Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
uv_time.c
Go to the documentation of this file.
1 /*
2  * SGI RTC clock/timer routines.
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17  *
18  * Copyright (c) 2009 Silicon Graphics, Inc. All Rights Reserved.
19  * Copyright (c) Dimitri Sivanich
20  */
21 #include <linux/clockchips.h>
22 #include <linux/slab.h>
23 
24 #include <asm/uv/uv_mmrs.h>
25 #include <asm/uv/uv_hub.h>
26 #include <asm/uv/bios.h>
27 #include <asm/uv/uv.h>
28 #include <asm/apic.h>
29 #include <asm/cpu.h>
30 
31 #define RTC_NAME "sgi_rtc"
32 
33 static cycle_t uv_read_rtc(struct clocksource *cs);
34 static int uv_rtc_next_event(unsigned long, struct clock_event_device *);
35 static void uv_rtc_timer_setup(enum clock_event_mode,
36  struct clock_event_device *);
37 
38 static struct clocksource clocksource_uv = {
39  .name = RTC_NAME,
40  .rating = 299,
41  .read = uv_read_rtc,
44 };
45 
46 static struct clock_event_device clock_event_device_uv = {
47  .name = RTC_NAME,
48  .features = CLOCK_EVT_FEAT_ONESHOT,
49  .shift = 20,
50  .rating = 400,
51  .irq = -1,
52  .set_next_event = uv_rtc_next_event,
53  .set_mode = uv_rtc_timer_setup,
54  .event_handler = NULL,
55 };
56 
57 static DEFINE_PER_CPU(struct clock_event_device, cpu_ced);
58 
59 /* There is one of these allocated per node */
62  /* next cpu waiting for timer, local node relative: */
63  int next_cpu;
64  /* number of cpus on this node: */
65  int ncpus;
66  struct {
67  int lcpu; /* systemwide logical cpu number */
68  u64 expires; /* next timer expiration for this cpu */
69  } cpu[1];
70 };
71 
72 /*
73  * Access to uv_rtc_timer_head via blade id.
74  */
75 static struct uv_rtc_timer_head **blade_info __read_mostly;
76 
77 static int uv_rtc_evt_enable;
78 
79 /*
80  * Hardware interface routines
81  */
82 
83 /* Send IPIs to another node */
84 static void uv_rtc_send_IPI(int cpu)
85 {
86  unsigned long apicid, val;
87  int pnode;
88 
89  apicid = cpu_physical_id(cpu);
90  pnode = uv_apicid_to_pnode(apicid);
91  apicid |= uv_apicid_hibits;
92  val = (1UL << UVH_IPI_INT_SEND_SHFT) |
93  (apicid << UVH_IPI_INT_APIC_ID_SHFT) |
95 
96  uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
97 }
98 
99 /* Check for an RTC interrupt pending */
100 static int uv_intr_pending(int pnode)
101 {
102  if (is_uv1_hub())
103  return uv_read_global_mmr64(pnode, UVH_EVENT_OCCURRED0) &
105  else
106  return uv_read_global_mmr64(pnode, UV2H_EVENT_OCCURRED2) &
108 }
109 
110 /* Setup interrupt and return non-zero if early expiration occurred. */
111 static int uv_setup_intr(int cpu, u64 expires)
112 {
113  u64 val;
114  unsigned long apicid = cpu_physical_id(cpu) | uv_apicid_hibits;
115  int pnode = uv_cpu_to_pnode(cpu);
116 
117  uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
119  uv_write_global_mmr64(pnode, UVH_INT_CMPB, -1L);
120 
121  if (is_uv1_hub())
122  uv_write_global_mmr64(pnode, UVH_EVENT_OCCURRED0_ALIAS,
124  else
125  uv_write_global_mmr64(pnode, UV2H_EVENT_OCCURRED2_ALIAS,
127 
130 
131  /* Set configuration */
132  uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG, val);
133  /* Initialize comparator value */
134  uv_write_global_mmr64(pnode, UVH_INT_CMPB, expires);
135 
136  if (uv_read_rtc(NULL) <= expires)
137  return 0;
138 
139  return !uv_intr_pending(pnode);
140 }
141 
142 /*
143  * Per-cpu timer tracking routines
144  */
145 
146 static __init void uv_rtc_deallocate_timers(void)
147 {
148  int bid;
149 
150  for_each_possible_blade(bid) {
151  kfree(blade_info[bid]);
152  }
153  kfree(blade_info);
154 }
155 
156 /* Allocate per-node list of cpu timer expiration times. */
157 static __init int uv_rtc_allocate_timers(void)
158 {
159  int cpu;
160 
161  blade_info = kmalloc(uv_possible_blades * sizeof(void *), GFP_KERNEL);
162  if (!blade_info)
163  return -ENOMEM;
164  memset(blade_info, 0, uv_possible_blades * sizeof(void *));
165 
166  for_each_present_cpu(cpu) {
167  int nid = cpu_to_node(cpu);
168  int bid = uv_cpu_to_blade_id(cpu);
169  int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
170  struct uv_rtc_timer_head *head = blade_info[bid];
171 
172  if (!head) {
173  head = kmalloc_node(sizeof(struct uv_rtc_timer_head) +
174  (uv_blade_nr_possible_cpus(bid) *
175  2 * sizeof(u64)),
176  GFP_KERNEL, nid);
177  if (!head) {
178  uv_rtc_deallocate_timers();
179  return -ENOMEM;
180  }
181  spin_lock_init(&head->lock);
182  head->ncpus = uv_blade_nr_possible_cpus(bid);
183  head->next_cpu = -1;
184  blade_info[bid] = head;
185  }
186 
187  head->cpu[bcpu].lcpu = cpu;
188  head->cpu[bcpu].expires = ULLONG_MAX;
189  }
190 
191  return 0;
192 }
193 
194 /* Find and set the next expiring timer. */
195 static void uv_rtc_find_next_timer(struct uv_rtc_timer_head *head, int pnode)
196 {
197  u64 lowest = ULLONG_MAX;
198  int c, bcpu = -1;
199 
200  head->next_cpu = -1;
201  for (c = 0; c < head->ncpus; c++) {
202  u64 exp = head->cpu[c].expires;
203  if (exp < lowest) {
204  bcpu = c;
205  lowest = exp;
206  }
207  }
208  if (bcpu >= 0) {
209  head->next_cpu = bcpu;
210  c = head->cpu[bcpu].lcpu;
211  if (uv_setup_intr(c, lowest))
212  /* If we didn't set it up in time, trigger */
213  uv_rtc_send_IPI(c);
214  } else {
215  uv_write_global_mmr64(pnode, UVH_RTC1_INT_CONFIG,
217  }
218 }
219 
220 /*
221  * Set expiration time for current cpu.
222  *
223  * Returns 1 if we missed the expiration time.
224  */
225 static int uv_rtc_set_timer(int cpu, u64 expires)
226 {
227  int pnode = uv_cpu_to_pnode(cpu);
228  int bid = uv_cpu_to_blade_id(cpu);
229  struct uv_rtc_timer_head *head = blade_info[bid];
230  int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
231  u64 *t = &head->cpu[bcpu].expires;
232  unsigned long flags;
233  int next_cpu;
234 
235  spin_lock_irqsave(&head->lock, flags);
236 
237  next_cpu = head->next_cpu;
238  *t = expires;
239 
240  /* Will this one be next to go off? */
241  if (next_cpu < 0 || bcpu == next_cpu ||
242  expires < head->cpu[next_cpu].expires) {
243  head->next_cpu = bcpu;
244  if (uv_setup_intr(cpu, expires)) {
245  *t = ULLONG_MAX;
246  uv_rtc_find_next_timer(head, pnode);
247  spin_unlock_irqrestore(&head->lock, flags);
248  return -ETIME;
249  }
250  }
251 
252  spin_unlock_irqrestore(&head->lock, flags);
253  return 0;
254 }
255 
256 /*
257  * Unset expiration time for current cpu.
258  *
259  * Returns 1 if this timer was pending.
260  */
261 static int uv_rtc_unset_timer(int cpu, int force)
262 {
263  int pnode = uv_cpu_to_pnode(cpu);
264  int bid = uv_cpu_to_blade_id(cpu);
265  struct uv_rtc_timer_head *head = blade_info[bid];
266  int bcpu = uv_cpu_hub_info(cpu)->blade_processor_id;
267  u64 *t = &head->cpu[bcpu].expires;
268  unsigned long flags;
269  int rc = 0;
270 
271  spin_lock_irqsave(&head->lock, flags);
272 
273  if ((head->next_cpu == bcpu && uv_read_rtc(NULL) >= *t) || force)
274  rc = 1;
275 
276  if (rc) {
277  *t = ULLONG_MAX;
278  /* Was the hardware setup for this timer? */
279  if (head->next_cpu == bcpu)
280  uv_rtc_find_next_timer(head, pnode);
281  }
282 
283  spin_unlock_irqrestore(&head->lock, flags);
284 
285  return rc;
286 }
287 
288 
289 /*
290  * Kernel interface routines.
291  */
292 
293 /*
294  * Read the RTC.
295  *
296  * Starting with HUB rev 2.0, the UV RTC register is replicated across all
297  * cachelines of it's own page. This allows faster simultaneous reads
298  * from a given socket.
299  */
300 static cycle_t uv_read_rtc(struct clocksource *cs)
301 {
302  unsigned long offset;
303 
304  if (uv_get_min_hub_revision_id() == 1)
305  offset = 0;
306  else
307  offset = (uv_blade_processor_id() * L1_CACHE_BYTES) % PAGE_SIZE;
308 
309  return (cycle_t)uv_read_local_mmr(UVH_RTC | offset);
310 }
311 
312 /*
313  * Program the next event, relative to now
314  */
315 static int uv_rtc_next_event(unsigned long delta,
316  struct clock_event_device *ced)
317 {
318  int ced_cpu = cpumask_first(ced->cpumask);
319 
320  return uv_rtc_set_timer(ced_cpu, delta + uv_read_rtc(NULL));
321 }
322 
323 /*
324  * Setup the RTC timer in oneshot mode
325  */
326 static void uv_rtc_timer_setup(enum clock_event_mode mode,
327  struct clock_event_device *evt)
328 {
329  int ced_cpu = cpumask_first(evt->cpumask);
330 
331  switch (mode) {
332  case CLOCK_EVT_MODE_PERIODIC:
333  case CLOCK_EVT_MODE_ONESHOT:
334  case CLOCK_EVT_MODE_RESUME:
335  /* Nothing to do here yet */
336  break;
337  case CLOCK_EVT_MODE_UNUSED:
338  case CLOCK_EVT_MODE_SHUTDOWN:
339  uv_rtc_unset_timer(ced_cpu, 1);
340  break;
341  }
342 }
343 
344 static void uv_rtc_interrupt(void)
345 {
346  int cpu = smp_processor_id();
347  struct clock_event_device *ced = &per_cpu(cpu_ced, cpu);
348 
349  if (!ced || !ced->event_handler)
350  return;
351 
352  if (uv_rtc_unset_timer(cpu, 0) != 1)
353  return;
354 
355  ced->event_handler(ced);
356 }
357 
358 static int __init uv_enable_evt_rtc(char *str)
359 {
360  uv_rtc_evt_enable = 1;
361 
362  return 1;
363 }
364 __setup("uvrtcevt", uv_enable_evt_rtc);
365 
366 static __init void uv_rtc_register_clockevents(struct work_struct *dummy)
367 {
368  struct clock_event_device *ced = &__get_cpu_var(cpu_ced);
369 
370  *ced = clock_event_device_uv;
371  ced->cpumask = cpumask_of(smp_processor_id());
373 }
374 
375 static __init int uv_rtc_setup_clock(void)
376 {
377  int rc;
378 
379  if (!is_uv_system())
380  return -ENODEV;
381 
382  rc = clocksource_register_hz(&clocksource_uv, sn_rtc_cycles_per_second);
383  if (rc)
384  printk(KERN_INFO "UV RTC clocksource failed rc %d\n", rc);
385  else
386  printk(KERN_INFO "UV RTC clocksource registered freq %lu MHz\n",
387  sn_rtc_cycles_per_second/(unsigned long)1E6);
388 
389  if (rc || !uv_rtc_evt_enable || x86_platform_ipi_callback)
390  return rc;
391 
392  /* Setup and register clockevents */
393  rc = uv_rtc_allocate_timers();
394  if (rc)
395  goto error;
396 
397  x86_platform_ipi_callback = uv_rtc_interrupt;
398 
399  clock_event_device_uv.mult = div_sc(sn_rtc_cycles_per_second,
400  NSEC_PER_SEC, clock_event_device_uv.shift);
401 
402  clock_event_device_uv.min_delta_ns = NSEC_PER_SEC /
404 
405  clock_event_device_uv.max_delta_ns = clocksource_uv.mask *
407 
408  rc = schedule_on_each_cpu(uv_rtc_register_clockevents);
409  if (rc) {
411  uv_rtc_deallocate_timers();
412  goto error;
413  }
414 
415  printk(KERN_INFO "UV RTC clockevents registered\n");
416 
417  return 0;
418 
419 error:
420  clocksource_unregister(&clocksource_uv);
421  printk(KERN_INFO "UV RTC clockevents failed rc %d\n", rc);
422 
423  return rc;
424 }
425 arch_initcall(uv_rtc_setup_clock);