Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
uhci-hcd.h
Go to the documentation of this file.
1 #ifndef __LINUX_UHCI_HCD_H
2 #define __LINUX_UHCI_HCD_H
3 
4 #include <linux/list.h>
5 #include <linux/usb.h>
6 
7 #define usb_packetid(pipe) (usb_pipein(pipe) ? USB_PID_IN : USB_PID_OUT)
8 #define PIPE_DEVEP_MASK 0x0007ff00
9 
10 
11 /*
12  * Universal Host Controller Interface data structures and defines
13  */
14 
15 /* Command register */
16 #define USBCMD 0
17 #define USBCMD_RS 0x0001 /* Run/Stop */
18 #define USBCMD_HCRESET 0x0002 /* Host reset */
19 #define USBCMD_GRESET 0x0004 /* Global reset */
20 #define USBCMD_EGSM 0x0008 /* Global Suspend Mode */
21 #define USBCMD_FGR 0x0010 /* Force Global Resume */
22 #define USBCMD_SWDBG 0x0020 /* SW Debug mode */
23 #define USBCMD_CF 0x0040 /* Config Flag (sw only) */
24 #define USBCMD_MAXP 0x0080 /* Max Packet (0 = 32, 1 = 64) */
25 
26 /* Status register */
27 #define USBSTS 2
28 #define USBSTS_USBINT 0x0001 /* Interrupt due to IOC */
29 #define USBSTS_ERROR 0x0002 /* Interrupt due to error */
30 #define USBSTS_RD 0x0004 /* Resume Detect */
31 #define USBSTS_HSE 0x0008 /* Host System Error: PCI problems */
32 #define USBSTS_HCPE 0x0010 /* Host Controller Process Error:
33  * the schedule is buggy */
34 #define USBSTS_HCH 0x0020 /* HC Halted */
35 
36 /* Interrupt enable register */
37 #define USBINTR 4
38 #define USBINTR_TIMEOUT 0x0001 /* Timeout/CRC error enable */
39 #define USBINTR_RESUME 0x0002 /* Resume interrupt enable */
40 #define USBINTR_IOC 0x0004 /* Interrupt On Complete enable */
41 #define USBINTR_SP 0x0008 /* Short packet interrupt enable */
42 
43 #define USBFRNUM 6
44 #define USBFLBASEADD 8
45 #define USBSOF 12
46 #define USBSOF_DEFAULT 64 /* Frame length is exactly 1 ms */
47 
48 /* USB port status and control registers */
49 #define USBPORTSC1 16
50 #define USBPORTSC2 18
51 #define USBPORTSC_CCS 0x0001 /* Current Connect Status
52  * ("device present") */
53 #define USBPORTSC_CSC 0x0002 /* Connect Status Change */
54 #define USBPORTSC_PE 0x0004 /* Port Enable */
55 #define USBPORTSC_PEC 0x0008 /* Port Enable Change */
56 #define USBPORTSC_DPLUS 0x0010 /* D+ high (line status) */
57 #define USBPORTSC_DMINUS 0x0020 /* D- high (line status) */
58 #define USBPORTSC_RD 0x0040 /* Resume Detect */
59 #define USBPORTSC_RES1 0x0080 /* reserved, always 1 */
60 #define USBPORTSC_LSDA 0x0100 /* Low Speed Device Attached */
61 #define USBPORTSC_PR 0x0200 /* Port Reset */
62 /* OC and OCC from Intel 430TX and later (not UHCI 1.1d spec) */
63 #define USBPORTSC_OC 0x0400 /* Over Current condition */
64 #define USBPORTSC_OCC 0x0800 /* Over Current Change R/WC */
65 #define USBPORTSC_SUSP 0x1000 /* Suspend */
66 #define USBPORTSC_RES2 0x2000 /* reserved, write zeroes */
67 #define USBPORTSC_RES3 0x4000 /* reserved, write zeroes */
68 #define USBPORTSC_RES4 0x8000 /* reserved, write zeroes */
69 
70 /* PCI legacy support register */
71 #define USBLEGSUP 0xc0
72 #define USBLEGSUP_DEFAULT 0x2000 /* only PIRQ enable set */
73 #define USBLEGSUP_RWC 0x8f00 /* the R/WC bits */
74 #define USBLEGSUP_RO 0x5040 /* R/O and reserved bits */
75 
76 /* PCI Intel-specific resume-enable register */
77 #define USBRES_INTEL 0xc4
78 #define USBPORT1EN 0x01
79 #define USBPORT2EN 0x02
80 
81 #define UHCI_PTR_BITS(uhci) cpu_to_hc32((uhci), 0x000F)
82 #define UHCI_PTR_TERM(uhci) cpu_to_hc32((uhci), 0x0001)
83 #define UHCI_PTR_QH(uhci) cpu_to_hc32((uhci), 0x0002)
84 #define UHCI_PTR_DEPTH(uhci) cpu_to_hc32((uhci), 0x0004)
85 #define UHCI_PTR_BREADTH(uhci) cpu_to_hc32((uhci), 0x0000)
86 
87 #define UHCI_NUMFRAMES 1024 /* in the frame list [array] */
88 #define UHCI_MAX_SOF_NUMBER 2047 /* in an SOF packet */
89 #define CAN_SCHEDULE_FRAMES 1000 /* how far in the future frames
90  * can be scheduled */
91 #define MAX_PHASE 32 /* Periodic scheduling length */
92 
93 /* When no queues need Full-Speed Bandwidth Reclamation,
94  * delay this long before turning FSBR off */
95 #define FSBR_OFF_DELAY msecs_to_jiffies(10)
96 
97 /* If a queue hasn't advanced after this much time, assume it is stuck */
98 #define QH_WAIT_TIMEOUT msecs_to_jiffies(200)
99 
100 
101 /*
102  * __hc32 and __hc16 are "Host Controller" types, they may be equivalent to
103  * __leXX (normally) or __beXX (given UHCI_BIG_ENDIAN_DESC), depending on
104  * the host controller implementation.
105  *
106  * To facilitate the strongest possible byte-order checking from "sparse"
107  * and so on, we use __leXX unless that's not practical.
108  */
109 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC
112 #else
113 #define __hc32 __le32
114 #define __hc16 __le16
115 #endif
116 
117 /*
118  * Queue Headers
119  */
120 
121 /*
122  * One role of a QH is to hold a queue of TDs for some endpoint. One QH goes
123  * with each endpoint, and qh->element (updated by the HC) is either:
124  * - the next unprocessed TD in the endpoint's queue, or
125  * - UHCI_PTR_TERM (when there's no more traffic for this endpoint).
126  *
127  * The other role of a QH is to serve as a "skeleton" framelist entry, so we
128  * can easily splice a QH for some endpoint into the schedule at the right
129  * place. Then qh->element is UHCI_PTR_TERM.
130  *
131  * In the schedule, qh->link maintains a list of QHs seen by the HC:
132  * skel1 --> ep1-qh --> ep2-qh --> ... --> skel2 --> ...
133  *
134  * qh->node is the software equivalent of qh->link. The differences
135  * are that the software list is doubly-linked and QHs in the UNLINKING
136  * state are on the software list but not the hardware schedule.
137  *
138  * For bookkeeping purposes we maintain QHs even for Isochronous endpoints,
139  * but they never get added to the hardware schedule.
140  */
141 #define QH_STATE_IDLE 1 /* QH is not being used */
142 #define QH_STATE_UNLINKING 2 /* QH has been removed from the
143  * schedule but the hardware may
144  * still be using it */
145 #define QH_STATE_ACTIVE 3 /* QH is on the schedule */
146 
147 struct uhci_qh {
148  /* Hardware fields */
149  __hc32 link; /* Next QH in the schedule */
150  __hc32 element; /* Queue element (TD) pointer */
152  /* Software fields */
155  struct list_head node; /* Node in the list of QHs */
156  struct usb_host_endpoint *hep; /* Endpoint information */
157  struct usb_device *udev;
158  struct list_head queue; /* Queue of urbps for this QH */
159  struct uhci_td *dummy_td; /* Dummy TD to end the queue */
160  struct uhci_td *post_td; /* Last TD completed */
162  struct usb_iso_packet_descriptor *iso_packet_desc;
163  /* Next urb->iso_frame_desc entry */
164  unsigned long advance_jiffies; /* Time of last queue advance */
165  unsigned int unlink_frame; /* When the QH was unlinked */
166  unsigned int period; /* For Interrupt and Isochronous QHs */
167  short phase; /* Between 0 and period-1 */
168  short load; /* Periodic time requirement, in us */
169  unsigned int iso_frame; /* Frame # for iso_packet_desc */
171  int state; /* QH_STATE_xxx; see above */
172  int type; /* Queue type (control, bulk, etc) */
173  int skel; /* Skeleton queue number */
175  unsigned int initial_toggle:1; /* Endpoint's current toggle value */
176  unsigned int needs_fixup:1; /* Must fix the TD toggle values */
177  unsigned int is_stopped:1; /* Queue was stopped by error/unlink */
178  unsigned int wait_expired:1; /* QH_WAIT_TIMEOUT has expired */
179  unsigned int bandwidth_reserved:1; /* Periodic bandwidth has
180  * been allocated */
181 } __attribute__((aligned(16)));
183 /*
184  * We need a special accessor for the element pointer because it is
185  * subject to asynchronous updates by the controller.
186  */
187 #define qh_element(qh) ACCESS_ONCE((qh)->element)
189 #define LINK_TO_QH(uhci, qh) (UHCI_PTR_QH((uhci)) | \
190  cpu_to_hc32((uhci), (qh)->dma_handle))
192 
193 /*
194  * Transfer Descriptors
195  */
197 /*
198  * for TD <status>:
199  */
200 #define TD_CTRL_SPD (1 << 29) /* Short Packet Detect */
201 #define TD_CTRL_C_ERR_MASK (3 << 27) /* Error Counter bits */
202 #define TD_CTRL_C_ERR_SHIFT 27
203 #define TD_CTRL_LS (1 << 26) /* Low Speed Device */
204 #define TD_CTRL_IOS (1 << 25) /* Isochronous Select */
205 #define TD_CTRL_IOC (1 << 24) /* Interrupt on Complete */
206 #define TD_CTRL_ACTIVE (1 << 23) /* TD Active */
207 #define TD_CTRL_STALLED (1 << 22) /* TD Stalled */
208 #define TD_CTRL_DBUFERR (1 << 21) /* Data Buffer Error */
209 #define TD_CTRL_BABBLE (1 << 20) /* Babble Detected */
210 #define TD_CTRL_NAK (1 << 19) /* NAK Received */
211 #define TD_CTRL_CRCTIMEO (1 << 18) /* CRC/Time Out Error */
212 #define TD_CTRL_BITSTUFF (1 << 17) /* Bit Stuff Error */
213 #define TD_CTRL_ACTLEN_MASK 0x7FF /* actual length, encoded as n - 1 */
215 #define TD_CTRL_ANY_ERROR (TD_CTRL_STALLED | TD_CTRL_DBUFERR | \
216  TD_CTRL_BABBLE | TD_CTRL_CRCTIME | \
217  TD_CTRL_BITSTUFF)
218 
219 #define uhci_maxerr(err) ((err) << TD_CTRL_C_ERR_SHIFT)
220 #define uhci_status_bits(ctrl_sts) ((ctrl_sts) & 0xF60000)
221 #define uhci_actual_length(ctrl_sts) (((ctrl_sts) + 1) & \
222  TD_CTRL_ACTLEN_MASK) /* 1-based */
224 /*
225  * for TD <info>: (a.k.a. Token)
226  */
227 #define td_token(uhci, td) hc32_to_cpu((uhci), (td)->token)
228 #define TD_TOKEN_DEVADDR_SHIFT 8
229 #define TD_TOKEN_TOGGLE_SHIFT 19
230 #define TD_TOKEN_TOGGLE (1 << 19)
231 #define TD_TOKEN_EXPLEN_SHIFT 21
232 #define TD_TOKEN_EXPLEN_MASK 0x7FF /* expected length, encoded as n-1 */
233 #define TD_TOKEN_PID_MASK 0xFF
234 
235 #define uhci_explen(len) ((((len) - 1) & TD_TOKEN_EXPLEN_MASK) << \
236  TD_TOKEN_EXPLEN_SHIFT)
238 #define uhci_expected_length(token) ((((token) >> TD_TOKEN_EXPLEN_SHIFT) + \
239  1) & TD_TOKEN_EXPLEN_MASK)
240 #define uhci_toggle(token) (((token) >> TD_TOKEN_TOGGLE_SHIFT) & 1)
241 #define uhci_endpoint(token) (((token) >> 15) & 0xf)
242 #define uhci_devaddr(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7f)
243 #define uhci_devep(token) (((token) >> TD_TOKEN_DEVADDR_SHIFT) & 0x7ff)
244 #define uhci_packetid(token) ((token) & TD_TOKEN_PID_MASK)
245 #define uhci_packetout(token) (uhci_packetid(token) != USB_PID_IN)
246 #define uhci_packetin(token) (uhci_packetid(token) == USB_PID_IN)
247 
248 /*
249  * The documentation says "4 words for hardware, 4 words for software".
250  *
251  * That's silly, the hardware doesn't care. The hardware only cares that
252  * the hardware words are 16-byte aligned, and we can have any amount of
253  * sw space after the TD entry.
254  *
255  * td->link points to either another TD (not necessarily for the same urb or
256  * even the same endpoint), or nothing (PTR_TERM), or a QH.
257  */
258 struct uhci_td {
259  /* Hardware fields */
260  __hc32 link;
262  __hc32 token;
264 
265  /* Software fields */
267 
268  struct list_head list;
269 
270  int frame; /* for iso: what frame? */
274 /*
275  * We need a special accessor for the control/status word because it is
276  * subject to asynchronous updates by the controller.
277  */
278 #define td_status(uhci, td) hc32_to_cpu((uhci), \
279  ACCESS_ONCE((td)->status))
281 #define LINK_TO_TD(uhci, td) (cpu_to_hc32((uhci), (td)->dma_handle))
282 
283 
284 /*
285  * Skeleton Queue Headers
286  */
287 
288 /*
289  * The UHCI driver uses QHs with Interrupt, Control and Bulk URBs for
290  * automatic queuing. To make it easy to insert entries into the schedule,
291  * we have a skeleton of QHs for each predefined Interrupt latency.
292  * Asynchronous QHs (low-speed control, full-speed control, and bulk)
293  * go onto the period-1 interrupt list, since they all get accessed on
294  * every frame.
295  *
296  * When we want to add a new QH, we add it to the list starting from the
297  * appropriate skeleton QH. For instance, the schedule can look like this:
298  *
299  * skel int128 QH
300  * dev 1 interrupt QH
301  * dev 5 interrupt QH
302  * skel int64 QH
303  * skel int32 QH
304  * ...
305  * skel int1 + async QH
306  * dev 5 low-speed control QH
307  * dev 1 bulk QH
308  * dev 2 bulk QH
309  *
310  * There is a special terminating QH used to keep full-speed bandwidth
311  * reclamation active when no full-speed control or bulk QHs are linked
312  * into the schedule. It has an inactive TD (to work around a PIIX bug,
313  * see the Intel errata) and it points back to itself.
314  *
315  * There's a special skeleton QH for Isochronous QHs which never appears
316  * on the schedule. Isochronous TDs go on the schedule before the
317  * the skeleton QHs. The hardware accesses them directly rather than
318  * through their QH, which is used only for bookkeeping purposes.
319  * While the UHCI spec doesn't forbid the use of QHs for Isochronous,
320  * it doesn't use them either. And the spec says that queues never
321  * advance on an error completion status, which makes them totally
322  * unsuitable for Isochronous transfers.
323  *
324  * There's also a special skeleton QH used for QHs which are in the process
325  * of unlinking and so may still be in use by the hardware. It too never
326  * appears on the schedule.
327  */
329 #define UHCI_NUM_SKELQH 11
330 #define SKEL_UNLINK 0
331 #define skel_unlink_qh skelqh[SKEL_UNLINK]
332 #define SKEL_ISO 1
333 #define skel_iso_qh skelqh[SKEL_ISO]
334  /* int128, int64, ..., int1 = 2, 3, ..., 9 */
335 #define SKEL_INDEX(exponent) (9 - exponent)
336 #define SKEL_ASYNC 9
337 #define skel_async_qh skelqh[SKEL_ASYNC]
338 #define SKEL_TERM 10
339 #define skel_term_qh skelqh[SKEL_TERM]
341 /* The following entries refer to sublists of skel_async_qh */
342 #define SKEL_LS_CONTROL 20
343 #define SKEL_FS_CONTROL 21
344 #define SKEL_FSBR SKEL_FS_CONTROL
345 #define SKEL_BULK 22
346 
347 /*
348  * The UHCI controller and root hub
349  */
350 
351 /*
352  * States for the root hub:
353  *
354  * To prevent "bouncing" in the presence of electrical noise,
355  * when there are no devices attached we delay for 1 second in the
356  * RUNNING_NODEVS state before switching to the AUTO_STOPPED state.
357  *
358  * (Note that the AUTO_STOPPED state won't be necessary once the hub
359  * driver learns to autosuspend.)
360  */
361 enum uhci_rh_state {
362  /* In the following states the HC must be halted.
363  * These two must come first. */
366 
369 
370  /* In this state the HC changes from running to halted,
371  * so it can legally appear either way. */
373 
374  /* In the following states it's an error if the HC is halted.
375  * These two must come last. */
376  UHCI_RH_RUNNING, /* The normal state */
377  UHCI_RH_RUNNING_NODEVS, /* Running with no devices attached */
378 };
379 
380 /*
381  * The full UHCI controller information:
382  */
383 struct uhci_hcd {
385  /* debugfs */
386  struct dentry *dentry;
388  /* Grabbed from PCI */
389  unsigned long io_addr;
391  /* Used when registers are memory mapped */
392  void __iomem *regs;
394  struct dma_pool *qh_pool;
395  struct dma_pool *td_pool;
397  struct uhci_td *term_td; /* Terminating TD, see UHCI bug */
398  struct uhci_qh *skelqh[UHCI_NUM_SKELQH]; /* Skeleton QHs */
399  struct uhci_qh *next_qh; /* Next QH to scan */
403  dma_addr_t frame_dma_handle; /* Hardware frame list */
404  __hc32 *frame;
405  void **frame_cpu; /* CPU's frame list */
408  unsigned long auto_stop_time; /* When to AUTO_STOP */
410  unsigned int frame_number; /* As of last check */
411  unsigned int is_stopped;
412 #define UHCI_IS_STOPPED 9999 /* Larger than a frame # */
413  unsigned int last_iso_frame; /* Frame of last scan */
414  unsigned int cur_iso_frame; /* Frame for current scan */
415 
416  unsigned int scan_in_progress:1; /* Schedule scan is running */
417  unsigned int need_rescan:1; /* Redo the schedule scan */
418  unsigned int dead:1; /* Controller has died */
419  unsigned int RD_enable:1; /* Suspended root hub with
420  Resume-Detect interrupts
421  enabled */
422  unsigned int is_initialized:1; /* Data structure is usable */
423  unsigned int fsbr_is_on:1; /* FSBR is turned on */
424  unsigned int fsbr_is_wanted:1; /* Does any URB want FSBR? */
425  unsigned int fsbr_expiring:1; /* FSBR is timing out */
427  struct timer_list fsbr_timer; /* For turning off FBSR */
429  /* Silicon quirks */
430  unsigned int oc_low:1; /* OverCurrent bit active low */
431  unsigned int wait_for_hp:1; /* Wait for HP port reset */
432  unsigned int big_endian_mmio:1; /* Big endian registers */
433  unsigned int big_endian_desc:1; /* Big endian descriptors */
434 
435  /* Support for port suspend/resume/reset */
436  unsigned long port_c_suspend; /* Bit-arrays of ports */
437  unsigned long resuming_ports;
438  unsigned long ports_timeout; /* Time to stop signalling */
440  struct list_head idle_qh_list; /* Where the idle QHs live */
441 
442  int rh_numports; /* Number of root-hub ports */
444  wait_queue_head_t waitqh; /* endpoint_disable waiters */
445  int num_waiting; /* Number of waiters */
447  int total_load; /* Sum of array values */
448  short load[MAX_PHASE]; /* Periodic allocations */
450  /* Reset host controller */
451  void (*reset_hc) (struct uhci_hcd *uhci);
452  int (*check_and_reset_hc) (struct uhci_hcd *uhci);
453  /* configure_hc should perform arch specific settings, if needed */
454  void (*configure_hc) (struct uhci_hcd *uhci);
455  /* Check for broken resume detect interrupts */
457  /* Check for broken global suspend */
458  int (*global_suspend_mode_is_broken) (struct uhci_hcd *uhci);
459 };
460 
461 /* Convert between a usb_hcd pointer and the corresponding uhci_hcd */
462 static inline struct uhci_hcd *hcd_to_uhci(struct usb_hcd *hcd)
463 {
464  return (struct uhci_hcd *) (hcd->hcd_priv);
465 }
466 static inline struct usb_hcd *uhci_to_hcd(struct uhci_hcd *uhci)
467 {
468  return container_of((void *) uhci, struct usb_hcd, hcd_priv);
469 }
470 
471 #define uhci_dev(u) (uhci_to_hcd(u)->self.controller)
472 
473 /* Utility macro for comparing frame numbers */
474 #define uhci_frame_before_eq(f1, f2) (0 <= (int) ((f2) - (f1)))
475 
477 /*
478  * Private per-URB data
479  */
480 struct urb_priv {
481  struct list_head node; /* Node in the QH's urbp list */
482 
483  struct urb *urb;
484 
485  struct uhci_qh *qh; /* QH for this URB */
486  struct list_head td_list;
487 
488  unsigned fsbr:1; /* URB wants FSBR */
489 };
491 
492 /* Some special IDs */
493 
494 #define PCI_VENDOR_ID_GENESYS 0x17a0
495 #define PCI_DEVICE_ID_GL880S_UHCI 0x8083
496 
497 /*
498  * Functions used to access controller registers. The UCHI spec says that host
499  * controller I/O registers are mapped into PCI I/O space. For non-PCI hosts
500  * we use memory mapped registers.
501  */
502 
503 #ifndef CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC
504 /* Support PCI only */
505 static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg)
506 {
507  return inl(uhci->io_addr + reg);
508 }
509 
510 static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg)
511 {
512  outl(val, uhci->io_addr + reg);
513 }
514 
515 static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg)
516 {
517  return inw(uhci->io_addr + reg);
518 }
519 
520 static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg)
521 {
522  outw(val, uhci->io_addr + reg);
523 }
524 
525 static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg)
526 {
527  return inb(uhci->io_addr + reg);
528 }
529 
530 static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg)
531 {
532  outb(val, uhci->io_addr + reg);
533 }
534 
535 #else
536 /* Support non-PCI host controllers */
537 #ifdef CONFIG_PCI
538 /* Support PCI and non-PCI host controllers */
539 #define uhci_has_pci_registers(u) ((u)->io_addr != 0)
540 #else
541 /* Support non-PCI host controllers only */
542 #define uhci_has_pci_registers(u) 0
543 #endif
544 
545 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
546 /* Support (non-PCI) big endian host controllers */
547 #define uhci_big_endian_mmio(u) ((u)->big_endian_mmio)
548 #else
549 #define uhci_big_endian_mmio(u) 0
550 #endif
551 
552 static inline u32 uhci_readl(const struct uhci_hcd *uhci, int reg)
553 {
554  if (uhci_has_pci_registers(uhci))
555  return inl(uhci->io_addr + reg);
556 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
557  else if (uhci_big_endian_mmio(uhci))
558  return readl_be(uhci->regs + reg);
559 #endif
560  else
561  return readl(uhci->regs + reg);
562 }
563 
564 static inline void uhci_writel(const struct uhci_hcd *uhci, u32 val, int reg)
565 {
566  if (uhci_has_pci_registers(uhci))
567  outl(val, uhci->io_addr + reg);
568 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
569  else if (uhci_big_endian_mmio(uhci))
570  writel_be(val, uhci->regs + reg);
571 #endif
572  else
573  writel(val, uhci->regs + reg);
574 }
575 
576 static inline u16 uhci_readw(const struct uhci_hcd *uhci, int reg)
577 {
578  if (uhci_has_pci_registers(uhci))
579  return inw(uhci->io_addr + reg);
580 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
581  else if (uhci_big_endian_mmio(uhci))
582  return readw_be(uhci->regs + reg);
583 #endif
584  else
585  return readw(uhci->regs + reg);
586 }
587 
588 static inline void uhci_writew(const struct uhci_hcd *uhci, u16 val, int reg)
589 {
590  if (uhci_has_pci_registers(uhci))
591  outw(val, uhci->io_addr + reg);
592 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
593  else if (uhci_big_endian_mmio(uhci))
594  writew_be(val, uhci->regs + reg);
595 #endif
596  else
597  writew(val, uhci->regs + reg);
598 }
599 
600 static inline u8 uhci_readb(const struct uhci_hcd *uhci, int reg)
601 {
602  if (uhci_has_pci_registers(uhci))
603  return inb(uhci->io_addr + reg);
604 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
605  else if (uhci_big_endian_mmio(uhci))
606  return readb_be(uhci->regs + reg);
607 #endif
608  else
609  return readb(uhci->regs + reg);
610 }
611 
612 static inline void uhci_writeb(const struct uhci_hcd *uhci, u8 val, int reg)
613 {
614  if (uhci_has_pci_registers(uhci))
615  outb(val, uhci->io_addr + reg);
616 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_MMIO
617  else if (uhci_big_endian_mmio(uhci))
618  writeb_be(val, uhci->regs + reg);
619 #endif
620  else
621  writeb(val, uhci->regs + reg);
622 }
623 #endif /* CONFIG_USB_UHCI_SUPPORT_NON_PCI_HC */
624 
625 /*
626  * The GRLIB GRUSBHC controller can use big endian format for its descriptors.
627  *
628  * UHCI controllers accessed through PCI work normally (little-endian
629  * everywhere), so we don't bother supporting a BE-only mode.
630  */
631 #ifdef CONFIG_USB_UHCI_BIG_ENDIAN_DESC
632 #define uhci_big_endian_desc(u) ((u)->big_endian_desc)
633 
634 /* cpu to uhci */
635 static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x)
636 {
637  return uhci_big_endian_desc(uhci)
639  : (__force __hc32)cpu_to_le32(x);
640 }
641 
642 /* uhci to cpu */
643 static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x)
644 {
645  return uhci_big_endian_desc(uhci)
647  : le32_to_cpu((__force __le32)x);
648 }
649 
650 #else
651 /* cpu to uhci */
652 static inline __hc32 cpu_to_hc32(const struct uhci_hcd *uhci, const u32 x)
653 {
654  return cpu_to_le32(x);
655 }
656 
657 /* uhci to cpu */
658 static inline u32 hc32_to_cpu(const struct uhci_hcd *uhci, const __hc32 x)
659 {
660  return le32_to_cpu(x);
661 }
662 #endif
663 
664 #endif