=%llx\n", __func__, (u64)addr);
241  BUG();
242  return NULL;
243 }
244 
245 /*
246  * Return 1 if the QE is done transmitting all buffers for this port
247  *
248  * This function scans each BD in sequence. If we find a BD that is not
249  * ready (READY=1), then we return 0 indicating that the QE is still sending
250  * data. If we reach the last BD (WRAP=1), then we know we've scanned
251  * the entire list, and all BDs are done.
252  */
253 static unsigned int qe_uart_tx_empty(struct uart_port *port)
254 {
255  struct uart_qe_port *qe_port =
256  container_of(port, struct uart_qe_port, port);
257  struct qe_bd *bdp = qe_port->tx_bd_base;
258 
259  while (1) {
260  if (in_be16(&bdp->status) & BD_SC_READY)
261  /* This BD is not done, so return "not done" */
262  return 0;
263 
264  if (in_be16(&bdp->status) & BD_SC_WRAP)
265  /*
266  * This BD is done and it's the last one, so return
267  * "done"
268  */
269  return 1;
270 
271  bdp++;
272  };
273 }
274 
275 /*
276  * Set the modem control lines
277  *
278  * Although the QE can control the modem control lines (e.g. CTS), we
279  * don't need that support. This function must exist, however, otherwise
280  * the kernel will panic.
281  */
282 void qe_uart_set_mctrl(struct uart_port *port, unsigned int mctrl)
283 {
284 }
285 
286 /*
287  * Get the current modem control line status
288  *
289  * Although the QE can control the modem control lines (e.g. CTS), this
290  * driver currently doesn't support that, so we always return Carrier
291  * Detect, Data Set Ready, and Clear To Send.
292  */
293 static unsigned int qe_uart_get_mctrl(struct uart_port *port)
294 {
295  return TIOCM_CAR | TIOCM_DSR | TIOCM_CTS;
296 }
297 
298 /*
299  * Disable the transmit interrupt.
300  *
301  * Although this function is called "stop_tx", it does not actually stop
302  * transmission of data. Instead, it tells the QE to not generate an
303  * interrupt when the UCC is finished sending characters.
304  */
305 static void qe_uart_stop_tx(struct uart_port *port)
306 {
307  struct uart_qe_port *qe_port =
308  container_of(port, struct uart_qe_port, port);
309 
310  clrbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX);
311 }
312 
313 /*
314  * Transmit as many characters to the HW as possible.
315  *
316  * This function will attempt to stuff of all the characters from the
317  * kernel's transmit buffer into TX BDs.
318  *
319  * A return value of non-zero indicates that it successfully stuffed all
320  * characters from the kernel buffer.
321  *
322  * A return value of zero indicates that there are still characters in the
323  * kernel's buffer that have not been transmitted, but there are no more BDs
324  * available. This function should be called again after a BD has been made
325  * available.
326  */
327 static int qe_uart_tx_pump(struct uart_qe_port *qe_port)
328 {
329  struct qe_bd *bdp;
330  unsigned char *p;
331  unsigned int count;
332  struct uart_port *port = &qe_port->port;
333  struct circ_buf *xmit = &port->state->xmit;
334 
335  bdp = qe_port->rx_cur;
336 
337  /* Handle xon/xoff */
338  if (port->x_char) {
339  /* Pick next descriptor and fill from buffer */
340  bdp = qe_port->tx_cur;
341 
342  p = qe2cpu_addr(bdp->buf, qe_port);
343 
344  *p++ = port->x_char;
345  out_be16(&bdp->length, 1);
346  setbits16(&bdp->status, BD_SC_READY);
347  /* Get next BD. */
348  if (in_be16(&bdp->status) & BD_SC_WRAP)
349  bdp = qe_port->tx_bd_base;
350  else
351  bdp++;
352  qe_port->tx_cur = bdp;
353 
354  port->icount.tx++;
355  port->x_char = 0;
356  return 1;
357  }
358 
359  if (uart_circ_empty(xmit) || uart_tx_stopped(port)) {
360  qe_uart_stop_tx(port);
361  return 0;
362  }
363 
364  /* Pick next descriptor and fill from buffer */
365  bdp = qe_port->tx_cur;
366 
367  while (!(in_be16(&bdp->status) & BD_SC_READY) &&
368  (xmit->tail != xmit->head)) {
369  count = 0;
370  p = qe2cpu_addr(bdp->buf, qe_port);
371  while (count < qe_port->tx_fifosize) {
372  *p++ = xmit->buf[xmit->tail];
373  xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
374  port->icount.tx++;
375  count++;
376  if (xmit->head == xmit->tail)
377  break;
378  }
379 
380  out_be16(&bdp->length, count);
381  setbits16(&bdp->status, BD_SC_READY);
382 
383  /* Get next BD. */
384  if (in_be16(&bdp->status) & BD_SC_WRAP)
385  bdp = qe_port->tx_bd_base;
386  else
387  bdp++;
388  }
389  qe_port->tx_cur = bdp;
390 
392  uart_write_wakeup(port);
393 
394  if (uart_circ_empty(xmit)) {
395  /* The kernel buffer is empty, so turn off TX interrupts. We
396  don't need to be told when the QE is finished transmitting
397  the data. */
398  qe_uart_stop_tx(port);
399  return 0;
400  }
401 
402  return 1;
403 }
404 
405 /*
406  * Start transmitting data
407  *
408  * This function will start transmitting any available data, if the port
409  * isn't already transmitting data.
410  */
411 static void qe_uart_start_tx(struct uart_port *port)
412 {
413  struct uart_qe_port *qe_port =
414  container_of(port, struct uart_qe_port, port);
415 
416  /* If we currently are transmitting, then just return */
417  if (in_be16(&qe_port->uccp->uccm) & UCC_UART_UCCE_TX)
418  return;
419 
420  /* Otherwise, pump the port and start transmission */
421  if (qe_uart_tx_pump(qe_port))
422  setbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_TX);
423 }
424 
425 /*
426  * Stop transmitting data
427  */
428 static void qe_uart_stop_rx(struct uart_port *port)
429 {
430  struct uart_qe_port *qe_port =
431  container_of(port, struct uart_qe_port, port);
432 
433  clrbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX);
434 }
435 
436 /*
437  * Enable status change interrupts
438  *
439  * We don't support status change interrupts, but we need to define this
440  * function otherwise the kernel will panic.
441  */
442 static void qe_uart_enable_ms(struct uart_port *port)
443 {
444 }
445 
446 /* Start or stop sending break signal
447  *
448  * This function controls the sending of a break signal. If break_state=1,
449  * then we start sending a break signal. If break_state=0, then we stop
450  * sending the break signal.
451  */
452 static void qe_uart_break_ctl(struct uart_port *port, int break_state)
453 {
454  struct uart_qe_port *qe_port =
455  container_of(port, struct uart_qe_port, port);
456 
457  if (break_state)
458  ucc_slow_stop_tx(qe_port->us_private);
459  else
461 }
462 
463 /* ISR helper function for receiving character.
464  *
465  * This function is called by the ISR to handling receiving characters
466  */
467 static void qe_uart_int_rx(struct uart_qe_port *qe_port)
468 {
469  int i;
470  unsigned char ch, *cp;
471  struct uart_port *port = &qe_port->port;
472  struct tty_struct *tty = port->state->port.tty;
473  struct qe_bd *bdp;
474  u16 status;
475  unsigned int flg;
476 
477  /* Just loop through the closed BDs and copy the characters into
478  * the buffer.
479  */
480  bdp = qe_port->rx_cur;
481  while (1) {
482  status = in_be16(&bdp->status);
483 
484  /* If this one is empty, then we assume we've read them all */
485  if (status & BD_SC_EMPTY)
486  break;
487 
488  /* get number of characters, and check space in RX buffer */
489  i = in_be16(&bdp->length);
490 
491  /* If we don't have enough room in RX buffer for the entire BD,
492  * then we try later, which will be the next RX interrupt.
493  */
494  if (tty_buffer_request_room(tty, i) < i) {
495  dev_dbg(port->dev, "ucc-uart: no room in RX buffer\n");
496  return;
497  }
498 
499  /* get pointer */
500  cp = qe2cpu_addr(bdp->buf, qe_port);
501 
502  /* loop through the buffer */
503  while (i-- > 0) {
504  ch = *cp++;
505  port->icount.rx++;
506  flg = TTY_NORMAL;
507 
508  if (!i && status &
510  goto handle_error;
511  if (uart_handle_sysrq_char(port, ch))
512  continue;
513 
514 error_return:
515  tty_insert_flip_char(tty, ch, flg);
516 
517  }
518 
519  /* This BD is ready to be used again. Clear status. get next */
520  clrsetbits_be16(&bdp->status, BD_SC_BR | BD_SC_FR | BD_SC_PR |
521  BD_SC_OV | BD_SC_ID, BD_SC_EMPTY);
522  if (in_be16(&bdp->status) & BD_SC_WRAP)
523  bdp = qe_port->rx_bd_base;
524  else
525  bdp++;
526 
527  }
528 
529  /* Write back buffer pointer */
530  qe_port->rx_cur = bdp;
531 
532  /* Activate BH processing */
534 
535  return;
536 
537  /* Error processing */
538 
539 handle_error:
540  /* Statistics */
541  if (status & BD_SC_BR)
542  port->icount.brk++;
543  if (status & BD_SC_PR)
544  port->icount.parity++;
545  if (status & BD_SC_FR)
546  port->icount.frame++;
547  if (status & BD_SC_OV)
548  port->icount.overrun++;
549 
550  /* Mask out ignored conditions */
551  status &= port->read_status_mask;
552 
553  /* Handle the remaining ones */
554  if (status & BD_SC_BR)
555  flg = TTY_BREAK;
556  else if (status & BD_SC_PR)
557  flg = TTY_PARITY;
558  else if (status & BD_SC_FR)
559  flg = TTY_FRAME;
560 
561  /* Overrun does not affect the current character ! */
562  if (status & BD_SC_OV)
563  tty_insert_flip_char(tty, 0, TTY_OVERRUN);
564 #ifdef SUPPORT_SYSRQ
565  port->sysrq = 0;
566 #endif
567  goto error_return;
568 }
569 
570 /* Interrupt handler
571  *
572  * This interrupt handler is called after a BD is processed.
573  */
574 static irqreturn_t qe_uart_int(int irq, void *data)
575 {
576  struct uart_qe_port *qe_port = (struct uart_qe_port *) data;
577  struct ucc_slow __iomem *uccp = qe_port->uccp;
578  u16 events;
579 
580  /* Clear the interrupts */
581  events = in_be16(&uccp->ucce);
582  out_be16(&uccp->ucce, events);
583 
584  if (events & UCC_UART_UCCE_BRKE)
585  uart_handle_break(&qe_port->port);
586 
587  if (events & UCC_UART_UCCE_RX)
588  qe_uart_int_rx(qe_port);
589 
590  if (events & UCC_UART_UCCE_TX)
591  qe_uart_tx_pump(qe_port);
592 
593  return events ? IRQ_HANDLED : IRQ_NONE;
594 }
595 
596 /* Initialize buffer descriptors
597  *
598  * This function initializes all of the RX and TX buffer descriptors.
599  */
600 static void qe_uart_initbd(struct uart_qe_port *qe_port)
601 {
602  int i;
603  void *bd_virt;
604  struct qe_bd *bdp;
605 
606  /* Set the physical address of the host memory buffers in the buffer
607  * descriptors, and the virtual address for us to work with.
608  */
609  bd_virt = qe_port->bd_virt;
610  bdp = qe_port->rx_bd_base;
611  qe_port->rx_cur = qe_port->rx_bd_base;
612  for (i = 0; i < (qe_port->rx_nrfifos - 1); i++) {
613  out_be16(&bdp->status, BD_SC_EMPTY | BD_SC_INTRPT);
614  out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
615  out_be16(&bdp->length, 0);
616  bd_virt += qe_port->rx_fifosize;
617  bdp++;
618  }
619 
620  /* */
621  out_be16(&bdp->status, BD_SC_WRAP | BD_SC_EMPTY | BD_SC_INTRPT);
622  out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
623  out_be16(&bdp->length, 0);
624 
625  /* Set the physical address of the host memory
626  * buffers in the buffer descriptors, and the
627  * virtual address for us to work with.
628  */
629  bd_virt = qe_port->bd_virt +
630  L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize);
631  qe_port->tx_cur = qe_port->tx_bd_base;
632  bdp = qe_port->tx_bd_base;
633  for (i = 0; i < (qe_port->tx_nrfifos - 1); i++) {
634  out_be16(&bdp->status, BD_SC_INTRPT);
635  out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
636  out_be16(&bdp->length, 0);
637  bd_virt += qe_port->tx_fifosize;
638  bdp++;
639  }
640 
641  /* Loopback requires the preamble bit to be set on the first TX BD */
642 #ifdef LOOPBACK
643  setbits16(&qe_port->tx_cur->status, BD_SC_P);
644 #endif
645 
646  out_be16(&bdp->status, BD_SC_WRAP | BD_SC_INTRPT);
647  out_be32(&bdp->buf, cpu2qe_addr(bd_virt, qe_port));
648  out_be16(&bdp->length, 0);
649 }
650 
651 /*
652  * Initialize a UCC for UART.
653  *
654  * This function configures a given UCC to be used as a UART device. Basic
655  * UCC initialization is handled in qe_uart_request_port(). This function
656  * does all the UART-specific stuff.
657  */
658 static void qe_uart_init_ucc(struct uart_qe_port *qe_port)
659 {
660  u32 cecr_subblock;
661  struct ucc_slow __iomem *uccp = qe_port->uccp;
662  struct ucc_uart_pram *uccup = qe_port->uccup;
663 
664  unsigned int i;
665 
666  /* First, disable TX and RX in the UCC */
667  ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX);
668 
669  /* Program the UCC UART parameter RAM */
670  out_8(&uccup->common.rbmr, UCC_BMR_GBL | UCC_BMR_BO_BE);
671  out_8(&uccup->common.tbmr, UCC_BMR_GBL | UCC_BMR_BO_BE);
672  out_be16(&uccup->common.mrblr, qe_port->rx_fifosize);
673  out_be16(&uccup->maxidl, 0x10);
674  out_be16(&uccup->brkcr, 1);
675  out_be16(&uccup->parec, 0);
676  out_be16(&uccup->frmec, 0);
677  out_be16(&uccup->nosec, 0);
678  out_be16(&uccup->brkec, 0);
679  out_be16(&uccup->uaddr[0], 0);
680  out_be16(&uccup->uaddr[1], 0);
681  out_be16(&uccup->toseq, 0);
682  for (i = 0; i < 8; i++)
683  out_be16(&uccup->cchars[i], 0xC000);
684  out_be16(&uccup->rccm, 0xc0ff);
685 
686  /* Configure the GUMR registers for UART */
687  if (soft_uart) {
688  /* Soft-UART requires a 1X multiplier for TX */
689  clrsetbits_be32(&uccp->gumr_l,
690  UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK |
691  UCC_SLOW_GUMR_L_RDCR_MASK,
692  UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_1 |
693  UCC_SLOW_GUMR_L_RDCR_16);
694 
695  clrsetbits_be32(&uccp->gumr_h, UCC_SLOW_GUMR_H_RFW,
696  UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX);
697  } else {
698  clrsetbits_be32(&uccp->gumr_l,
699  UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK |
700  UCC_SLOW_GUMR_L_RDCR_MASK,
701  UCC_SLOW_GUMR_L_MODE_UART | UCC_SLOW_GUMR_L_TDCR_16 |
702  UCC_SLOW_GUMR_L_RDCR_16);
703 
704  clrsetbits_be32(&uccp->gumr_h,
705  UCC_SLOW_GUMR_H_TRX | UCC_SLOW_GUMR_H_TTX,
706  UCC_SLOW_GUMR_H_RFW);
707  }
708 
709 #ifdef LOOPBACK
710  clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK,
711  UCC_SLOW_GUMR_L_DIAG_LOOP);
712  clrsetbits_be32(&uccp->gumr_h,
713  UCC_SLOW_GUMR_H_CTSP | UCC_SLOW_GUMR_H_RSYN,
714  UCC_SLOW_GUMR_H_CDS);
715 #endif
716 
717  /* Disable rx interrupts and clear all pending events. */
718  out_be16(&uccp->uccm, 0);
719  out_be16(&uccp->ucce, 0xffff);
720  out_be16(&uccp->udsr, 0x7e7e);
721 
722  /* Initialize UPSMR */
723  out_be16(&uccp->upsmr, 0);
724 
725  if (soft_uart) {
726  out_be16(&uccup->supsmr, 0x30);
727  out_be16(&uccup->res92, 0);
728  out_be32(&uccup->rx_state, 0);
729  out_be32(&uccup->rx_cnt, 0);
730  out_8(&uccup->rx_bitmark, 0);
731  out_8(&uccup->rx_length, 10);
732  out_be32(&uccup->dump_ptr, 0x4000);
733  out_8(&uccup->rx_temp_dlst_qe, 0);
734  out_be32(&uccup->rx_frame_rem, 0);
735  out_8(&uccup->rx_frame_rem_size, 0);
736  /* Soft-UART requires TX to be 1X */
737  out_8(&uccup->tx_mode,
739  out_be16(&uccup->tx_state, 0);
740  out_8(&uccup->resD4, 0);
741  out_be16(&uccup->resD5, 0);
742 
743  /* Set UART mode.
744  * Enable receive and transmit.
745  */
746 
747  /* From the microcode errata:
748  * 1.GUMR_L register, set mode=0010 (QMC).
749  * 2.Set GUMR_H[17] bit. (UART/AHDLC mode).
750  * 3.Set GUMR_H[19:20] (Transparent mode)
751  * 4.Clear GUMR_H[26] (RFW)
752  * ...
753  * 6.Receiver must use 16x over sampling
754  */
755  clrsetbits_be32(&uccp->gumr_l,
756  UCC_SLOW_GUMR_L_MODE_MASK | UCC_SLOW_GUMR_L_TDCR_MASK |
757  UCC_SLOW_GUMR_L_RDCR_MASK,
758  UCC_SLOW_GUMR_L_MODE_QMC | UCC_SLOW_GUMR_L_TDCR_16 |
759  UCC_SLOW_GUMR_L_RDCR_16);
760 
761  clrsetbits_be32(&uccp->gumr_h,
762  UCC_SLOW_GUMR_H_RFW | UCC_SLOW_GUMR_H_RSYN,
763  UCC_SLOW_GUMR_H_SUART | UCC_SLOW_GUMR_H_TRX |
764  UCC_SLOW_GUMR_H_TTX | UCC_SLOW_GUMR_H_TFL);
765 
766 #ifdef LOOPBACK
767  clrsetbits_be32(&uccp->gumr_l, UCC_SLOW_GUMR_L_DIAG_MASK,
768  UCC_SLOW_GUMR_L_DIAG_LOOP);
769  clrbits32(&uccp->gumr_h, UCC_SLOW_GUMR_H_CTSP |
770  UCC_SLOW_GUMR_H_CDS);
771 #endif
772 
773  cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num);
774  qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
775  QE_CR_PROTOCOL_UNSPECIFIED, 0);
776  } else {
777  cecr_subblock = ucc_slow_get_qe_cr_subblock(qe_port->ucc_num);
778  qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
779  QE_CR_PROTOCOL_UART, 0);
780  }
781 }
782 
783 /*
784  * Initialize the port.
785  */
786 static int qe_uart_startup(struct uart_port *port)
787 {
788  struct uart_qe_port *qe_port =
789  container_of(port, struct uart_qe_port, port);
790  int ret;
791 
792  /*
793  * If we're using Soft-UART mode, then we need to make sure the
794  * firmware has been uploaded first.
795  */
796  if (soft_uart && !firmware_loaded) {
797  dev_err(port->dev, "Soft-UART firmware not uploaded\n");
798  return -ENODEV;
799  }
800 
801  qe_uart_initbd(qe_port);
802  qe_uart_init_ucc(qe_port);
803 
804  /* Install interrupt handler. */
805  ret = request_irq(port->irq, qe_uart_int, IRQF_SHARED, "ucc-uart",
806  qe_port);
807  if (ret) {
808  dev_err(port->dev, "could not claim IRQ %u\n", port->irq);
809  return ret;
810  }
811 
812  /* Startup rx-int */
813  setbits16(&qe_port->uccp->uccm, UCC_UART_UCCE_RX);
814  ucc_slow_enable(qe_port->us_private, COMM_DIR_RX_AND_TX);
815 
816  return 0;
817 }
818 
819 /*
820  * Shutdown the port.
821  */
822 static void qe_uart_shutdown(struct uart_port *port)
823 {
824  struct uart_qe_port *qe_port =
825  container_of(port, struct uart_qe_port, port);
826  struct ucc_slow __iomem *uccp = qe_port->uccp;
827  unsigned int timeout = 20;
828 
829  /* Disable RX and TX */
830 
831  /* Wait for all the BDs marked sent */
832  while (!qe_uart_tx_empty(port)) {
833  if (!--timeout) {
834  dev_warn(port->dev, "shutdown timeout\n");
835  break;
836  }
838  schedule_timeout(2);
839  }
840 
841  if (qe_port->wait_closing) {
842  /* Wait a bit longer */
844  schedule_timeout(qe_port->wait_closing);
845  }
846 
847  /* Stop uarts */
848  ucc_slow_disable(qe_port->us_private, COMM_DIR_RX_AND_TX);
849  clrbits16(&uccp->uccm, UCC_UART_UCCE_TX | UCC_UART_UCCE_RX);
850 
851  /* Shut them really down and reinit buffer descriptors */
853  qe_uart_initbd(qe_port);
854 
855  free_irq(port->irq, qe_port);
856 }
857 
858 /*
859  * Set the serial port parameters.
860  */
861 static void qe_uart_set_termios(struct uart_port *port,
862  struct ktermios *termios, struct ktermios *old)
863 {
864  struct uart_qe_port *qe_port =
865  container_of(port, struct uart_qe_port, port);
866  struct ucc_slow __iomem *uccp = qe_port->uccp;
867  unsigned int baud;
868  unsigned long flags;
869  u16 upsmr = in_be16(&uccp->upsmr);
870  struct ucc_uart_pram __iomem *uccup = qe_port->uccup;
871  u16 supsmr = in_be16(&uccup->supsmr);
872  u8 char_length = 2; /* 1 + CL + PEN + 1 + SL */
873 
874  /* Character length programmed into the mode register is the
875  * sum of: 1 start bit, number of data bits, 0 or 1 parity bit,
876  * 1 or 2 stop bits, minus 1.
877  * The value 'bits' counts this for us.
878  */
879 
880  /* byte size */
881  upsmr &= UCC_UART_UPSMR_CL_MASK;
882  supsmr &= UCC_UART_SUPSMR_CL_MASK;
883 
884  switch (termios->c_cflag & CSIZE) {
885  case CS5:
886  upsmr |= UCC_UART_UPSMR_CL_5;
887  supsmr |= UCC_UART_SUPSMR_CL_5;
888  char_length += 5;
889  break;
890  case CS6:
891  upsmr |= UCC_UART_UPSMR_CL_6;
892  supsmr |= UCC_UART_SUPSMR_CL_6;
893  char_length += 6;
894  break;
895  case CS7:
896  upsmr |= UCC_UART_UPSMR_CL_7;
897  supsmr |= UCC_UART_SUPSMR_CL_7;
898  char_length += 7;
899  break;
900  default: /* case CS8 */
901  upsmr |= UCC_UART_UPSMR_CL_8;
902  supsmr |= UCC_UART_SUPSMR_CL_8;
903  char_length += 8;
904  break;
905  }
906 
907  /* If CSTOPB is set, we want two stop bits */
908  if (termios->c_cflag & CSTOPB) {
909  upsmr |= UCC_UART_UPSMR_SL;
910  supsmr |= UCC_UART_SUPSMR_SL;
911  char_length++; /* + SL */
912  }
913 
914  if (termios->c_cflag & PARENB) {
915  upsmr |= UCC_UART_UPSMR_PEN;
916  supsmr |= UCC_UART_SUPSMR_PEN;
917  char_length++; /* + PEN */
918 
919  if (!(termios->c_cflag & PARODD)) {
920  upsmr &= ~(UCC_UART_UPSMR_RPM_MASK |
921  UCC_UART_UPSMR_TPM_MASK);
922  upsmr |= UCC_UART_UPSMR_RPM_EVEN |
923  UCC_UART_UPSMR_TPM_EVEN;
924  supsmr &= ~(UCC_UART_SUPSMR_RPM_MASK |
926  supsmr |= UCC_UART_SUPSMR_RPM_EVEN |
928  }
929  }
930 
931  /*
932  * Set up parity check flag
933  */
934  port->read_status_mask = BD_SC_EMPTY | BD_SC_OV;
935  if (termios->c_iflag & INPCK)
936  port->read_status_mask |= BD_SC_FR | BD_SC_PR;
937  if (termios->c_iflag & (BRKINT | PARMRK))
938  port->read_status_mask |= BD_SC_BR;
939 
940  /*
941  * Characters to ignore
942  */
943  port->ignore_status_mask = 0;
944  if (termios->c_iflag & IGNPAR)
945  port->ignore_status_mask |= BD_SC_PR | BD_SC_FR;
946  if (termios->c_iflag & IGNBRK) {
947  port->ignore_status_mask |= BD_SC_BR;
948  /*
949  * If we're ignore parity and break indicators, ignore
950  * overruns too. (For real raw support).
951  */
952  if (termios->c_iflag & IGNPAR)
953  port->ignore_status_mask |= BD_SC_OV;
954  }
955  /*
956  * !!! ignore all characters if CREAD is not set
957  */
958  if ((termios->c_cflag & CREAD) == 0)
959  port->read_status_mask &= ~BD_SC_EMPTY;
960 
961  baud = uart_get_baud_rate(port, termios, old, 0, 115200);
962 
963  /* Do we really need a spinlock here? */
964  spin_lock_irqsave(&port->lock, flags);
965 
966  /* Update the per-port timeout. */
967  uart_update_timeout(port, termios->c_cflag, baud);
968 
969  out_be16(&uccp->upsmr, upsmr);
970  if (soft_uart) {
971  out_be16(&uccup->supsmr, supsmr);
972  out_8(&uccup->rx_length, char_length);
973 
974  /* Soft-UART requires a 1X multiplier for TX */
975  qe_setbrg(qe_port->us_info.rx_clock, baud, 16);
976  qe_setbrg(qe_port->us_info.tx_clock, baud, 1);
977  } else {
978  qe_setbrg(qe_port->us_info.rx_clock, baud, 16);
979  qe_setbrg(qe_port->us_info.tx_clock, baud, 16);
980  }
981 
982  spin_unlock_irqrestore(&port->lock, flags);
983 }
984 
985 /*
986  * Return a pointer to a string that describes what kind of port this is.
987  */
988 static const char *qe_uart_type(struct uart_port *port)
989 {
990  return "QE";
991 }
992 
993 /*
994  * Allocate any memory and I/O resources required by the port.
995  */
996 static int qe_uart_request_port(struct uart_port *port)
997 {
998  int ret;
999  struct uart_qe_port *qe_port =
1000  container_of(port, struct uart_qe_port, port);
1001  struct ucc_slow_info *us_info = &qe_port->us_info;
1002  struct ucc_slow_private *uccs;
1003  unsigned int rx_size, tx_size;
1004  void *bd_virt;
1005  dma_addr_t bd_dma_addr = 0;
1006 
1007  ret = ucc_slow_init(us_info, &uccs);
1008  if (ret) {
1009  dev_err(port->dev, "could not initialize UCC%u\n",
1010  qe_port->ucc_num);
1011  return ret;
1012  }
1013 
1014  qe_port->us_private = uccs;
1015  qe_port->uccp = uccs->us_regs;
1016  qe_port->uccup = (struct ucc_uart_pram *) uccs->us_pram;
1017  qe_port->rx_bd_base = uccs->rx_bd;
1018  qe_port->tx_bd_base = uccs->tx_bd;
1019 
1020  /*
1021  * Allocate the transmit and receive data buffers.
1022  */
1023 
1024  rx_size = L1_CACHE_ALIGN(qe_port->rx_nrfifos * qe_port->rx_fifosize);
1025  tx_size = L1_CACHE_ALIGN(qe_port->tx_nrfifos * qe_port->tx_fifosize);
1026 
1027  bd_virt = dma_alloc_coherent(port->dev, rx_size + tx_size, &bd_dma_addr,
1028  GFP_KERNEL);
1029  if (!bd_virt) {
1030  dev_err(port->dev, "could not allocate buffer descriptors\n");
1031  return -ENOMEM;
1032  }
1033 
1034  qe_port->bd_virt = bd_virt;
1035  qe_port->bd_dma_addr = bd_dma_addr;
1036  qe_port->bd_size = rx_size + tx_size;
1037 
1038  qe_port->rx_buf = bd_virt;
1039  qe_port->tx_buf = qe_port->rx_buf + rx_size;
1040 
1041  return 0;
1042 }
1043 
1044 /*
1045  * Configure the port.
1046  *
1047  * We say we're a CPM-type port because that's mostly true. Once the device
1048  * is configured, this driver operates almost identically to the CPM serial
1049  * driver.
1050  */
1051 static void qe_uart_config_port(struct uart_port *port, int flags)
1052 {
1053  if (flags & UART_CONFIG_TYPE) {
1054  port->type = PORT_CPM;
1055  qe_uart_request_port(port);
1056  }
1057 }
1058 
1059 /*
1060  * Release any memory and I/O resources that were allocated in
1061  * qe_uart_request_port().
1062  */
1063 static void qe_uart_release_port(struct uart_port *port)
1064 {
1065  struct uart_qe_port *qe_port =
1066  container_of(port, struct uart_qe_port, port);
1067  struct ucc_slow_private *uccs = qe_port->us_private;
1068 
1069  dma_free_coherent(port->dev, qe_port->bd_size, qe_port->bd_virt,
1070  qe_port->bd_dma_addr);
1071 
1072  ucc_slow_free(uccs);
1073 }
1074 
1075 /*
1076  * Verify that the data in serial_struct is suitable for this device.
1077  */
1078 static int qe_uart_verify_port(struct uart_port *port,
1079  struct serial_struct *ser)
1080 {
1081  if (ser->type != PORT_UNKNOWN && ser->type != PORT_CPM)
1082  return -EINVAL;
1083 
1084  if (ser->irq < 0 || ser->irq >= nr_irqs)
1085  return -EINVAL;
1086 
1087  if (ser->baud_base < 9600)
1088  return -EINVAL;
1089 
1090  return 0;
1091 }
1092 /* UART operations
1093  *
1094  * Details on these functions can be found in Documentation/serial/driver
1095  */
1096 static struct uart_ops qe_uart_pops = {
1097  .tx_empty = qe_uart_tx_empty,
1098  .set_mctrl = qe_uart_set_mctrl,
1099  .get_mctrl = qe_uart_get_mctrl,
1100  .stop_tx = qe_uart_stop_tx,
1101  .start_tx = qe_uart_start_tx,
1102  .stop_rx = qe_uart_stop_rx,
1103  .enable_ms = qe_uart_enable_ms,
1104  .break_ctl = qe_uart_break_ctl,
1105  .startup = qe_uart_startup,
1106  .shutdown = qe_uart_shutdown,
1107  .set_termios = qe_uart_set_termios,
1108  .type = qe_uart_type,
1109  .release_port = qe_uart_release_port,
1110  .request_port = qe_uart_request_port,
1111  .config_port = qe_uart_config_port,
1112  .verify_port = qe_uart_verify_port,
1113 };
1114 
1115 /*
1116  * Obtain the SOC model number and revision level
1117  *
1118  * This function parses the device tree to obtain the SOC model. It then
1119  * reads the SVR register to the revision.
1120  *
1121  * The device tree stores the SOC model two different ways.
1122  *
1123  * The new way is:
1124  *
1125  * cpu@0 {
1126  * compatible = "PowerPC,8323";
1127  * device_type = "cpu";
1128  * ...
1129  *
1130  *
1131  * The old way is:
1132  * PowerPC,8323@0 {
1133  * device_type = "cpu";
1134  * ...
1135  *
1136  * This code first checks the new way, and then the old way.
1137  */
1138 static unsigned int soc_info(unsigned int *rev_h, unsigned int *rev_l)
1139 {
1140  struct device_node *np;
1141  const char *soc_string;
1142  unsigned int svr;
1143  unsigned int soc;
1144 
1145  /* Find the CPU node */
1146  np = of_find_node_by_type(NULL, "cpu");
1147  if (!np)
1148  return 0;
1149  /* Find the compatible property */
1150  soc_string = of_get_property(np, "compatible", NULL);
1151  if (!soc_string)
1152  /* No compatible property, so try the name. */
1153  soc_string = np->name;
1154 
1155  /* Extract the SOC number from the "PowerPC," string */
1156  if ((sscanf(soc_string, "PowerPC,%u", &soc) != 1) || !soc)
1157  return 0;
1158 
1159  /* Get the revision from the SVR */
1160  svr = mfspr(SPRN_SVR);
1161  *rev_h = (svr >> 4) & 0xf;
1162  *rev_l = svr & 0xf;
1163 
1164  return soc;
1165 }
1166 
1167 /*
1168  * requst_firmware_nowait() callback function
1169  *
1170  * This function is called by the kernel when a firmware is made available,
1171  * or if it times out waiting for the firmware.
1172  */
1173 static void uart_firmware_cont(const struct firmware *fw, void *context)
1174 {
1175  struct qe_firmware *firmware;
1176  struct device *dev = context;
1177  int ret;
1178 
1179  if (!fw) {
1180  dev_err(dev, "firmware not found\n");
1181  return;
1182  }
1183 
1184  firmware = (struct qe_firmware *) fw->data;
1185 
1186  if (firmware->header.length != fw->size) {
1187  dev_err(dev, "invalid firmware\n");
1188  goto out;
1189  }
1190 
1191  ret = qe_upload_firmware(firmware);
1192  if (ret) {
1193  dev_err(dev, "could not load firmware\n");
1194  goto out;
1195  }
1196 
1197  firmware_loaded = 1;
1198  out:
1199  release_firmware(fw);
1200 }
1201 
1202 static int ucc_uart_probe(struct platform_device *ofdev)
1203 {
1204  struct device_node *np = ofdev->dev.of_node;
1205  const unsigned int *iprop; /* Integer OF properties */
1206  const char *sprop; /* String OF properties */
1207  struct uart_qe_port *qe_port = NULL;
1208  struct resource res;
1209  int ret;
1210 
1211  /*
1212  * Determine if we need Soft-UART mode
1213  */
1214  if (of_find_property(np, "soft-uart", NULL)) {
1215  dev_dbg(&ofdev->dev, "using Soft-UART mode\n");
1216  soft_uart = 1;
1217  }
1218 
1219  /*
1220  * If we are using Soft-UART, determine if we need to upload the
1221  * firmware, too.
1222  */
1223  if (soft_uart) {
1224  struct qe_firmware_info *qe_fw_info;
1225 
1226  qe_fw_info = qe_get_firmware_info();
1227 
1228  /* Check if the firmware has been uploaded. */
1229  if (qe_fw_info && strstr(qe_fw_info->id, "Soft-UART")) {
1230  firmware_loaded = 1;
1231  } else {
1232  char filename[32];
1233  unsigned int soc;
1234  unsigned int rev_h;
1235  unsigned int rev_l;
1236 
1237  soc = soc_info(&rev_h, &rev_l);
1238  if (!soc) {
1239  dev_err(&ofdev->dev, "unknown CPU model\n");
1240  return -ENXIO;
1241  }
1242  sprintf(filename, "fsl_qe_ucode_uart_%u_%u%u.bin",
1243  soc, rev_h, rev_l);
1244 
1245  dev_info(&ofdev->dev, "waiting for firmware %s\n",
1246  filename);
1247 
1248  /*
1249  * We call request_firmware_nowait instead of
1250  * request_firmware so that the driver can load and
1251  * initialize the ports without holding up the rest of
1252  * the kernel. If hotplug support is enabled in the
1253  * kernel, then we use it.
1254  */
1256  FW_ACTION_HOTPLUG, filename, &ofdev->dev,
1257  GFP_KERNEL, &ofdev->dev, uart_firmware_cont);
1258  if (ret) {
1259  dev_err(&ofdev->dev,
1260  "could not load firmware %s\n",
1261  filename);
1262  return ret;
1263  }
1264  }
1265  }
1266 
1267  qe_port = kzalloc(sizeof(struct uart_qe_port), GFP_KERNEL);
1268  if (!qe_port) {
1269  dev_err(&ofdev->dev, "can't allocate QE port structure\n");
1270  return -ENOMEM;
1271  }
1272 
1273  /* Search for IRQ and mapbase */
1274  ret = of_address_to_resource(np, 0, &res);
1275  if (ret) {
1276  dev_err(&ofdev->dev, "missing 'reg' property in device tree\n");
1277  goto out_free;
1278  }
1279  if (!res.start) {
1280  dev_err(&ofdev->dev, "invalid 'reg' property in device tree\n");
1281  ret = -EINVAL;
1282  goto out_free;
1283  }
1284  qe_port->port.mapbase = res.start;
1285 
1286  /* Get the UCC number (device ID) */
1287  /* UCCs are numbered 1-7 */
1288  iprop = of_get_property(np, "cell-index", NULL);
1289  if (!iprop) {
1290  iprop = of_get_property(np, "device-id", NULL);
1291  if (!iprop) {
1292  dev_err(&ofdev->dev, "UCC is unspecified in "
1293  "device tree\n");
1294  ret = -EINVAL;
1295  goto out_free;
1296  }
1297  }
1298 
1299  if ((*iprop < 1) || (*iprop > UCC_MAX_NUM)) {
1300  dev_err(&ofdev->dev, "no support for UCC%u\n", *iprop);
1301  ret = -ENODEV;
1302  goto out_free;
1303  }
1304  qe_port->ucc_num = *iprop - 1;
1305 
1306  /*
1307  * In the future, we should not require the BRG to be specified in the
1308  * device tree. If no clock-source is specified, then just pick a BRG
1309  * to use. This requires a new QE library function that manages BRG
1310  * assignments.
1311  */
1312 
1313  sprop = of_get_property(np, "rx-clock-name", NULL);
1314  if (!sprop) {
1315  dev_err(&ofdev->dev, "missing rx-clock-name in device tree\n");
1316  ret = -ENODEV;
1317  goto out_free;
1318  }
1319 
1320  qe_port->us_info.rx_clock = qe_clock_source(sprop);
1321  if ((qe_port->us_info.rx_clock < QE_BRG1) ||
1322  (qe_port->us_info.rx_clock > QE_BRG16)) {
1323  dev_err(&ofdev->dev, "rx-clock-name must be a BRG for UART\n");
1324  ret = -ENODEV;
1325  goto out_free;
1326  }
1327 
1328 #ifdef LOOPBACK
1329  /* In internal loopback mode, TX and RX must use the same clock */
1330  qe_port->us_info.tx_clock = qe_port->us_info.rx_clock;
1331 #else
1332  sprop = of_get_property(np, "tx-clock-name", NULL);
1333  if (!sprop) {
1334  dev_err(&ofdev->dev, "missing tx-clock-name in device tree\n");
1335  ret = -ENODEV;
1336  goto out_free;
1337  }
1338  qe_port->us_info.tx_clock = qe_clock_source(sprop);
1339 #endif
1340  if ((qe_port->us_info.tx_clock < QE_BRG1) ||
1341  (qe_port->us_info.tx_clock > QE_BRG16)) {
1342  dev_err(&ofdev->dev, "tx-clock-name must be a BRG for UART\n");
1343  ret = -ENODEV;
1344  goto out_free;
1345  }
1346 
1347  /* Get the port number, numbered 0-3 */
1348  iprop = of_get_property(np, "port-number", NULL);
1349  if (!iprop) {
1350  dev_err(&ofdev->dev, "missing port-number in device tree\n");
1351  ret = -EINVAL;
1352  goto out_free;
1353  }
1354  qe_port->port.line = *iprop;
1355  if (qe_port->port.line >= UCC_MAX_UART) {
1356  dev_err(&ofdev->dev, "port-number must be 0-%u\n",
1357  UCC_MAX_UART - 1);
1358  ret = -EINVAL;
1359  goto out_free;
1360  }
1361 
1362  qe_port->port.irq = irq_of_parse_and_map(np, 0);
1363  if (qe_port->port.irq == 0) {
1364  dev_err(&ofdev->dev, "could not map IRQ for UCC%u\n",
1365  qe_port->ucc_num + 1);
1366  ret = -EINVAL;
1367  goto out_free;
1368  }
1369 
1370  /*
1371  * Newer device trees have an "fsl,qe" compatible property for the QE
1372  * node, but we still need to support older device trees.
1373  */
1374  np = of_find_compatible_node(NULL, NULL, "fsl,qe");
1375  if (!np) {
1376  np = of_find_node_by_type(NULL, "qe");
1377  if (!np) {
1378  dev_err(&ofdev->dev, "could not find 'qe' node\n");
1379  ret = -EINVAL;
1380  goto out_free;
1381  }
1382  }
1383 
1384  iprop = of_get_property(np, "brg-frequency", NULL);
1385  if (!iprop) {
1386  dev_err(&ofdev->dev,
1387  "missing brg-frequency in device tree\n");
1388  ret = -EINVAL;
1389  goto out_np;
1390  }
1391 
1392  if (*iprop)
1393  qe_port->port.uartclk = *iprop;
1394  else {
1395  /*
1396  * Older versions of U-Boot do not initialize the brg-frequency
1397  * property, so in this case we assume the BRG frequency is
1398  * half the QE bus frequency.
1399  */
1400  iprop = of_get_property(np, "bus-frequency", NULL);
1401  if (!iprop) {
1402  dev_err(&ofdev->dev,
1403  "missing QE bus-frequency in device tree\n");
1404  ret = -EINVAL;
1405  goto out_np;
1406  }
1407  if (*iprop)
1408  qe_port->port.uartclk = *iprop / 2;
1409  else {
1410  dev_err(&ofdev->dev,
1411  "invalid QE bus-frequency in device tree\n");
1412  ret = -EINVAL;
1413  goto out_np;
1414  }
1415  }
1416 
1417  spin_lock_init(&qe_port->port.lock);
1418  qe_port->np = np;
1419  qe_port->port.dev = &ofdev->dev;
1420  qe_port->port.ops = &qe_uart_pops;
1421  qe_port->port.iotype = UPIO_MEM;
1422 
1423  qe_port->tx_nrfifos = TX_NUM_FIFO;
1424  qe_port->tx_fifosize = TX_BUF_SIZE;
1425  qe_port->rx_nrfifos = RX_NUM_FIFO;
1426  qe_port->rx_fifosize = RX_BUF_SIZE;
1427 
1428  qe_port->wait_closing = UCC_WAIT_CLOSING;
1429  qe_port->port.fifosize = 512;
1430  qe_port->port.flags = UPF_BOOT_AUTOCONF | UPF_IOREMAP;
1431 
1432  qe_port->us_info.ucc_num = qe_port->ucc_num;
1433  qe_port->us_info.regs = (phys_addr_t) res.start;
1434  qe_port->us_info.irq = qe_port->port.irq;
1435 
1436  qe_port->us_info.rx_bd_ring_len = qe_port->rx_nrfifos;
1437  qe_port->us_info.tx_bd_ring_len = qe_port->tx_nrfifos;
1438 
1439  /* Make sure ucc_slow_init() initializes both TX and RX */
1440  qe_port->us_info.init_tx = 1;
1441  qe_port->us_info.init_rx = 1;
1442 
1443  /* Add the port to the uart sub-system. This will cause
1444  * qe_uart_config_port() to be called, so the us_info structure must
1445  * be initialized.
1446  */
1447  ret = uart_add_one_port(&ucc_uart_driver, &qe_port->port);
1448  if (ret) {
1449  dev_err(&ofdev->dev, "could not add /dev/ttyQE%u\n",
1450  qe_port->port.line);
1451  goto out_np;
1452  }
1453 
1454  dev_set_drvdata(&ofdev->dev, qe_port);
1455 
1456  dev_info(&ofdev->dev, "UCC%u assigned to /dev/ttyQE%u\n",
1457  qe_port->ucc_num + 1, qe_port->port.line);
1458 
1459  /* Display the mknod command for this device */
1460  dev_dbg(&ofdev->dev, "mknod command is 'mknod /dev/ttyQE%u c %u %u'\n",
1461  qe_port->port.line, SERIAL_QE_MAJOR,
1462  SERIAL_QE_MINOR + qe_port->port.line);
1463 
1464  return 0;
1465 out_np:
1466  of_node_put(np);
1467 out_free:
1468  kfree(qe_port);
1469  return ret;
1470 }
1471 
1472 static int ucc_uart_remove(struct platform_device *ofdev)
1473 {
1474  struct uart_qe_port *qe_port = dev_get_drvdata(&ofdev->dev);
1475 
1476  dev_info(&ofdev->dev, "removing /dev/ttyQE%u\n", qe_port->port.line);
1477 
1478  uart_remove_one_port(&ucc_uart_driver, &qe_port->port);
1479 
1480  dev_set_drvdata(&ofdev->dev, NULL);
1481  kfree(qe_port);
1482 
1483  return 0;
1484 }
1485 
1486 static struct of_device_id ucc_uart_match[] = {
1487  {
1488  .type = "serial",
1489  .compatible = "ucc_uart",
1490  },
1491  {},
1492 };
1493 MODULE_DEVICE_TABLE(of, ucc_uart_match);
1494 
1495 static struct platform_driver ucc_uart_of_driver = {
1496  .driver = {
1497  .name = "ucc_uart",
1498  .owner = THIS_MODULE,
1499  .of_match_table = ucc_uart_match,
1500  },
1501  .probe = ucc_uart_probe,
1502  .remove = ucc_uart_remove,
1503 };
1504 
1505 static int __init ucc_uart_init(void)
1506 {
1507  int ret;
1508 
1509  printk(KERN_INFO "Freescale QUICC Engine UART device driver\n");
1510 #ifdef LOOPBACK
1511  printk(KERN_INFO "ucc-uart: Using loopback mode\n");
1512 #endif
1513 
1514  ret = uart_register_driver(&ucc_uart_driver);
1515  if (ret) {
1516  printk(KERN_ERR "ucc-uart: could not register UART driver\n");
1517  return ret;
1518  }
1519 
1520  ret = platform_driver_register(&ucc_uart_of_driver);
1521  if (ret)
1523  "ucc-uart: could not register platform driver\n");
1524 
1525  return ret;
1526 }
1527 
1528 static void __exit ucc_uart_exit(void)
1529 {
1531  "Freescale QUICC Engine UART device driver unloading\n");
1532 
1533  platform_driver_unregister(&ucc_uart_of_driver);
1534  uart_unregister_driver(&ucc_uart_driver);
1535 }
1536 
1537 module_init(ucc_uart_init);
1538 module_exit(ucc_uart_exit);
1539 
1540 MODULE_DESCRIPTION("Freescale QUICC Engine (QE) UART");
1541 MODULE_AUTHOR("Timur Tabi <[email protected]>");
1542 MODULE_LICENSE("GPL v2");
1544