Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
uio_pruss.c
Go to the documentation of this file.
1 /*
2  * Programmable Real-Time Unit Sub System (PRUSS) UIO driver (uio_pruss)
3  *
4  * This driver exports PRUSS host event out interrupts and PRUSS, L3 RAM,
5  * and DDR RAM to user space for applications interacting with PRUSS firmware
6  *
7  * Copyright (C) 2010-11 Texas Instruments Incorporated - http://www.ti.com/
8  *
9  * This program is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU General Public License as
11  * published by the Free Software Foundation version 2.
12  *
13  * This program is distributed "as is" WITHOUT ANY WARRANTY of any
14  * kind, whether express or implied; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  */
18 #include <linux/device.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/platform_device.h>
22 #include <linux/uio_driver.h>
24 #include <linux/io.h>
25 #include <linux/clk.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/slab.h>
28 #include <mach/sram.h>
29 
30 #define DRV_NAME "pruss_uio"
31 #define DRV_VERSION "1.0"
32 
33 static int sram_pool_sz = SZ_16K;
34 module_param(sram_pool_sz, int, 0);
35 MODULE_PARM_DESC(sram_pool_sz, "sram pool size to allocate ");
36 
37 static int extram_pool_sz = SZ_256K;
38 module_param(extram_pool_sz, int, 0);
39 MODULE_PARM_DESC(extram_pool_sz, "external ram pool size to allocate");
40 
41 /*
42  * Host event IRQ numbers from PRUSS - PRUSS can generate up to 8 interrupt
43  * events to AINTC of ARM host processor - which can be used for IPC b/w PRUSS
44  * firmware and user space application, async notification from PRU firmware
45  * to user space application
46  * 3 PRU_EVTOUT0
47  * 4 PRU_EVTOUT1
48  * 5 PRU_EVTOUT2
49  * 6 PRU_EVTOUT3
50  * 7 PRU_EVTOUT4
51  * 8 PRU_EVTOUT5
52  * 9 PRU_EVTOUT6
53  * 10 PRU_EVTOUT7
54 */
55 #define MAX_PRUSS_EVT 8
56 
57 #define PINTC_HIDISR 0x0038
58 #define PINTC_HIPIR 0x0900
59 #define HIPIR_NOPEND 0x80000000
60 #define PINTC_HIER 0x1500
61 
62 struct uio_pruss_dev {
63  struct uio_info *info;
64  struct clk *pruss_clk;
68  void *sram_vaddr;
69  void *ddr_vaddr;
70  unsigned int hostirq_start;
71  unsigned int pintc_base;
72 };
73 
74 static irqreturn_t pruss_handler(int irq, struct uio_info *info)
75 {
76  struct uio_pruss_dev *gdev = info->priv;
77  int intr_bit = (irq - gdev->hostirq_start + 2);
78  int val, intr_mask = (1 << intr_bit);
79  void __iomem *base = gdev->prussio_vaddr + gdev->pintc_base;
80  void __iomem *intren_reg = base + PINTC_HIER;
81  void __iomem *intrdis_reg = base + PINTC_HIDISR;
82  void __iomem *intrstat_reg = base + PINTC_HIPIR + (intr_bit << 2);
83 
84  val = ioread32(intren_reg);
85  /* Is interrupt enabled and active ? */
86  if (!(val & intr_mask) && (ioread32(intrstat_reg) & HIPIR_NOPEND))
87  return IRQ_NONE;
88  /* Disable interrupt */
89  iowrite32(intr_bit, intrdis_reg);
90  return IRQ_HANDLED;
91 }
92 
93 static void pruss_cleanup(struct platform_device *dev,
94  struct uio_pruss_dev *gdev)
95 {
96  int cnt;
97  struct uio_info *p = gdev->info;
98 
99  for (cnt = 0; cnt < MAX_PRUSS_EVT; cnt++, p++) {
101  kfree(p->name);
102  }
103  iounmap(gdev->prussio_vaddr);
104  if (gdev->ddr_vaddr) {
105  dma_free_coherent(&dev->dev, extram_pool_sz, gdev->ddr_vaddr,
106  gdev->ddr_paddr);
107  }
108  if (gdev->sram_vaddr)
109  sram_free(gdev->sram_vaddr, sram_pool_sz);
110  kfree(gdev->info);
111  clk_put(gdev->pruss_clk);
112  kfree(gdev);
113 }
114 
115 static int __devinit pruss_probe(struct platform_device *dev)
116 {
117  struct uio_info *p;
118  struct uio_pruss_dev *gdev;
119  struct resource *regs_prussio;
120  int ret = -ENODEV, cnt = 0, len;
121  struct uio_pruss_pdata *pdata = dev->dev.platform_data;
122 
123  gdev = kzalloc(sizeof(struct uio_pruss_dev), GFP_KERNEL);
124  if (!gdev)
125  return -ENOMEM;
126 
127  gdev->info = kzalloc(sizeof(*p) * MAX_PRUSS_EVT, GFP_KERNEL);
128  if (!gdev->info) {
129  kfree(gdev);
130  return -ENOMEM;
131  }
132  /* Power on PRU in case its not done as part of boot-loader */
133  gdev->pruss_clk = clk_get(&dev->dev, "pruss");
134  if (IS_ERR(gdev->pruss_clk)) {
135  dev_err(&dev->dev, "Failed to get clock\n");
136  kfree(gdev->info);
137  kfree(gdev);
138  ret = PTR_ERR(gdev->pruss_clk);
139  return ret;
140  } else {
141  clk_enable(gdev->pruss_clk);
142  }
143 
144  regs_prussio = platform_get_resource(dev, IORESOURCE_MEM, 0);
145  if (!regs_prussio) {
146  dev_err(&dev->dev, "No PRUSS I/O resource specified\n");
147  goto out_free;
148  }
149 
150  if (!regs_prussio->start) {
151  dev_err(&dev->dev, "Invalid memory resource\n");
152  goto out_free;
153  }
154 
155  gdev->sram_vaddr = sram_alloc(sram_pool_sz, &(gdev->sram_paddr));
156  if (!gdev->sram_vaddr) {
157  dev_err(&dev->dev, "Could not allocate SRAM pool\n");
158  goto out_free;
159  }
160 
161  gdev->ddr_vaddr = dma_alloc_coherent(&dev->dev, extram_pool_sz,
162  &(gdev->ddr_paddr), GFP_KERNEL | GFP_DMA);
163  if (!gdev->ddr_vaddr) {
164  dev_err(&dev->dev, "Could not allocate external memory\n");
165  goto out_free;
166  }
167 
168  len = resource_size(regs_prussio);
169  gdev->prussio_vaddr = ioremap(regs_prussio->start, len);
170  if (!gdev->prussio_vaddr) {
171  dev_err(&dev->dev, "Can't remap PRUSS I/O address range\n");
172  goto out_free;
173  }
174 
175  gdev->pintc_base = pdata->pintc_base;
176  gdev->hostirq_start = platform_get_irq(dev, 0);
177 
178  for (cnt = 0, p = gdev->info; cnt < MAX_PRUSS_EVT; cnt++, p++) {
179  p->mem[0].addr = regs_prussio->start;
180  p->mem[0].size = resource_size(regs_prussio);
181  p->mem[0].memtype = UIO_MEM_PHYS;
182 
183  p->mem[1].addr = gdev->sram_paddr;
184  p->mem[1].size = sram_pool_sz;
185  p->mem[1].memtype = UIO_MEM_PHYS;
186 
187  p->mem[2].addr = gdev->ddr_paddr;
188  p->mem[2].size = extram_pool_sz;
189  p->mem[2].memtype = UIO_MEM_PHYS;
190 
191  p->name = kasprintf(GFP_KERNEL, "pruss_evt%d", cnt);
192  p->version = DRV_VERSION;
193 
194  /* Register PRUSS IRQ lines */
195  p->irq = gdev->hostirq_start + cnt;
196  p->handler = pruss_handler;
197  p->priv = gdev;
198 
199  ret = uio_register_device(&dev->dev, p);
200  if (ret < 0)
201  goto out_free;
202  }
203 
204  platform_set_drvdata(dev, gdev);
205  return 0;
206 
207 out_free:
208  pruss_cleanup(dev, gdev);
209  return ret;
210 }
211 
212 static int __devexit pruss_remove(struct platform_device *dev)
213 {
214  struct uio_pruss_dev *gdev = platform_get_drvdata(dev);
215 
216  pruss_cleanup(dev, gdev);
217  platform_set_drvdata(dev, NULL);
218  return 0;
219 }
220 
221 static struct platform_driver pruss_driver = {
222  .probe = pruss_probe,
223  .remove = __devexit_p(pruss_remove),
224  .driver = {
225  .name = DRV_NAME,
226  .owner = THIS_MODULE,
227  },
228 };
229 
230 module_platform_driver(pruss_driver);
231 
232 MODULE_LICENSE("GPL v2");
234 MODULE_AUTHOR("Amit Chatterjee <[email protected]>");
235 MODULE_AUTHOR("Pratheesh Gangadhar <[email protected]>");