Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
vwsnd.c
Go to the documentation of this file.
1 /*
2  * Sound driver for Silicon Graphics 320 and 540 Visual Workstations'
3  * onboard audio. See notes in Documentation/sound/oss/vwsnd .
4  *
5  * Copyright 1999 Silicon Graphics, Inc. All rights reserved.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 #undef VWSND_DEBUG /* define for debugging */
23 
24 /*
25  * XXX to do -
26  *
27  * External sync.
28  * Rename swbuf, hwbuf, u&i, hwptr&swptr to something rational.
29  * Bug - if select() called before read(), pcm_setup() not called.
30  * Bug - output doesn't stop soon enough if process killed.
31  */
32 
33 /*
34  * Things to test -
35  *
36  * Will readv/writev work? Write a test.
37  *
38  * insmod/rmmod 100 million times.
39  *
40  * Run I/O until int ptrs wrap around (roughly 6.2 hours @ DAT
41  * rate).
42  *
43  * Concurrent threads banging on mixer simultaneously, both UP
44  * and SMP kernels. Especially, watch for thread A changing
45  * OUTSRC while thread B changes gain -- both write to the same
46  * ad1843 register.
47  *
48  * What happens if a client opens /dev/audio then forks?
49  * Do two procs have /dev/audio open? Test.
50  *
51  * Pump audio through the CD, MIC and line inputs and verify that
52  * they mix/mute into the output.
53  *
54  * Apps:
55  * amp
56  * mpg123
57  * x11amp
58  * mxv
59  * kmedia
60  * esound
61  * need more input apps
62  *
63  * Run tests while bombarding with signals. setitimer(2) will do it... */
64 
65 /*
66  * This driver is organized in nine sections.
67  * The nine sections are:
68  *
69  * debug stuff
70  * low level lithium access
71  * high level lithium access
72  * AD1843 access
73  * PCM I/O
74  * audio driver
75  * mixer driver
76  * probe/attach/unload
77  * initialization and loadable kernel module interface
78  *
79  * That is roughly the order of increasing abstraction, so forward
80  * dependencies are minimal.
81  */
82 
83 /*
84  * Locking Notes
85  *
86  * INC_USE_COUNT and DEC_USE_COUNT keep track of the number of
87  * open descriptors to this driver. They store it in vwsnd_use_count.
88  * The global device list, vwsnd_dev_list, is immutable when the IN_USE
89  * is true.
90  *
91  * devc->open_lock is a semaphore that is used to enforce the
92  * single reader/single writer rule for /dev/audio. The rule is
93  * that each device may have at most one reader and one writer.
94  * Open will block until the previous client has closed the
95  * device, unless O_NONBLOCK is specified.
96  *
97  * The semaphore devc->io_mutex serializes PCM I/O syscalls. This
98  * is unnecessary in Linux 2.2, because the kernel lock
99  * serializes read, write, and ioctl globally, but it's there,
100  * ready for the brave, new post-kernel-lock world.
101  *
102  * Locking between interrupt and baselevel is handled by the
103  * "lock" spinlock in vwsnd_port (one lock each for read and
104  * write). Each half holds the lock just long enough to see what
105  * area it owns and update its pointers. See pcm_output() and
106  * pcm_input() for most of the gory stuff.
107  *
108  * devc->mix_mutex serializes all mixer ioctls. This is also
109  * redundant because of the kernel lock.
110  *
111  * The lowest level lock is lith->lithium_lock. It is a
112  * spinlock which is held during the two-register tango of
113  * reading/writing an AD1843 register. See
114  * li_{read,write}_ad1843_reg().
115  */
116 
117 /*
118  * Sample Format Notes
119  *
120  * Lithium's DMA engine has two formats: 16-bit 2's complement
121  * and 8-bit unsigned . 16-bit transfers the data unmodified, 2
122  * bytes per sample. 8-bit unsigned transfers 1 byte per sample
123  * and XORs each byte with 0x80. Lithium can input or output
124  * either mono or stereo in either format.
125  *
126  * The AD1843 has four formats: 16-bit 2's complement, 8-bit
127  * unsigned, 8-bit mu-Law and 8-bit A-Law.
128  *
129  * This driver supports five formats: AFMT_S8, AFMT_U8,
130  * AFMT_MU_LAW, AFMT_A_LAW, and AFMT_S16_LE.
131  *
132  * For AFMT_U8 output, we keep the AD1843 in 16-bit mode, and
133  * rely on Lithium's XOR to translate between U8 and S8.
134  *
135  * For AFMT_S8, AFMT_MU_LAW and AFMT_A_LAW output, we have to XOR
136  * the 0x80 bit in software to compensate for Lithium's XOR.
137  * This happens in pcm_copy_{in,out}().
138  *
139  * Changes:
140  * 11-10-2000 Bartlomiej Zolnierkiewicz <[email protected]>
141  * Added some __init/__exit
142  */
143 
144 #include <linux/module.h>
145 #include <linux/init.h>
146 
147 #include <linux/spinlock.h>
148 #include <linux/wait.h>
149 #include <linux/interrupt.h>
150 #include <linux/mutex.h>
151 #include <linux/slab.h>
152 
153 #include <asm/visws/cobalt.h>
154 
155 #include "sound_config.h"
156 
157 /*****************************************************************************/
158 /* debug stuff */
159 
160 #ifdef VWSND_DEBUG
161 
162 static DEFINE_MUTEX(vwsnd_mutex);
163 static int shut_up = 1;
164 
165 /*
166  * dbgassert - called when an assertion fails.
167  */
168 
169 static void dbgassert(const char *fcn, int line, const char *expr)
170 {
171  if (in_interrupt())
172  panic("ASSERTION FAILED IN INTERRUPT, %s:%s:%d %s\n",
173  __FILE__, fcn, line, expr);
174  else {
175  int x;
176  printk(KERN_ERR "ASSERTION FAILED, %s:%s:%d %s\n",
177  __FILE__, fcn, line, expr);
178  x = * (volatile int *) 0; /* force proc to exit */
179  }
180 }
181 
182 /*
183  * Bunch of useful debug macros:
184  *
185  * ASSERT - print unless e nonzero (panic if in interrupt)
186  * DBGDO - include arbitrary code if debugging
187  * DBGX - debug print raw (w/o function name)
188  * DBGP - debug print w/ function name
189  * DBGE - debug print function entry
190  * DBGC - debug print function call
191  * DBGR - debug print function return
192  * DBGXV - debug print raw when verbose
193  * DBGPV - debug print when verbose
194  * DBGEV - debug print function entry when verbose
195  * DBGRV - debug print function return when verbose
196  */
197 
198 #define ASSERT(e) ((e) ? (void) 0 : dbgassert(__func__, __LINE__, #e))
199 #define DBGDO(x) x
200 #define DBGX(fmt, args...) (in_interrupt() ? 0 : printk(KERN_ERR fmt, ##args))
201 #define DBGP(fmt, args...) (DBGX("%s: " fmt, __func__ , ##args))
202 #define DBGE(fmt, args...) (DBGX("%s" fmt, __func__ , ##args))
203 #define DBGC(rtn) (DBGP("calling %s\n", rtn))
204 #define DBGR() (DBGP("returning\n"))
205 #define DBGXV(fmt, args...) (shut_up ? 0 : DBGX(fmt, ##args))
206 #define DBGPV(fmt, args...) (shut_up ? 0 : DBGP(fmt, ##args))
207 #define DBGEV(fmt, args...) (shut_up ? 0 : DBGE(fmt, ##args))
208 #define DBGCV(rtn) (shut_up ? 0 : DBGC(rtn))
209 #define DBGRV() (shut_up ? 0 : DBGR())
210 
211 #else /* !VWSND_DEBUG */
212 
213 #define ASSERT(e) ((void) 0)
214 #define DBGDO(x) /* don't */
215 #define DBGX(fmt, args...) ((void) 0)
216 #define DBGP(fmt, args...) ((void) 0)
217 #define DBGE(fmt, args...) ((void) 0)
218 #define DBGC(rtn) ((void) 0)
219 #define DBGR() ((void) 0)
220 #define DBGPV(fmt, args...) ((void) 0)
221 #define DBGXV(fmt, args...) ((void) 0)
222 #define DBGEV(fmt, args...) ((void) 0)
223 #define DBGCV(rtn) ((void) 0)
224 #define DBGRV() ((void) 0)
225 
226 #endif /* !VWSND_DEBUG */
227 
228 /*****************************************************************************/
229 /* low level lithium access */
230 
231 /*
232  * We need to talk to Lithium registers on three pages. Here are
233  * the pages' offsets from the base address (0xFF001000).
234  */
235 
236 enum {
237  LI_PAGE0_OFFSET = 0x01000 - 0x1000, /* FF001000 */
238  LI_PAGE1_OFFSET = 0x0F000 - 0x1000, /* FF00F000 */
239  LI_PAGE2_OFFSET = 0x10000 - 0x1000, /* FF010000 */
240 };
241 
242 /* low-level lithium data */
243 
244 typedef struct lithium {
245  void * page0; /* virtual addresses */
246  void * page1;
247  void * page2;
248  spinlock_t lock; /* protects codec and UST/MSC access */
249 } lithium_t;
250 
251 /*
252  * li_destroy destroys the lithium_t structure and vm mappings.
253  */
254 
255 static void li_destroy(lithium_t *lith)
256 {
257  if (lith->page0) {
258  iounmap(lith->page0);
259  lith->page0 = NULL;
260  }
261  if (lith->page1) {
262  iounmap(lith->page1);
263  lith->page1 = NULL;
264  }
265  if (lith->page2) {
266  iounmap(lith->page2);
267  lith->page2 = NULL;
268  }
269 }
270 
271 /*
272  * li_create initializes the lithium_t structure and sets up vm mappings
273  * to access the registers.
274  * Returns 0 on success, -errno on failure.
275  */
276 
277 static int __init li_create(lithium_t *lith, unsigned long baseaddr)
278 {
279  spin_lock_init(&lith->lock);
280  lith->page0 = ioremap_nocache(baseaddr + LI_PAGE0_OFFSET, PAGE_SIZE);
281  lith->page1 = ioremap_nocache(baseaddr + LI_PAGE1_OFFSET, PAGE_SIZE);
282  lith->page2 = ioremap_nocache(baseaddr + LI_PAGE2_OFFSET, PAGE_SIZE);
283  if (!lith->page0 || !lith->page1 || !lith->page2) {
284  li_destroy(lith);
285  return -ENOMEM;
286  }
287  return 0;
288 }
289 
290 /*
291  * basic register accessors - read/write long/byte
292  */
293 
294 static __inline__ unsigned long li_readl(lithium_t *lith, int off)
295 {
296  return * (volatile unsigned long *) (lith->page0 + off);
297 }
298 
299 static __inline__ unsigned char li_readb(lithium_t *lith, int off)
300 {
301  return * (volatile unsigned char *) (lith->page0 + off);
302 }
303 
304 static __inline__ void li_writel(lithium_t *lith, int off, unsigned long val)
305 {
306  * (volatile unsigned long *) (lith->page0 + off) = val;
307 }
308 
309 static __inline__ void li_writeb(lithium_t *lith, int off, unsigned char val)
310 {
311  * (volatile unsigned char *) (lith->page0 + off) = val;
312 }
313 
314 /*****************************************************************************/
315 /* High Level Lithium Access */
316 
317 /*
318  * Lithium DMA Notes
319  *
320  * Lithium has two dedicated DMA channels for audio. They are known
321  * as comm1 and comm2 (communication areas 1 and 2). Comm1 is for
322  * input, and comm2 is for output. Each is controlled by three
323  * registers: BASE (base address), CFG (config) and CCTL
324  * (config/control).
325  *
326  * Each DMA channel points to a physically contiguous ring buffer in
327  * main memory of up to 8 Kbytes. (This driver always uses 8 Kb.)
328  * There are three pointers into the ring buffer: read, write, and
329  * trigger. The pointers are 8 bits each. Each pointer points to
330  * 32-byte "chunks" of data. The DMA engine moves 32 bytes at a time,
331  * so there is no finer-granularity control.
332  *
333  * In comm1, the hardware updates the write ptr, and software updates
334  * the read ptr. In comm2, it's the opposite: hardware updates the
335  * read ptr, and software updates the write ptr. I designate the
336  * hardware-updated ptr as the hwptr, and the software-updated ptr as
337  * the swptr.
338  *
339  * The trigger ptr and trigger mask are used to trigger interrupts.
340  * From the Lithium spec, section 5.6.8, revision of 12/15/1998:
341  *
342  * Trigger Mask Value
343  *
344  * A three bit wide field that represents a power of two mask
345  * that is used whenever the trigger pointer is compared to its
346  * respective read or write pointer. A value of zero here
347  * implies a mask of 0xFF and a value of seven implies a mask
348  * 0x01. This value can be used to sub-divide the ring buffer
349  * into pie sections so that interrupts monitor the progress of
350  * hardware from section to section.
351  *
352  * My interpretation of that is, whenever the hw ptr is updated, it is
353  * compared with the trigger ptr, and the result is masked by the
354  * trigger mask. (Actually, by the complement of the trigger mask.)
355  * If the result is zero, an interrupt is triggered. I.e., interrupt
356  * if ((hwptr & ~mask) == (trptr & ~mask)). The mask is formed from
357  * the trigger register value as mask = (1 << (8 - tmreg)) - 1.
358  *
359  * In yet different words, setting tmreg to 0 causes an interrupt after
360  * every 256 DMA chunks (8192 bytes) or once per traversal of the
361  * ring buffer. Setting it to 7 caues an interrupt every 2 DMA chunks
362  * (64 bytes) or 128 times per traversal of the ring buffer.
363  */
364 
365 /* Lithium register offsets and bit definitions */
366 
367 #define LI_HOST_CONTROLLER 0x000
368 # define LI_HC_RESET 0x00008000
369 # define LI_HC_LINK_ENABLE 0x00004000
370 # define LI_HC_LINK_FAILURE 0x00000004
371 # define LI_HC_LINK_CODEC 0x00000002
372 # define LI_HC_LINK_READY 0x00000001
373 
374 #define LI_INTR_STATUS 0x010
375 #define LI_INTR_MASK 0x014
376 # define LI_INTR_LINK_ERR 0x00008000
377 # define LI_INTR_COMM2_TRIG 0x00000008
378 # define LI_INTR_COMM2_UNDERFLOW 0x00000004
379 # define LI_INTR_COMM1_TRIG 0x00000002
380 # define LI_INTR_COMM1_OVERFLOW 0x00000001
381 
382 #define LI_CODEC_COMMAND 0x018
383 # define LI_CC_BUSY 0x00008000
384 # define LI_CC_DIR 0x00000080
385 # define LI_CC_DIR_RD LI_CC_DIR
386 # define LI_CC_DIR_WR (!LI_CC_DIR)
387 # define LI_CC_ADDR_MASK 0x0000007F
388 
389 #define LI_CODEC_DATA 0x01C
390 
391 #define LI_COMM1_BASE 0x100
392 #define LI_COMM1_CTL 0x104
393 # define LI_CCTL_RESET 0x80000000
394 # define LI_CCTL_SIZE 0x70000000
395 # define LI_CCTL_DMA_ENABLE 0x08000000
396 # define LI_CCTL_TMASK 0x07000000 /* trigger mask */
397 # define LI_CCTL_TPTR 0x00FF0000 /* trigger pointer */
398 # define LI_CCTL_RPTR 0x0000FF00
399 # define LI_CCTL_WPTR 0x000000FF
400 #define LI_COMM1_CFG 0x108
401 # define LI_CCFG_LOCK 0x00008000
402 # define LI_CCFG_SLOT 0x00000070
403 # define LI_CCFG_DIRECTION 0x00000008
404 # define LI_CCFG_DIR_IN (!LI_CCFG_DIRECTION)
405 # define LI_CCFG_DIR_OUT LI_CCFG_DIRECTION
406 # define LI_CCFG_MODE 0x00000004
407 # define LI_CCFG_MODE_MONO (!LI_CCFG_MODE)
408 # define LI_CCFG_MODE_STEREO LI_CCFG_MODE
409 # define LI_CCFG_FORMAT 0x00000003
410 # define LI_CCFG_FMT_8BIT 0x00000000
411 # define LI_CCFG_FMT_16BIT 0x00000001
412 #define LI_COMM2_BASE 0x10C
413 #define LI_COMM2_CTL 0x110
414  /* bit definitions are the same as LI_COMM1_CTL */
415 #define LI_COMM2_CFG 0x114
416  /* bit definitions are the same as LI_COMM1_CFG */
417 
418 #define LI_UST_LOW 0x200 /* 64-bit Unadjusted System Time is */
419 #define LI_UST_HIGH 0x204 /* microseconds since boot */
420 
421 #define LI_AUDIO1_UST 0x300 /* UST-MSC pairs */
422 #define LI_AUDIO1_MSC 0x304 /* MSC (Media Stream Counter) */
423 #define LI_AUDIO2_UST 0x308 /* counts samples actually */
424 #define LI_AUDIO2_MSC 0x30C /* processed as of time UST */
425 
426 /*
427  * Lithium's DMA engine operates on chunks of 32 bytes. We call that
428  * a DMACHUNK.
429  */
430 
431 #define DMACHUNK_SHIFT 5
432 #define DMACHUNK_SIZE (1 << DMACHUNK_SHIFT)
433 #define BYTES_TO_CHUNKS(bytes) ((bytes) >> DMACHUNK_SHIFT)
434 #define CHUNKS_TO_BYTES(chunks) ((chunks) << DMACHUNK_SHIFT)
435 
436 /*
437  * Two convenient macros to shift bitfields into/out of position.
438  *
439  * Observe that (mask & -mask) is (1 << low_set_bit_of(mask)).
440  * As long as mask is constant, we trust the compiler will change the
441  * multiply and divide into shifts.
442  */
443 
444 #define SHIFT_FIELD(val, mask) (((val) * ((mask) & -(mask))) & (mask))
445 #define UNSHIFT_FIELD(val, mask) (((val) & (mask)) / ((mask) & -(mask)))
446 
447 /*
448  * dma_chan_desc is invariant information about a Lithium
449  * DMA channel. There are two instances, li_comm1 and li_comm2.
450  *
451  * Note that the CCTL register fields are write ptr and read ptr, but what
452  * we care about are which pointer is updated by software and which by
453  * hardware.
454  */
455 
456 typedef struct dma_chan_desc {
457  int basereg;
458  int cfgreg;
459  int ctlreg;
460  int hwptrreg;
461  int swptrreg;
462  int ustreg;
463  int mscreg;
464  unsigned long swptrmask;
466  int direction; /* LI_CCTL_DIR_IN/OUT */
468 
469 static const dma_chan_desc_t li_comm1 = {
470  LI_COMM1_BASE, /* base register offset */
471  LI_COMM1_CFG, /* config register offset */
472  LI_COMM1_CTL, /* control register offset */
473  LI_COMM1_CTL + 0, /* hw ptr reg offset (write ptr) */
474  LI_COMM1_CTL + 1, /* sw ptr reg offset (read ptr) */
475  LI_AUDIO1_UST, /* ust reg offset */
476  LI_AUDIO1_MSC, /* msc reg offset */
477  LI_CCTL_RPTR, /* sw ptr bitmask in ctlval */
478  2, /* ad1843 serial slot */
479  LI_CCFG_DIR_IN /* direction */
480 };
481 
482 static const dma_chan_desc_t li_comm2 = {
483  LI_COMM2_BASE, /* base register offset */
484  LI_COMM2_CFG, /* config register offset */
485  LI_COMM2_CTL, /* control register offset */
486  LI_COMM2_CTL + 1, /* hw ptr reg offset (read ptr) */
487  LI_COMM2_CTL + 0, /* sw ptr reg offset (writr ptr) */
488  LI_AUDIO2_UST, /* ust reg offset */
489  LI_AUDIO2_MSC, /* msc reg offset */
490  LI_CCTL_WPTR, /* sw ptr bitmask in ctlval */
491  2, /* ad1843 serial slot */
492  LI_CCFG_DIR_OUT /* direction */
493 };
494 
495 /*
496  * dma_chan is variable information about a Lithium DMA channel.
497  *
498  * The desc field points to invariant information.
499  * The lith field points to a lithium_t which is passed
500  * to li_read* and li_write* to access the registers.
501  * The *val fields shadow the lithium registers' contents.
502  */
503 
504 typedef struct dma_chan {
507  unsigned long baseval;
508  unsigned long cfgval;
509  unsigned long ctlval;
510 } dma_chan_t;
511 
512 /*
513  * ustmsc is a UST/MSC pair (Unadjusted System Time/Media Stream Counter).
514  * UST is time in microseconds since the system booted, and MSC is a
515  * counter that increments with every audio sample.
516  */
517 
518 typedef struct ustmsc {
519  unsigned long long ust;
520  unsigned long msc;
521 } ustmsc_t;
522 
523 /*
524  * li_ad1843_wait waits until lithium says the AD1843 register
525  * exchange is not busy. Returns 0 on success, -EBUSY on timeout.
526  *
527  * Locking: must be called with lithium_lock held.
528  */
529 
530 static int li_ad1843_wait(lithium_t *lith)
531 {
532  unsigned long later = jiffies + 2;
533  while (li_readl(lith, LI_CODEC_COMMAND) & LI_CC_BUSY)
534  if (time_after_eq(jiffies, later))
535  return -EBUSY;
536  return 0;
537 }
538 
539 /*
540  * li_read_ad1843_reg returns the current contents of a 16 bit AD1843 register.
541  *
542  * Returns unsigned register value on success, -errno on failure.
543  */
544 
545 static int li_read_ad1843_reg(lithium_t *lith, int reg)
546 {
547  int val;
548 
549  ASSERT(!in_interrupt());
550  spin_lock(&lith->lock);
551  {
552  val = li_ad1843_wait(lith);
553  if (val == 0) {
554  li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_RD | reg);
555  val = li_ad1843_wait(lith);
556  }
557  if (val == 0)
558  val = li_readl(lith, LI_CODEC_DATA);
559  }
560  spin_unlock(&lith->lock);
561 
562  DBGXV("li_read_ad1843_reg(lith=0x%p, reg=%d) returns 0x%04x\n",
563  lith, reg, val);
564 
565  return val;
566 }
567 
568 /*
569  * li_write_ad1843_reg writes the specified value to a 16 bit AD1843 register.
570  */
571 
572 static void li_write_ad1843_reg(lithium_t *lith, int reg, int newval)
573 {
574  spin_lock(&lith->lock);
575  {
576  if (li_ad1843_wait(lith) == 0) {
577  li_writel(lith, LI_CODEC_DATA, newval);
578  li_writel(lith, LI_CODEC_COMMAND, LI_CC_DIR_WR | reg);
579  }
580  }
581  spin_unlock(&lith->lock);
582 }
583 
584 /*
585  * li_setup_dma calculates all the register settings for DMA in a particular
586  * mode. It takes too many arguments.
587  */
588 
589 static void li_setup_dma(dma_chan_t *chan,
590  const dma_chan_desc_t *desc,
591  lithium_t *lith,
592  unsigned long buffer_paddr,
593  int bufshift,
594  int fragshift,
595  int channels,
596  int sampsize)
597 {
598  unsigned long mode, format;
599  unsigned long size, tmask;
600 
601  DBGEV("(chan=0x%p, desc=0x%p, lith=0x%p, buffer_paddr=0x%lx, "
602  "bufshift=%d, fragshift=%d, channels=%d, sampsize=%d)\n",
603  chan, desc, lith, buffer_paddr,
604  bufshift, fragshift, channels, sampsize);
605 
606  /* Reset the channel first. */
607 
608  li_writel(lith, desc->ctlreg, LI_CCTL_RESET);
609 
610  ASSERT(channels == 1 || channels == 2);
611  if (channels == 2)
612  mode = LI_CCFG_MODE_STEREO;
613  else
614  mode = LI_CCFG_MODE_MONO;
615  ASSERT(sampsize == 1 || sampsize == 2);
616  if (sampsize == 2)
617  format = LI_CCFG_FMT_16BIT;
618  else
619  format = LI_CCFG_FMT_8BIT;
620  chan->desc = desc;
621  chan->lith = lith;
622 
623  /*
624  * Lithium DMA address register takes a 40-bit physical
625  * address, right-shifted by 8 so it fits in 32 bits. Bit 37
626  * must be set -- it enables cache coherence.
627  */
628 
629  ASSERT(!(buffer_paddr & 0xFF));
630  chan->baseval = (buffer_paddr >> 8) | 1 << (37 - 8);
631 
632  chan->cfgval = ((chan->cfgval & ~LI_CCFG_LOCK) |
634  desc->direction |
635  mode |
636  format);
637 
638  size = bufshift - 6;
639  tmask = 13 - fragshift; /* See Lithium DMA Notes above. */
640  ASSERT(size >= 2 && size <= 7);
641  ASSERT(tmask >= 1 && tmask <= 7);
642  chan->ctlval = ((chan->ctlval & ~LI_CCTL_RESET) |
643  SHIFT_FIELD(size, LI_CCTL_SIZE) |
644  (chan->ctlval & ~LI_CCTL_DMA_ENABLE) |
645  SHIFT_FIELD(tmask, LI_CCTL_TMASK) |
647 
648  DBGPV("basereg 0x%x = 0x%lx\n", desc->basereg, chan->baseval);
649  DBGPV("cfgreg 0x%x = 0x%lx\n", desc->cfgreg, chan->cfgval);
650  DBGPV("ctlreg 0x%x = 0x%lx\n", desc->ctlreg, chan->ctlval);
651 
652  li_writel(lith, desc->basereg, chan->baseval);
653  li_writel(lith, desc->cfgreg, chan->cfgval);
654  li_writel(lith, desc->ctlreg, chan->ctlval);
655 
656  DBGRV();
657 }
658 
659 static void li_shutdown_dma(dma_chan_t *chan)
660 {
661  lithium_t *lith = chan->lith;
662  void * lith1 = lith->page1;
663 
664  DBGEV("(chan=0x%p)\n", chan);
665 
666  chan->ctlval &= ~LI_CCTL_DMA_ENABLE;
667  DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
668  li_writel(lith, chan->desc->ctlreg, chan->ctlval);
669 
670  /*
671  * Offset 0x500 on Lithium page 1 is an undocumented,
672  * unsupported register that holds the zero sample value.
673  * Lithium is supposed to output zero samples when DMA is
674  * inactive, and repeat the last sample when DMA underflows.
675  * But it has a bug, where, after underflow occurs, the zero
676  * sample is not reset.
677  *
678  * I expect this to break in a future rev of Lithium.
679  */
680 
681  if (lith1 && chan->desc->direction == LI_CCFG_DIR_OUT)
682  * (volatile unsigned long *) (lith1 + 0x500) = 0;
683 }
684 
685 /*
686  * li_activate_dma always starts dma at the beginning of the buffer.
687  *
688  * N.B., these may be called from interrupt.
689  */
690 
691 static __inline__ void li_activate_dma(dma_chan_t *chan)
692 {
693  chan->ctlval |= LI_CCTL_DMA_ENABLE;
694  DBGPV("ctlval = 0x%lx\n", chan->ctlval);
695  li_writel(chan->lith, chan->desc->ctlreg, chan->ctlval);
696 }
697 
698 static void li_deactivate_dma(dma_chan_t *chan)
699 {
700  lithium_t *lith = chan->lith;
701  void * lith2 = lith->page2;
702 
704  DBGPV("ctlval = 0x%lx\n", chan->ctlval);
705  DBGPV("ctlreg 0x%x = 0x%lx\n", chan->desc->ctlreg, chan->ctlval);
706  li_writel(lith, chan->desc->ctlreg, chan->ctlval);
707 
708  /*
709  * Offsets 0x98 and 0x9C on Lithium page 2 are undocumented,
710  * unsupported registers that are internal copies of the DMA
711  * read and write pointers. Because of a Lithium bug, these
712  * registers aren't zeroed correctly when DMA is shut off. So
713  * we whack them directly.
714  *
715  * I expect this to break in a future rev of Lithium.
716  */
717 
718  if (lith2 && chan->desc->direction == LI_CCFG_DIR_OUT) {
719  * (volatile unsigned long *) (lith2 + 0x98) = 0;
720  * (volatile unsigned long *) (lith2 + 0x9C) = 0;
721  }
722 }
723 
724 /*
725  * read/write the ring buffer pointers. These routines' arguments and results
726  * are byte offsets from the beginning of the ring buffer.
727  */
728 
729 static __inline__ int li_read_swptr(dma_chan_t *chan)
730 {
731  const unsigned long mask = chan->desc->swptrmask;
732 
733  return CHUNKS_TO_BYTES(UNSHIFT_FIELD(chan->ctlval, mask));
734 }
735 
736 static __inline__ int li_read_hwptr(dma_chan_t *chan)
737 {
738  return CHUNKS_TO_BYTES(li_readb(chan->lith, chan->desc->hwptrreg));
739 }
740 
741 static __inline__ void li_write_swptr(dma_chan_t *chan, int val)
742 {
743  const unsigned long mask = chan->desc->swptrmask;
744 
745  ASSERT(!(val & ~CHUNKS_TO_BYTES(0xFF)));
746  val = BYTES_TO_CHUNKS(val);
747  chan->ctlval = (chan->ctlval & ~mask) | SHIFT_FIELD(val, mask);
748  li_writeb(chan->lith, chan->desc->swptrreg, val);
749 }
750 
751 /* li_read_USTMSC() returns a UST/MSC pair for the given channel. */
752 
753 static void li_read_USTMSC(dma_chan_t *chan, ustmsc_t *ustmsc)
754 {
755  lithium_t *lith = chan->lith;
756  const dma_chan_desc_t *desc = chan->desc;
757  unsigned long now_low, now_high0, now_high1, chan_ust;
758 
759  spin_lock(&lith->lock);
760  {
761  /*
762  * retry until we do all five reads without the
763  * high word changing. (High word increments
764  * every 2^32 microseconds, i.e., not often)
765  */
766  do {
767  now_high0 = li_readl(lith, LI_UST_HIGH);
768  now_low = li_readl(lith, LI_UST_LOW);
769 
770  /*
771  * Lithium guarantees these two reads will be
772  * atomic -- ust will not increment after msc
773  * is read.
774  */
775 
776  ustmsc->msc = li_readl(lith, desc->mscreg);
777  chan_ust = li_readl(lith, desc->ustreg);
778 
779  now_high1 = li_readl(lith, LI_UST_HIGH);
780  } while (now_high0 != now_high1);
781  }
782  spin_unlock(&lith->lock);
783  ustmsc->ust = ((unsigned long long) now_high0 << 32 | chan_ust);
784 }
785 
786 static void li_enable_interrupts(lithium_t *lith, unsigned int mask)
787 {
788  DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
789 
790  /* clear any already-pending interrupts. */
791 
792  li_writel(lith, LI_INTR_STATUS, mask);
793 
794  /* enable the interrupts. */
795 
796  mask |= li_readl(lith, LI_INTR_MASK);
797  li_writel(lith, LI_INTR_MASK, mask);
798 }
799 
800 static void li_disable_interrupts(lithium_t *lith, unsigned int mask)
801 {
802  unsigned int keepmask;
803 
804  DBGEV("(lith=0x%p, mask=0x%x)\n", lith, mask);
805 
806  /* disable the interrupts */
807 
808  keepmask = li_readl(lith, LI_INTR_MASK) & ~mask;
809  li_writel(lith, LI_INTR_MASK, keepmask);
810 
811  /* clear any pending interrupts. */
812 
813  li_writel(lith, LI_INTR_STATUS, mask);
814 }
815 
816 /* Get the interrupt status and clear all pending interrupts. */
817 
818 static unsigned int li_get_clear_intr_status(lithium_t *lith)
819 {
820  unsigned int status;
821 
822  status = li_readl(lith, LI_INTR_STATUS);
823  li_writel(lith, LI_INTR_STATUS, ~0);
824  return status & li_readl(lith, LI_INTR_MASK);
825 }
826 
827 static int li_init(lithium_t *lith)
828 {
829  /* 1. System power supplies stabilize. */
830 
831  /* 2. Assert the ~RESET signal. */
832 
833  li_writel(lith, LI_HOST_CONTROLLER, LI_HC_RESET);
834  udelay(1);
835 
836  /* 3. Deassert the ~RESET signal and enter a wait period to allow
837  the AD1843 internal clocks and the external crystal oscillator
838  to stabilize. */
839 
840  li_writel(lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE);
841  udelay(1);
842 
843  return 0;
844 }
845 
846 /*****************************************************************************/
847 /* AD1843 access */
848 
849 /*
850  * AD1843 bitfield definitions. All are named as in the AD1843 data
851  * sheet, with ad1843_ prepended and individual bit numbers removed.
852  *
853  * E.g., bits LSS0 through LSS2 become ad1843_LSS.
854  *
855  * Only the bitfields we need are defined.
856  */
857 
858 typedef struct ad1843_bitfield {
859  char reg;
860  char lo_bit;
861  char nbits;
863 
864 static const ad1843_bitfield_t
865  ad1843_PDNO = { 0, 14, 1 }, /* Converter Power-Down Flag */
866  ad1843_INIT = { 0, 15, 1 }, /* Clock Initialization Flag */
867  ad1843_RIG = { 2, 0, 4 }, /* Right ADC Input Gain */
868  ad1843_RMGE = { 2, 4, 1 }, /* Right ADC Mic Gain Enable */
869  ad1843_RSS = { 2, 5, 3 }, /* Right ADC Source Select */
870  ad1843_LIG = { 2, 8, 4 }, /* Left ADC Input Gain */
871  ad1843_LMGE = { 2, 12, 1 }, /* Left ADC Mic Gain Enable */
872  ad1843_LSS = { 2, 13, 3 }, /* Left ADC Source Select */
873  ad1843_RX1M = { 4, 0, 5 }, /* Right Aux 1 Mix Gain/Atten */
874  ad1843_RX1MM = { 4, 7, 1 }, /* Right Aux 1 Mix Mute */
875  ad1843_LX1M = { 4, 8, 5 }, /* Left Aux 1 Mix Gain/Atten */
876  ad1843_LX1MM = { 4, 15, 1 }, /* Left Aux 1 Mix Mute */
877  ad1843_RX2M = { 5, 0, 5 }, /* Right Aux 2 Mix Gain/Atten */
878  ad1843_RX2MM = { 5, 7, 1 }, /* Right Aux 2 Mix Mute */
879  ad1843_LX2M = { 5, 8, 5 }, /* Left Aux 2 Mix Gain/Atten */
880  ad1843_LX2MM = { 5, 15, 1 }, /* Left Aux 2 Mix Mute */
881  ad1843_RMCM = { 7, 0, 5 }, /* Right Mic Mix Gain/Atten */
882  ad1843_RMCMM = { 7, 7, 1 }, /* Right Mic Mix Mute */
883  ad1843_LMCM = { 7, 8, 5 }, /* Left Mic Mix Gain/Atten */
884  ad1843_LMCMM = { 7, 15, 1 }, /* Left Mic Mix Mute */
885  ad1843_HPOS = { 8, 4, 1 }, /* Headphone Output Voltage Swing */
886  ad1843_HPOM = { 8, 5, 1 }, /* Headphone Output Mute */
887  ad1843_RDA1G = { 9, 0, 6 }, /* Right DAC1 Analog/Digital Gain */
888  ad1843_RDA1GM = { 9, 7, 1 }, /* Right DAC1 Analog Mute */
889  ad1843_LDA1G = { 9, 8, 6 }, /* Left DAC1 Analog/Digital Gain */
890  ad1843_LDA1GM = { 9, 15, 1 }, /* Left DAC1 Analog Mute */
891  ad1843_RDA1AM = { 11, 7, 1 }, /* Right DAC1 Digital Mute */
892  ad1843_LDA1AM = { 11, 15, 1 }, /* Left DAC1 Digital Mute */
893  ad1843_ADLC = { 15, 0, 2 }, /* ADC Left Sample Rate Source */
894  ad1843_ADRC = { 15, 2, 2 }, /* ADC Right Sample Rate Source */
895  ad1843_DA1C = { 15, 8, 2 }, /* DAC1 Sample Rate Source */
896  ad1843_C1C = { 17, 0, 16 }, /* Clock 1 Sample Rate Select */
897  ad1843_C2C = { 20, 0, 16 }, /* Clock 1 Sample Rate Select */
898  ad1843_DAADL = { 25, 4, 2 }, /* Digital ADC Left Source Select */
899  ad1843_DAADR = { 25, 6, 2 }, /* Digital ADC Right Source Select */
900  ad1843_DRSFLT = { 25, 15, 1 }, /* Digital Reampler Filter Mode */
901  ad1843_ADLF = { 26, 0, 2 }, /* ADC Left Channel Data Format */
902  ad1843_ADRF = { 26, 2, 2 }, /* ADC Right Channel Data Format */
903  ad1843_ADTLK = { 26, 4, 1 }, /* ADC Transmit Lock Mode Select */
904  ad1843_SCF = { 26, 7, 1 }, /* SCLK Frequency Select */
905  ad1843_DA1F = { 26, 8, 2 }, /* DAC1 Data Format Select */
906  ad1843_DA1SM = { 26, 14, 1 }, /* DAC1 Stereo/Mono Mode Select */
907  ad1843_ADLEN = { 27, 0, 1 }, /* ADC Left Channel Enable */
908  ad1843_ADREN = { 27, 1, 1 }, /* ADC Right Channel Enable */
909  ad1843_AAMEN = { 27, 4, 1 }, /* Analog to Analog Mix Enable */
910  ad1843_ANAEN = { 27, 7, 1 }, /* Analog Channel Enable */
911  ad1843_DA1EN = { 27, 8, 1 }, /* DAC1 Enable */
912  ad1843_DA2EN = { 27, 9, 1 }, /* DAC2 Enable */
913  ad1843_C1EN = { 28, 11, 1 }, /* Clock Generator 1 Enable */
914  ad1843_C2EN = { 28, 12, 1 }, /* Clock Generator 2 Enable */
915  ad1843_PDNI = { 28, 15, 1 }; /* Converter Power Down */
916 
917 /*
918  * The various registers of the AD1843 use three different formats for
919  * specifying gain. The ad1843_gain structure parameterizes the
920  * formats.
921  */
922 
923 typedef struct ad1843_gain {
924 
925  int negative; /* nonzero if gain is negative. */
928 
929 } ad1843_gain_t;
930 
931 static const ad1843_gain_t ad1843_gain_RECLEV
932  = { 0, &ad1843_LIG, &ad1843_RIG };
933 static const ad1843_gain_t ad1843_gain_LINE
934  = { 1, &ad1843_LX1M, &ad1843_RX1M };
935 static const ad1843_gain_t ad1843_gain_CD
936  = { 1, &ad1843_LX2M, &ad1843_RX2M };
937 static const ad1843_gain_t ad1843_gain_MIC
938  = { 1, &ad1843_LMCM, &ad1843_RMCM };
939 static const ad1843_gain_t ad1843_gain_PCM
940  = { 1, &ad1843_LDA1G, &ad1843_RDA1G };
941 
942 /* read the current value of an AD1843 bitfield. */
943 
944 static int ad1843_read_bits(lithium_t *lith, const ad1843_bitfield_t *field)
945 {
946  int w = li_read_ad1843_reg(lith, field->reg);
947  int val = w >> field->lo_bit & ((1 << field->nbits) - 1);
948 
949  DBGXV("ad1843_read_bits(lith=0x%p, field->{%d %d %d}) returns 0x%x\n",
950  lith, field->reg, field->lo_bit, field->nbits, val);
951 
952  return val;
953 }
954 
955 /*
956  * write a new value to an AD1843 bitfield and return the old value.
957  */
958 
959 static int ad1843_write_bits(lithium_t *lith,
960  const ad1843_bitfield_t *field,
961  int newval)
962 {
963  int w = li_read_ad1843_reg(lith, field->reg);
964  int mask = ((1 << field->nbits) - 1) << field->lo_bit;
965  int oldval = (w & mask) >> field->lo_bit;
966  int newbits = (newval << field->lo_bit) & mask;
967  w = (w & ~mask) | newbits;
968  (void) li_write_ad1843_reg(lith, field->reg, w);
969 
970  DBGXV("ad1843_write_bits(lith=0x%p, field->{%d %d %d}, val=0x%x) "
971  "returns 0x%x\n",
972  lith, field->reg, field->lo_bit, field->nbits, newval,
973  oldval);
974 
975  return oldval;
976 }
977 
978 /*
979  * ad1843_read_multi reads multiple bitfields from the same AD1843
980  * register. It uses a single read cycle to do it. (Reading the
981  * ad1843 requires 256 bit times at 12.288 MHz, or nearly 20
982  * microseconds.)
983  *
984  * Called ike this.
985  *
986  * ad1843_read_multi(lith, nfields,
987  * &ad1843_FIELD1, &val1,
988  * &ad1843_FIELD2, &val2, ...);
989  */
990 
991 static void ad1843_read_multi(lithium_t *lith, int argcount, ...)
992 {
993  va_list ap;
994  const ad1843_bitfield_t *fp;
995  int w = 0, mask, *value, reg = -1;
996 
997  va_start(ap, argcount);
998  while (--argcount >= 0) {
999  fp = va_arg(ap, const ad1843_bitfield_t *);
1000  value = va_arg(ap, int *);
1001  if (reg == -1) {
1002  reg = fp->reg;
1003  w = li_read_ad1843_reg(lith, reg);
1004  }
1005  ASSERT(reg == fp->reg);
1006  mask = (1 << fp->nbits) - 1;
1007  *value = w >> fp->lo_bit & mask;
1008  }
1009  va_end(ap);
1010 }
1011 
1012 /*
1013  * ad1843_write_multi stores multiple bitfields into the same AD1843
1014  * register. It uses one read and one write cycle to do it.
1015  *
1016  * Called like this.
1017  *
1018  * ad1843_write_multi(lith, nfields,
1019  * &ad1843_FIELD1, val1,
1020  * &ad1843_FIELF2, val2, ...);
1021  */
1022 
1023 static void ad1843_write_multi(lithium_t *lith, int argcount, ...)
1024 {
1025  va_list ap;
1026  int reg;
1027  const ad1843_bitfield_t *fp;
1028  int value;
1029  int w, m, mask, bits;
1030 
1031  mask = 0;
1032  bits = 0;
1033  reg = -1;
1034 
1035  va_start(ap, argcount);
1036  while (--argcount >= 0) {
1037  fp = va_arg(ap, const ad1843_bitfield_t *);
1038  value = va_arg(ap, int);
1039  if (reg == -1)
1040  reg = fp->reg;
1041  ASSERT(fp->reg == reg);
1042  m = ((1 << fp->nbits) - 1) << fp->lo_bit;
1043  mask |= m;
1044  bits |= (value << fp->lo_bit) & m;
1045  }
1046  va_end(ap);
1047  ASSERT(!(bits & ~mask));
1048  if (~mask & 0xFFFF)
1049  w = li_read_ad1843_reg(lith, reg);
1050  else
1051  w = 0;
1052  w = (w & ~mask) | bits;
1053  (void) li_write_ad1843_reg(lith, reg, w);
1054 }
1055 
1056 /*
1057  * ad1843_get_gain reads the specified register and extracts the gain value
1058  * using the supplied gain type. It returns the gain in OSS format.
1059  */
1060 
1061 static int ad1843_get_gain(lithium_t *lith, const ad1843_gain_t *gp)
1062 {
1063  int lg, rg;
1064  unsigned short mask = (1 << gp->lfield->nbits) - 1;
1065 
1066  ad1843_read_multi(lith, 2, gp->lfield, &lg, gp->rfield, &rg);
1067  if (gp->negative) {
1068  lg = mask - lg;
1069  rg = mask - rg;
1070  }
1071  lg = (lg * 100 + (mask >> 1)) / mask;
1072  rg = (rg * 100 + (mask >> 1)) / mask;
1073  return lg << 0 | rg << 8;
1074 }
1075 
1076 /*
1077  * Set an audio channel's gain. Converts from OSS format to AD1843's
1078  * format.
1079  *
1080  * Returns the new gain, which may be lower than the old gain.
1081  */
1082 
1083 static int ad1843_set_gain(lithium_t *lith,
1084  const ad1843_gain_t *gp,
1085  int newval)
1086 {
1087  unsigned short mask = (1 << gp->lfield->nbits) - 1;
1088 
1089  int lg = newval >> 0 & 0xFF;
1090  int rg = newval >> 8;
1091  if (lg < 0 || lg > 100 || rg < 0 || rg > 100)
1092  return -EINVAL;
1093  lg = (lg * mask + (mask >> 1)) / 100;
1094  rg = (rg * mask + (mask >> 1)) / 100;
1095  if (gp->negative) {
1096  lg = mask - lg;
1097  rg = mask - rg;
1098  }
1099  ad1843_write_multi(lith, 2, gp->lfield, lg, gp->rfield, rg);
1100  return ad1843_get_gain(lith, gp);
1101 }
1102 
1103 /* Returns the current recording source, in OSS format. */
1104 
1105 static int ad1843_get_recsrc(lithium_t *lith)
1106 {
1107  int ls = ad1843_read_bits(lith, &ad1843_LSS);
1108 
1109  switch (ls) {
1110  case 1:
1111  return SOUND_MASK_MIC;
1112  case 2:
1113  return SOUND_MASK_LINE;
1114  case 3:
1115  return SOUND_MASK_CD;
1116  case 6:
1117  return SOUND_MASK_PCM;
1118  default:
1119  ASSERT(0);
1120  return -1;
1121  }
1122 }
1123 
1124 /*
1125  * Enable/disable digital resample mode in the AD1843.
1126  *
1127  * The AD1843 requires that ADL, ADR, DA1 and DA2 be powered down
1128  * while switching modes. So we save DA1's state (DA2's state is not
1129  * interesting), power them down, switch into/out of resample mode,
1130  * power them up, and restore state.
1131  *
1132  * This will cause audible glitches if D/A or A/D is going on, so the
1133  * driver disallows that (in mixer_write_ioctl()).
1134  *
1135  * The open question is, is this worth doing? I'm leaving it in,
1136  * because it's written, but...
1137  */
1138 
1139 static void ad1843_set_resample_mode(lithium_t *lith, int onoff)
1140 {
1141  /* Save DA1 mute and gain (addr 9 is DA1 analog gain/attenuation) */
1142  int save_da1 = li_read_ad1843_reg(lith, 9);
1143 
1144  /* Power down A/D and D/A. */
1145  ad1843_write_multi(lith, 4,
1146  &ad1843_DA1EN, 0,
1147  &ad1843_DA2EN, 0,
1148  &ad1843_ADLEN, 0,
1149  &ad1843_ADREN, 0);
1150 
1151  /* Switch mode */
1152  ASSERT(onoff == 0 || onoff == 1);
1153  ad1843_write_bits(lith, &ad1843_DRSFLT, onoff);
1154 
1155  /* Power up A/D and D/A. */
1156  ad1843_write_multi(lith, 3,
1157  &ad1843_DA1EN, 1,
1158  &ad1843_ADLEN, 1,
1159  &ad1843_ADREN, 1);
1160 
1161  /* Restore DA1 mute and gain. */
1162  li_write_ad1843_reg(lith, 9, save_da1);
1163 }
1164 
1165 /*
1166  * Set recording source. Arg newsrc specifies an OSS channel mask.
1167  *
1168  * The complication is that when we switch into/out of loopback mode
1169  * (i.e., src = SOUND_MASK_PCM), we change the AD1843 into/out of
1170  * digital resampling mode.
1171  *
1172  * Returns newsrc on success, -errno on failure.
1173  */
1174 
1175 static int ad1843_set_recsrc(lithium_t *lith, int newsrc)
1176 {
1177  int bits;
1178  int oldbits;
1179 
1180  switch (newsrc) {
1181  case SOUND_MASK_PCM:
1182  bits = 6;
1183  break;
1184 
1185  case SOUND_MASK_MIC:
1186  bits = 1;
1187  break;
1188 
1189  case SOUND_MASK_LINE:
1190  bits = 2;
1191  break;
1192 
1193  case SOUND_MASK_CD:
1194  bits = 3;
1195  break;
1196 
1197  default:
1198  return -EINVAL;
1199  }
1200  oldbits = ad1843_read_bits(lith, &ad1843_LSS);
1201  if (newsrc == SOUND_MASK_PCM && oldbits != 6) {
1202  DBGP("enabling digital resample mode\n");
1203  ad1843_set_resample_mode(lith, 1);
1204  ad1843_write_multi(lith, 2,
1205  &ad1843_DAADL, 2,
1206  &ad1843_DAADR, 2);
1207  } else if (newsrc != SOUND_MASK_PCM && oldbits == 6) {
1208  DBGP("disabling digital resample mode\n");
1209  ad1843_set_resample_mode(lith, 0);
1210  ad1843_write_multi(lith, 2,
1211  &ad1843_DAADL, 0,
1212  &ad1843_DAADR, 0);
1213  }
1214  ad1843_write_multi(lith, 2, &ad1843_LSS, bits, &ad1843_RSS, bits);
1215  return newsrc;
1216 }
1217 
1218 /*
1219  * Return current output sources, in OSS format.
1220  */
1221 
1222 static int ad1843_get_outsrc(lithium_t *lith)
1223 {
1224  int pcm, line, mic, cd;
1225 
1226  pcm = ad1843_read_bits(lith, &ad1843_LDA1GM) ? 0 : SOUND_MASK_PCM;
1227  line = ad1843_read_bits(lith, &ad1843_LX1MM) ? 0 : SOUND_MASK_LINE;
1228  cd = ad1843_read_bits(lith, &ad1843_LX2MM) ? 0 : SOUND_MASK_CD;
1229  mic = ad1843_read_bits(lith, &ad1843_LMCMM) ? 0 : SOUND_MASK_MIC;
1230 
1231  return pcm | line | cd | mic;
1232 }
1233 
1234 /*
1235  * Set output sources. Arg is a mask of active sources in OSS format.
1236  *
1237  * Returns source mask on success, -errno on failure.
1238  */
1239 
1240 static int ad1843_set_outsrc(lithium_t *lith, int mask)
1241 {
1242  int pcm, line, mic, cd;
1243 
1244  if (mask & ~(SOUND_MASK_PCM | SOUND_MASK_LINE |
1246  return -EINVAL;
1247  pcm = (mask & SOUND_MASK_PCM) ? 0 : 1;
1248  line = (mask & SOUND_MASK_LINE) ? 0 : 1;
1249  mic = (mask & SOUND_MASK_MIC) ? 0 : 1;
1250  cd = (mask & SOUND_MASK_CD) ? 0 : 1;
1251 
1252  ad1843_write_multi(lith, 2, &ad1843_LDA1GM, pcm, &ad1843_RDA1GM, pcm);
1253  ad1843_write_multi(lith, 2, &ad1843_LX1MM, line, &ad1843_RX1MM, line);
1254  ad1843_write_multi(lith, 2, &ad1843_LX2MM, cd, &ad1843_RX2MM, cd);
1255  ad1843_write_multi(lith, 2, &ad1843_LMCMM, mic, &ad1843_RMCMM, mic);
1256 
1257  return mask;
1258 }
1259 
1260 /* Setup ad1843 for D/A conversion. */
1261 
1262 static void ad1843_setup_dac(lithium_t *lith,
1263  int framerate,
1264  int fmt,
1265  int channels)
1266 {
1267  int ad_fmt = 0, ad_mode = 0;
1268 
1269  DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
1270  lith, framerate, fmt, channels);
1271 
1272  switch (fmt) {
1273  case AFMT_S8: ad_fmt = 1; break;
1274  case AFMT_U8: ad_fmt = 1; break;
1275  case AFMT_S16_LE: ad_fmt = 1; break;
1276  case AFMT_MU_LAW: ad_fmt = 2; break;
1277  case AFMT_A_LAW: ad_fmt = 3; break;
1278  default: ASSERT(0);
1279  }
1280 
1281  switch (channels) {
1282  case 2: ad_mode = 0; break;
1283  case 1: ad_mode = 1; break;
1284  default: ASSERT(0);
1285  }
1286 
1287  DBGPV("ad_mode = %d, ad_fmt = %d\n", ad_mode, ad_fmt);
1288  ASSERT(framerate >= 4000 && framerate <= 49000);
1289  ad1843_write_bits(lith, &ad1843_C1C, framerate);
1290  ad1843_write_multi(lith, 2,
1291  &ad1843_DA1SM, ad_mode, &ad1843_DA1F, ad_fmt);
1292 }
1293 
1294 static void ad1843_shutdown_dac(lithium_t *lith)
1295 {
1296  ad1843_write_bits(lith, &ad1843_DA1F, 1);
1297 }
1298 
1299 static void ad1843_setup_adc(lithium_t *lith, int framerate, int fmt, int channels)
1300 {
1301  int da_fmt = 0;
1302 
1303  DBGEV("(lith=0x%p, framerate=%d, fmt=%d, channels=%d)\n",
1304  lith, framerate, fmt, channels);
1305 
1306  switch (fmt) {
1307  case AFMT_S8: da_fmt = 1; break;
1308  case AFMT_U8: da_fmt = 1; break;
1309  case AFMT_S16_LE: da_fmt = 1; break;
1310  case AFMT_MU_LAW: da_fmt = 2; break;
1311  case AFMT_A_LAW: da_fmt = 3; break;
1312  default: ASSERT(0);
1313  }
1314 
1315  DBGPV("da_fmt = %d\n", da_fmt);
1316  ASSERT(framerate >= 4000 && framerate <= 49000);
1317  ad1843_write_bits(lith, &ad1843_C2C, framerate);
1318  ad1843_write_multi(lith, 2,
1319  &ad1843_ADLF, da_fmt, &ad1843_ADRF, da_fmt);
1320 }
1321 
1322 static void ad1843_shutdown_adc(lithium_t *lith)
1323 {
1324  /* nothing to do */
1325 }
1326 
1327 /*
1328  * Fully initialize the ad1843. As described in the AD1843 data
1329  * sheet, section "START-UP SEQUENCE". The numbered comments are
1330  * subsection headings from the data sheet. See the data sheet, pages
1331  * 52-54, for more info.
1332  *
1333  * return 0 on success, -errno on failure. */
1334 
1335 static int __init ad1843_init(lithium_t *lith)
1336 {
1337  unsigned long later;
1338  int err;
1339 
1340  err = li_init(lith);
1341  if (err)
1342  return err;
1343 
1344  if (ad1843_read_bits(lith, &ad1843_INIT) != 0) {
1345  printk(KERN_ERR "vwsnd sound: AD1843 won't initialize\n");
1346  return -EIO;
1347  }
1348 
1349  ad1843_write_bits(lith, &ad1843_SCF, 1);
1350 
1351  /* 4. Put the conversion resources into standby. */
1352 
1353  ad1843_write_bits(lith, &ad1843_PDNI, 0);
1354  later = jiffies + HZ / 2; /* roughly half a second */
1355  DBGDO(shut_up++);
1356  while (ad1843_read_bits(lith, &ad1843_PDNO)) {
1357  if (time_after(jiffies, later)) {
1359  "vwsnd audio: AD1843 won't power up\n");
1360  return -EIO;
1361  }
1362  schedule();
1363  }
1364  DBGDO(shut_up--);
1365 
1366  /* 5. Power up the clock generators and enable clock output pins. */
1367 
1368  ad1843_write_multi(lith, 2, &ad1843_C1EN, 1, &ad1843_C2EN, 1);
1369 
1370  /* 6. Configure conversion resources while they are in standby. */
1371 
1372  /* DAC1 uses clock 1 as source, ADC uses clock 2. Always. */
1373 
1374  ad1843_write_multi(lith, 3,
1375  &ad1843_DA1C, 1,
1376  &ad1843_ADLC, 2,
1377  &ad1843_ADRC, 2);
1378 
1379  /* 7. Enable conversion resources. */
1380 
1381  ad1843_write_bits(lith, &ad1843_ADTLK, 1);
1382  ad1843_write_multi(lith, 5,
1383  &ad1843_ANAEN, 1,
1384  &ad1843_AAMEN, 1,
1385  &ad1843_DA1EN, 1,
1386  &ad1843_ADLEN, 1,
1387  &ad1843_ADREN, 1);
1388 
1389  /* 8. Configure conversion resources while they are enabled. */
1390 
1391  ad1843_write_bits(lith, &ad1843_DA1C, 1);
1392 
1393  /* Unmute all channels. */
1394 
1395  ad1843_set_outsrc(lith,
1398  ad1843_write_multi(lith, 2, &ad1843_LDA1AM, 0, &ad1843_RDA1AM, 0);
1399 
1400  /* Set default recording source to Line In and set
1401  * mic gain to +20 dB.
1402  */
1403 
1405  ad1843_write_multi(lith, 2, &ad1843_LMGE, 1, &ad1843_RMGE, 1);
1406 
1407  /* Set Speaker Out level to +/- 4V and unmute it. */
1408 
1409  ad1843_write_multi(lith, 2, &ad1843_HPOS, 1, &ad1843_HPOM, 0);
1410 
1411  return 0;
1412 }
1413 
1414 /*****************************************************************************/
1415 /* PCM I/O */
1416 
1417 #define READ_INTR_MASK (LI_INTR_COMM1_TRIG | LI_INTR_COMM1_OVERFLOW)
1418 #define WRITE_INTR_MASK (LI_INTR_COMM2_TRIG | LI_INTR_COMM2_UNDERFLOW)
1419 
1420 typedef enum vwsnd_port_swstate { /* software state */
1426 
1427 typedef enum vwsnd_port_hwstate { /* hardware state */
1431 
1432 /*
1433  * These flags are read by ISR, but only written at baseline.
1434  */
1435 
1436 typedef enum vwsnd_port_flags {
1437  DISABLED = 1 << 0,
1438  ERFLOWN = 1 << 1, /* overflown or underflown */
1439  HW_BUSY = 1 << 2,
1441 
1442 /*
1443  * vwsnd_port is the per-port data structure. Each device has two
1444  * ports, one for input and one for output.
1445  *
1446  * Locking:
1447  *
1448  * port->lock protects: hwstate, flags, swb_[iu]_avail.
1449  *
1450  * devc->io_mutex protects: swstate, sw_*, swb_[iu]_idx.
1451  *
1452  * everything else is only written by open/release or
1453  * pcm_{setup,shutdown}(), which are serialized by a
1454  * combination of devc->open_mutex and devc->io_mutex.
1455  */
1456 
1457 typedef struct vwsnd_port {
1458 
1464 
1470  unsigned int zero_word; /* zero for the sample format */
1471 
1475 
1476  unsigned int hw_fragshift;
1477  unsigned int hw_fragsize;
1478  unsigned int hw_fragcount;
1479 
1481  unsigned long hwbuf_paddr;
1482  unsigned long hwbuf_vaddr;
1483  void * hwbuf; /* hwbuf == hwbuf_vaddr */
1484  int hwbuf_max; /* max bytes to preload */
1485 
1486  void * swbuf;
1487  unsigned int swbuf_size; /* size in bytes */
1488  unsigned int swb_u_idx; /* index of next user byte */
1489  unsigned int swb_i_idx; /* index of next intr byte */
1490  unsigned int swb_u_avail; /* # bytes avail to user */
1491  unsigned int swb_i_avail; /* # bytes avail to intr */
1492 
1494 
1495  /* Accounting */
1496 
1500 
1501 } vwsnd_port_t;
1502 
1503 /* vwsnd_dev is the per-device data structure. */
1504 
1505 typedef struct vwsnd_dev {
1507  int audio_minor; /* minor number of audio device */
1508  int mixer_minor; /* minor number of mixer device */
1509 
1511  struct mutex io_mutex;
1515 
1517 
1520 } vwsnd_dev_t;
1521 
1522 static vwsnd_dev_t *vwsnd_dev_list; /* linked list of all devices */
1523 
1524 static atomic_t vwsnd_use_count = ATOMIC_INIT(0);
1525 
1526 # define INC_USE_COUNT (atomic_inc(&vwsnd_use_count))
1527 # define DEC_USE_COUNT (atomic_dec(&vwsnd_use_count))
1528 # define IN_USE (atomic_read(&vwsnd_use_count) != 0)
1529 
1530 /*
1531  * Lithium can only DMA multiples of 32 bytes. Its DMA buffer may
1532  * be up to 8 Kb. This driver always uses 8 Kb.
1533  *
1534  * Memory bug workaround -- I'm not sure what's going on here, but
1535  * somehow pcm_copy_out() was triggering segv's going on to the next
1536  * page of the hw buffer. So, I make the hw buffer one size bigger
1537  * than we actually use. That way, the following page is allocated
1538  * and mapped, and no error. I suspect that something is broken
1539  * in Cobalt, but haven't really investigated. HBO is the actual
1540  * size of the buffer, and HWBUF_ORDER is what we allocate.
1541  */
1542 
1543 #define HWBUF_SHIFT 13
1544 #define HWBUF_SIZE (1 << HWBUF_SHIFT)
1545 # define HBO (HWBUF_SHIFT > PAGE_SHIFT ? HWBUF_SHIFT - PAGE_SHIFT : 0)
1546 # define HWBUF_ORDER (HBO + 1) /* next size bigger */
1547 #define MIN_SPEED 4000
1548 #define MAX_SPEED 49000
1549 
1550 #define MIN_FRAGSHIFT (DMACHUNK_SHIFT + 1)
1551 #define MAX_FRAGSHIFT (PAGE_SHIFT)
1552 #define MIN_FRAGSIZE (1 << MIN_FRAGSHIFT)
1553 #define MAX_FRAGSIZE (1 << MAX_FRAGSHIFT)
1554 #define MIN_FRAGCOUNT(fragsize) 3
1555 #define MAX_FRAGCOUNT(fragsize) (32 * PAGE_SIZE / (fragsize))
1556 #define DEFAULT_FRAGSHIFT 12
1557 #define DEFAULT_FRAGCOUNT 16
1558 #define DEFAULT_SUBDIVSHIFT 0
1559 
1560 /*
1561  * The software buffer (swbuf) is a ring buffer shared between user
1562  * level and interrupt level. Each level owns some of the bytes in
1563  * the buffer, and may give bytes away by calling swb_inc_{u,i}().
1564  * User level calls _u for user, and interrupt level calls _i for
1565  * interrupt.
1566  *
1567  * port->swb_{u,i}_avail is the number of bytes available to that level.
1568  *
1569  * port->swb_{u,i}_idx is the index of the first available byte in the
1570  * buffer.
1571  *
1572  * Each level calls swb_inc_{u,i}() to atomically increment its index,
1573  * recalculate the number of bytes available for both sides, and
1574  * return the number of bytes available. Since each side can only
1575  * give away bytes, the other side can only increase the number of
1576  * bytes available to this side. Each side updates its own index
1577  * variable, swb_{u,i}_idx, so no lock is needed to read it.
1578  *
1579  * To query the number of bytes available, call swb_inc_{u,i} with an
1580  * increment of zero.
1581  */
1582 
1583 static __inline__ unsigned int __swb_inc_u(vwsnd_port_t *port, int inc)
1584 {
1585  if (inc) {
1586  port->swb_u_idx += inc;
1587  port->swb_u_idx %= port->swbuf_size;
1588  port->swb_u_avail -= inc;
1589  port->swb_i_avail += inc;
1590  }
1591  return port->swb_u_avail;
1592 }
1593 
1594 static __inline__ unsigned int swb_inc_u(vwsnd_port_t *port, int inc)
1595 {
1596  unsigned long flags;
1597  unsigned int ret;
1598 
1599  spin_lock_irqsave(&port->lock, flags);
1600  {
1601  ret = __swb_inc_u(port, inc);
1602  }
1603  spin_unlock_irqrestore(&port->lock, flags);
1604  return ret;
1605 }
1606 
1607 static __inline__ unsigned int __swb_inc_i(vwsnd_port_t *port, int inc)
1608 {
1609  if (inc) {
1610  port->swb_i_idx += inc;
1611  port->swb_i_idx %= port->swbuf_size;
1612  port->swb_i_avail -= inc;
1613  port->swb_u_avail += inc;
1614  }
1615  return port->swb_i_avail;
1616 }
1617 
1618 static __inline__ unsigned int swb_inc_i(vwsnd_port_t *port, int inc)
1619 {
1620  unsigned long flags;
1621  unsigned int ret;
1622 
1623  spin_lock_irqsave(&port->lock, flags);
1624  {
1625  ret = __swb_inc_i(port, inc);
1626  }
1627  spin_unlock_irqrestore(&port->lock, flags);
1628  return ret;
1629 }
1630 
1631 /*
1632  * pcm_setup - this routine initializes all port state after
1633  * mode-setting ioctls have been done, but before the first I/O is
1634  * done.
1635  *
1636  * Locking: called with devc->io_mutex held.
1637  *
1638  * Returns 0 on success, -errno on failure.
1639  */
1640 
1641 static int pcm_setup(vwsnd_dev_t *devc,
1643  vwsnd_port_t *wport)
1644 {
1645  vwsnd_port_t *aport = rport ? rport : wport;
1646  int sample_size;
1647  unsigned int zero_word;
1648 
1649  DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
1650 
1651  ASSERT(aport != NULL);
1652  if (aport->swbuf != NULL)
1653  return 0;
1654  switch (aport->sw_samplefmt) {
1655  case AFMT_MU_LAW:
1656  sample_size = 1;
1657  zero_word = 0xFFFFFFFF ^ 0x80808080;
1658  break;
1659 
1660  case AFMT_A_LAW:
1661  sample_size = 1;
1662  zero_word = 0xD5D5D5D5 ^ 0x80808080;
1663  break;
1664 
1665  case AFMT_U8:
1666  sample_size = 1;
1667  zero_word = 0x80808080;
1668  break;
1669 
1670  case AFMT_S8:
1671  sample_size = 1;
1672  zero_word = 0x00000000;
1673  break;
1674 
1675  case AFMT_S16_LE:
1676  sample_size = 2;
1677  zero_word = 0x00000000;
1678  break;
1679 
1680  default:
1681  sample_size = 0; /* prevent compiler warning */
1682  zero_word = 0;
1683  ASSERT(0);
1684  }
1685  aport->sample_size = sample_size;
1686  aport->zero_word = zero_word;
1687  aport->frame_size = aport->sw_channels * aport->sample_size;
1688  aport->hw_fragshift = aport->sw_fragshift - aport->sw_subdivshift;
1689  aport->hw_fragsize = 1 << aport->hw_fragshift;
1690  aport->hw_fragcount = aport->sw_fragcount << aport->sw_subdivshift;
1691  ASSERT(aport->hw_fragsize >= MIN_FRAGSIZE);
1692  ASSERT(aport->hw_fragsize <= MAX_FRAGSIZE);
1693  ASSERT(aport->hw_fragcount >= MIN_FRAGCOUNT(aport->hw_fragsize));
1694  ASSERT(aport->hw_fragcount <= MAX_FRAGCOUNT(aport->hw_fragsize));
1695  if (rport) {
1696  int hwfrags, swfrags;
1697  rport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
1698  hwfrags = rport->hwbuf_max >> aport->hw_fragshift;
1699  swfrags = aport->hw_fragcount - hwfrags;
1700  if (swfrags < 2)
1701  swfrags = 2;
1702  rport->swbuf_size = swfrags * aport->hw_fragsize;
1703  DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
1704  DBGPV("read hwbuf_max = %d, swbuf_size = %d\n",
1705  rport->hwbuf_max, rport->swbuf_size);
1706  }
1707  if (wport) {
1708  int hwfrags, swfrags;
1709  int total_bytes = aport->hw_fragcount * aport->hw_fragsize;
1710  wport->hwbuf_max = aport->hwbuf_size - DMACHUNK_SIZE;
1711  if (wport->hwbuf_max > total_bytes)
1712  wport->hwbuf_max = total_bytes;
1713  hwfrags = wport->hwbuf_max >> aport->hw_fragshift;
1714  DBGPV("hwfrags = %d\n", hwfrags);
1715  swfrags = aport->hw_fragcount - hwfrags;
1716  if (swfrags < 2)
1717  swfrags = 2;
1718  wport->swbuf_size = swfrags * aport->hw_fragsize;
1719  DBGPV("hwfrags = %d, swfrags = %d\n", hwfrags, swfrags);
1720  DBGPV("write hwbuf_max = %d, swbuf_size = %d\n",
1721  wport->hwbuf_max, wport->swbuf_size);
1722  }
1723 
1724  aport->swb_u_idx = 0;
1725  aport->swb_i_idx = 0;
1726  aport->byte_count = 0;
1727 
1728  /*
1729  * Is this a Cobalt bug? We need to make this buffer extend
1730  * one page further than we actually use -- somehow memcpy
1731  * causes an exceptoin otherwise. I suspect there's a bug in
1732  * Cobalt (or somewhere) where it's generating a fault on a
1733  * speculative load or something. Obviously, I haven't taken
1734  * the time to track it down.
1735  */
1736 
1737  aport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE);
1738  if (!aport->swbuf)
1739  return -ENOMEM;
1740  if (rport && wport) {
1741  ASSERT(aport == rport);
1742  ASSERT(wport->swbuf == NULL);
1743  /* One extra page - see comment above. */
1744  wport->swbuf = vmalloc(aport->swbuf_size + PAGE_SIZE);
1745  if (!wport->swbuf) {
1746  vfree(aport->swbuf);
1747  aport->swbuf = NULL;
1748  return -ENOMEM;
1749  }
1750  wport->sample_size = rport->sample_size;
1751  wport->zero_word = rport->zero_word;
1752  wport->frame_size = rport->frame_size;
1753  wport->hw_fragshift = rport->hw_fragshift;
1754  wport->hw_fragsize = rport->hw_fragsize;
1755  wport->hw_fragcount = rport->hw_fragcount;
1756  wport->swbuf_size = rport->swbuf_size;
1757  wport->hwbuf_max = rport->hwbuf_max;
1758  wport->swb_u_idx = rport->swb_u_idx;
1759  wport->swb_i_idx = rport->swb_i_idx;
1760  wport->byte_count = rport->byte_count;
1761  }
1762  if (rport) {
1763  rport->swb_u_avail = 0;
1764  rport->swb_i_avail = rport->swbuf_size;
1765  rport->swstate = SW_RUN;
1766  li_setup_dma(&rport->chan,
1767  &li_comm1,
1768  &devc->lith,
1769  rport->hwbuf_paddr,
1770  HWBUF_SHIFT,
1771  rport->hw_fragshift,
1772  rport->sw_channels,
1773  rport->sample_size);
1774  ad1843_setup_adc(&devc->lith,
1775  rport->sw_framerate,
1776  rport->sw_samplefmt,
1777  rport->sw_channels);
1778  li_enable_interrupts(&devc->lith, READ_INTR_MASK);
1779  if (!(rport->flags & DISABLED)) {
1780  ustmsc_t ustmsc;
1781  rport->hwstate = HW_RUNNING;
1782  li_activate_dma(&rport->chan);
1783  li_read_USTMSC(&rport->chan, &ustmsc);
1784  rport->MSC_offset = ustmsc.msc;
1785  }
1786  }
1787  if (wport) {
1788  if (wport->hwbuf_max > wport->swbuf_size)
1789  wport->hwbuf_max = wport->swbuf_size;
1790  wport->flags &= ~ERFLOWN;
1791  wport->swb_u_avail = wport->swbuf_size;
1792  wport->swb_i_avail = 0;
1793  wport->swstate = SW_RUN;
1794  li_setup_dma(&wport->chan,
1795  &li_comm2,
1796  &devc->lith,
1797  wport->hwbuf_paddr,
1798  HWBUF_SHIFT,
1799  wport->hw_fragshift,
1800  wport->sw_channels,
1801  wport->sample_size);
1802  ad1843_setup_dac(&devc->lith,
1803  wport->sw_framerate,
1804  wport->sw_samplefmt,
1805  wport->sw_channels);
1806  li_enable_interrupts(&devc->lith, WRITE_INTR_MASK);
1807  }
1808  DBGRV();
1809  return 0;
1810 }
1811 
1812 /*
1813  * pcm_shutdown_port - shut down one port (direction) for PCM I/O.
1814  * Only called from pcm_shutdown.
1815  */
1816 
1817 static void pcm_shutdown_port(vwsnd_dev_t *devc,
1818  vwsnd_port_t *aport,
1819  unsigned int mask)
1820 {
1821  unsigned long flags;
1822  vwsnd_port_hwstate_t hwstate;
1824 
1825  aport->swstate = SW_INITIAL;
1826  add_wait_queue(&aport->queue, &wait);
1827  while (1) {
1829  spin_lock_irqsave(&aport->lock, flags);
1830  {
1831  hwstate = aport->hwstate;
1832  }
1833  spin_unlock_irqrestore(&aport->lock, flags);
1834  if (hwstate == HW_STOPPED)
1835  break;
1836  schedule();
1837  }
1838  current->state = TASK_RUNNING;
1839  remove_wait_queue(&aport->queue, &wait);
1840  li_disable_interrupts(&devc->lith, mask);
1841  if (aport == &devc->rport)
1842  ad1843_shutdown_adc(&devc->lith);
1843  else /* aport == &devc->wport) */
1844  ad1843_shutdown_dac(&devc->lith);
1845  li_shutdown_dma(&aport->chan);
1846  vfree(aport->swbuf);
1847  aport->swbuf = NULL;
1848  aport->byte_count = 0;
1849 }
1850 
1851 /*
1852  * pcm_shutdown undoes what pcm_setup did.
1853  * Also sets the ports' swstate to newstate.
1854  */
1855 
1856 static void pcm_shutdown(vwsnd_dev_t *devc,
1857  vwsnd_port_t *rport,
1858  vwsnd_port_t *wport)
1859 {
1860  DBGEV("(devc=0x%p, rport=0x%p, wport=0x%p)\n", devc, rport, wport);
1861 
1862  if (rport && rport->swbuf) {
1863  DBGPV("shutting down rport\n");
1864  pcm_shutdown_port(devc, rport, READ_INTR_MASK);
1865  }
1866  if (wport && wport->swbuf) {
1867  DBGPV("shutting down wport\n");
1868  pcm_shutdown_port(devc, wport, WRITE_INTR_MASK);
1869  }
1870  DBGRV();
1871 }
1872 
1873 static void pcm_copy_in(vwsnd_port_t *rport, int swidx, int hwidx, int nb)
1874 {
1875  char *src = rport->hwbuf + hwidx;
1876  char *dst = rport->swbuf + swidx;
1877  int fmt = rport->sw_samplefmt;
1878 
1879  DBGPV("swidx = %d, hwidx = %d\n", swidx, hwidx);
1880  ASSERT(rport->hwbuf != NULL);
1881  ASSERT(rport->swbuf != NULL);
1882  ASSERT(nb > 0 && (nb % 32) == 0);
1883  ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
1884  ASSERT(swidx >= 0 && swidx + nb <= rport->swbuf_size);
1885  ASSERT(hwidx >= 0 && hwidx + nb <= rport->hwbuf_size);
1886 
1887  if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
1888 
1889  /* See Sample Format Notes above. */
1890 
1891  char *end = src + nb;
1892  while (src < end)
1893  *dst++ = *src++ ^ 0x80;
1894  } else
1895  memcpy(dst, src, nb);
1896 }
1897 
1898 static void pcm_copy_out(vwsnd_port_t *wport, int swidx, int hwidx, int nb)
1899 {
1900  char *src = wport->swbuf + swidx;
1901  char *dst = wport->hwbuf + hwidx;
1902  int fmt = wport->sw_samplefmt;
1903 
1904  ASSERT(nb > 0 && (nb % 32) == 0);
1905  ASSERT(wport->hwbuf != NULL);
1906  ASSERT(wport->swbuf != NULL);
1907  ASSERT(swidx % 32 == 0 && hwidx % 32 == 0);
1908  ASSERT(swidx >= 0 && swidx + nb <= wport->swbuf_size);
1909  ASSERT(hwidx >= 0 && hwidx + nb <= wport->hwbuf_size);
1910  if (fmt == AFMT_MU_LAW || fmt == AFMT_A_LAW || fmt == AFMT_S8) {
1911 
1912  /* See Sample Format Notes above. */
1913 
1914  char *end = src + nb;
1915  while (src < end)
1916  *dst++ = *src++ ^ 0x80;
1917  } else
1918  memcpy(dst, src, nb);
1919 }
1920 
1921 /*
1922  * pcm_output() is called both from baselevel and from interrupt level.
1923  * This is where audio frames are copied into the hardware-accessible
1924  * ring buffer.
1925  *
1926  * Locking note: The part of this routine that figures out what to do
1927  * holds wport->lock. The longer part releases wport->lock, but sets
1928  * wport->flags & HW_BUSY. Afterward, it reacquires wport->lock, and
1929  * checks for more work to do.
1930  *
1931  * If another thread calls pcm_output() while HW_BUSY is set, it
1932  * returns immediately, knowing that the thread that set HW_BUSY will
1933  * look for more work to do before returning.
1934  *
1935  * This has the advantage that port->lock is held for several short
1936  * periods instead of one long period. Also, when pcm_output is
1937  * called from base level, it reenables interrupts.
1938  */
1939 
1940 static void pcm_output(vwsnd_dev_t *devc, int erflown, int nb)
1941 {
1942  vwsnd_port_t *wport = &devc->wport;
1943  const int hwmax = wport->hwbuf_max;
1944  const int hwsize = wport->hwbuf_size;
1945  const int swsize = wport->swbuf_size;
1946  const int fragsize = wport->hw_fragsize;
1947  unsigned long iflags;
1948 
1949  DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
1950  spin_lock_irqsave(&wport->lock, iflags);
1951  if (erflown)
1952  wport->flags |= ERFLOWN;
1953  (void) __swb_inc_u(wport, nb);
1954  if (wport->flags & HW_BUSY) {
1955  spin_unlock_irqrestore(&wport->lock, iflags);
1956  DBGPV("returning: HW BUSY\n");
1957  return;
1958  }
1959  if (wport->flags & DISABLED) {
1960  spin_unlock_irqrestore(&wport->lock, iflags);
1961  DBGPV("returning: DISABLED\n");
1962  return;
1963  }
1964  wport->flags |= HW_BUSY;
1965  while (1) {
1966  int swptr, hwptr, hw_avail, sw_avail, swidx;
1967  vwsnd_port_hwstate_t hwstate = wport->hwstate;
1968  vwsnd_port_swstate_t swstate = wport->swstate;
1969  int hw_unavail;
1970  ustmsc_t ustmsc;
1971 
1972  hwptr = li_read_hwptr(&wport->chan);
1973  swptr = li_read_swptr(&wport->chan);
1974  hw_unavail = (swptr - hwptr + hwsize) % hwsize;
1975  hw_avail = (hwmax - hw_unavail) & -fragsize;
1976  sw_avail = wport->swb_i_avail & -fragsize;
1977  if (sw_avail && swstate == SW_RUN) {
1978  if (wport->flags & ERFLOWN) {
1979  wport->flags &= ~ERFLOWN;
1980  }
1981  } else if (swstate == SW_INITIAL ||
1982  swstate == SW_OFF ||
1983  (swstate == SW_DRAIN &&
1984  !sw_avail &&
1985  (wport->flags & ERFLOWN))) {
1986  DBGP("stopping. hwstate = %d\n", hwstate);
1987  if (hwstate != HW_STOPPED) {
1988  li_deactivate_dma(&wport->chan);
1989  wport->hwstate = HW_STOPPED;
1990  }
1991  wake_up(&wport->queue);
1992  break;
1993  }
1994  if (!sw_avail || !hw_avail)
1995  break;
1996  spin_unlock_irqrestore(&wport->lock, iflags);
1997 
1998  /*
1999  * We gave up the port lock, but we have the HW_BUSY flag.
2000  * Proceed without accessing any nonlocal state.
2001  * Do not exit the loop -- must check for more work.
2002  */
2003 
2004  swidx = wport->swb_i_idx;
2005  nb = hw_avail;
2006  if (nb > sw_avail)
2007  nb = sw_avail;
2008  if (nb > hwsize - swptr)
2009  nb = hwsize - swptr; /* don't overflow hwbuf */
2010  if (nb > swsize - swidx)
2011  nb = swsize - swidx; /* don't overflow swbuf */
2012  ASSERT(nb > 0);
2013  if (nb % fragsize) {
2014  DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
2015  DBGP("hw_avail = %d\n", hw_avail);
2016  DBGP("sw_avail = %d\n", sw_avail);
2017  DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
2018  DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
2019  }
2020  ASSERT(!(nb % fragsize));
2021  DBGPV("copying swb[%d..%d] to hwb[%d..%d]\n",
2022  swidx, swidx + nb, swptr, swptr + nb);
2023  pcm_copy_out(wport, swidx, swptr, nb);
2024  li_write_swptr(&wport->chan, (swptr + nb) % hwsize);
2025  spin_lock_irqsave(&wport->lock, iflags);
2026  if (hwstate == HW_STOPPED) {
2027  DBGPV("starting\n");
2028  li_activate_dma(&wport->chan);
2029  wport->hwstate = HW_RUNNING;
2030  li_read_USTMSC(&wport->chan, &ustmsc);
2031  ASSERT(wport->byte_count % wport->frame_size == 0);
2032  wport->MSC_offset = ustmsc.msc - wport->byte_count / wport->frame_size;
2033  }
2034  __swb_inc_i(wport, nb);
2035  wport->byte_count += nb;
2036  wport->frag_count += nb / fragsize;
2037  ASSERT(nb % fragsize == 0);
2038  wake_up(&wport->queue);
2039  }
2040  wport->flags &= ~HW_BUSY;
2041  spin_unlock_irqrestore(&wport->lock, iflags);
2042  DBGRV();
2043 }
2044 
2045 /*
2046  * pcm_input() is called both from baselevel and from interrupt level.
2047  * This is where audio frames are copied out of the hardware-accessible
2048  * ring buffer.
2049  *
2050  * Locking note: The part of this routine that figures out what to do
2051  * holds rport->lock. The longer part releases rport->lock, but sets
2052  * rport->flags & HW_BUSY. Afterward, it reacquires rport->lock, and
2053  * checks for more work to do.
2054  *
2055  * If another thread calls pcm_input() while HW_BUSY is set, it
2056  * returns immediately, knowing that the thread that set HW_BUSY will
2057  * look for more work to do before returning.
2058  *
2059  * This has the advantage that port->lock is held for several short
2060  * periods instead of one long period. Also, when pcm_input is
2061  * called from base level, it reenables interrupts.
2062  */
2063 
2064 static void pcm_input(vwsnd_dev_t *devc, int erflown, int nb)
2065 {
2066  vwsnd_port_t *rport = &devc->rport;
2067  const int hwmax = rport->hwbuf_max;
2068  const int hwsize = rport->hwbuf_size;
2069  const int swsize = rport->swbuf_size;
2070  const int fragsize = rport->hw_fragsize;
2071  unsigned long iflags;
2072 
2073  DBGEV("(devc=0x%p, erflown=%d, nb=%d)\n", devc, erflown, nb);
2074 
2075  spin_lock_irqsave(&rport->lock, iflags);
2076  if (erflown)
2077  rport->flags |= ERFLOWN;
2078  (void) __swb_inc_u(rport, nb);
2079  if (rport->flags & HW_BUSY || !rport->swbuf) {
2080  spin_unlock_irqrestore(&rport->lock, iflags);
2081  DBGPV("returning: HW BUSY or !swbuf\n");
2082  return;
2083  }
2084  if (rport->flags & DISABLED) {
2085  spin_unlock_irqrestore(&rport->lock, iflags);
2086  DBGPV("returning: DISABLED\n");
2087  return;
2088  }
2089  rport->flags |= HW_BUSY;
2090  while (1) {
2091  int swptr, hwptr, hw_avail, sw_avail, swidx;
2092  vwsnd_port_hwstate_t hwstate = rport->hwstate;
2093  vwsnd_port_swstate_t swstate = rport->swstate;
2094 
2095  hwptr = li_read_hwptr(&rport->chan);
2096  swptr = li_read_swptr(&rport->chan);
2097  hw_avail = (hwptr - swptr + hwsize) % hwsize & -fragsize;
2098  if (hw_avail > hwmax)
2099  hw_avail = hwmax;
2100  sw_avail = rport->swb_i_avail & -fragsize;
2101  if (swstate != SW_RUN) {
2102  DBGP("stopping. hwstate = %d\n", hwstate);
2103  if (hwstate != HW_STOPPED) {
2104  li_deactivate_dma(&rport->chan);
2105  rport->hwstate = HW_STOPPED;
2106  }
2107  wake_up(&rport->queue);
2108  break;
2109  }
2110  if (!sw_avail || !hw_avail)
2111  break;
2112  spin_unlock_irqrestore(&rport->lock, iflags);
2113 
2114  /*
2115  * We gave up the port lock, but we have the HW_BUSY flag.
2116  * Proceed without accessing any nonlocal state.
2117  * Do not exit the loop -- must check for more work.
2118  */
2119 
2120  swidx = rport->swb_i_idx;
2121  nb = hw_avail;
2122  if (nb > sw_avail)
2123  nb = sw_avail;
2124  if (nb > hwsize - swptr)
2125  nb = hwsize - swptr; /* don't overflow hwbuf */
2126  if (nb > swsize - swidx)
2127  nb = swsize - swidx; /* don't overflow swbuf */
2128  ASSERT(nb > 0);
2129  if (nb % fragsize) {
2130  DBGP("nb = %d, fragsize = %d\n", nb, fragsize);
2131  DBGP("hw_avail = %d\n", hw_avail);
2132  DBGP("sw_avail = %d\n", sw_avail);
2133  DBGP("hwsize = %d, swptr = %d\n", hwsize, swptr);
2134  DBGP("swsize = %d, swidx = %d\n", swsize, swidx);
2135  }
2136  ASSERT(!(nb % fragsize));
2137  DBGPV("copying hwb[%d..%d] to swb[%d..%d]\n",
2138  swptr, swptr + nb, swidx, swidx + nb);
2139  pcm_copy_in(rport, swidx, swptr, nb);
2140  li_write_swptr(&rport->chan, (swptr + nb) % hwsize);
2141  spin_lock_irqsave(&rport->lock, iflags);
2142  __swb_inc_i(rport, nb);
2143  rport->byte_count += nb;
2144  rport->frag_count += nb / fragsize;
2145  ASSERT(nb % fragsize == 0);
2146  wake_up(&rport->queue);
2147  }
2148  rport->flags &= ~HW_BUSY;
2149  spin_unlock_irqrestore(&rport->lock, iflags);
2150  DBGRV();
2151 }
2152 
2153 /*
2154  * pcm_flush_frag() writes zero samples to fill the current fragment,
2155  * then flushes it to the hardware.
2156  *
2157  * It is only meaningful to flush output, not input.
2158  */
2159 
2160 static void pcm_flush_frag(vwsnd_dev_t *devc)
2161 {
2162  vwsnd_port_t *wport = &devc->wport;
2163 
2164  DBGPV("swstate = %d\n", wport->swstate);
2165  if (wport->swstate == SW_RUN) {
2166  int idx = wport->swb_u_idx;
2167  int end = (idx + wport->hw_fragsize - 1)
2168  >> wport->hw_fragshift
2169  << wport->hw_fragshift;
2170  int nb = end - idx;
2171  DBGPV("clearing %d bytes\n", nb);
2172  if (nb)
2173  memset(wport->swbuf + idx,
2174  (char) wport->zero_word,
2175  nb);
2176  wport->swstate = SW_DRAIN;
2177  pcm_output(devc, 0, nb);
2178  }
2179  DBGRV();
2180 }
2181 
2182 /*
2183  * Wait for output to drain. This sleeps uninterruptibly because
2184  * there is nothing intelligent we can do if interrupted. This
2185  * means the process will be delayed in responding to the signal.
2186  */
2187 
2188 static void pcm_write_sync(vwsnd_dev_t *devc)
2189 {
2190  vwsnd_port_t *wport = &devc->wport;
2192  unsigned long flags;
2193  vwsnd_port_hwstate_t hwstate;
2194 
2195  DBGEV("(devc=0x%p)\n", devc);
2196  add_wait_queue(&wport->queue, &wait);
2197  while (1) {
2199  spin_lock_irqsave(&wport->lock, flags);
2200  {
2201  hwstate = wport->hwstate;
2202  }
2203  spin_unlock_irqrestore(&wport->lock, flags);
2204  if (hwstate == HW_STOPPED)
2205  break;
2206  schedule();
2207  }
2208  current->state = TASK_RUNNING;
2209  remove_wait_queue(&wport->queue, &wait);
2210  DBGPV("swstate = %d, hwstate = %d\n", wport->swstate, wport->hwstate);
2211  DBGRV();
2212 }
2213 
2214 /*****************************************************************************/
2215 /* audio driver */
2216 
2217 /*
2218  * seek on an audio device always fails.
2219  */
2220 
2221 static void vwsnd_audio_read_intr(vwsnd_dev_t *devc, unsigned int status)
2222 {
2223  int overflown = status & LI_INTR_COMM1_OVERFLOW;
2224 
2225  if (status & READ_INTR_MASK)
2226  pcm_input(devc, overflown, 0);
2227 }
2228 
2229 static void vwsnd_audio_write_intr(vwsnd_dev_t *devc, unsigned int status)
2230 {
2231  int underflown = status & LI_INTR_COMM2_UNDERFLOW;
2232 
2233  if (status & WRITE_INTR_MASK)
2234  pcm_output(devc, underflown, 0);
2235 }
2236 
2237 static irqreturn_t vwsnd_audio_intr(int irq, void *dev_id)
2238 {
2239  vwsnd_dev_t *devc = dev_id;
2240  unsigned int status;
2241 
2242  DBGEV("(irq=%d, dev_id=0x%p)\n", irq, dev_id);
2243 
2244  status = li_get_clear_intr_status(&devc->lith);
2245  vwsnd_audio_read_intr(devc, status);
2246  vwsnd_audio_write_intr(devc, status);
2247  return IRQ_HANDLED;
2248 }
2249 
2250 static ssize_t vwsnd_audio_do_read(struct file *file,
2251  char *buffer,
2252  size_t count,
2253  loff_t *ppos)
2254 {
2255  vwsnd_dev_t *devc = file->private_data;
2256  vwsnd_port_t *rport = ((file->f_mode & FMODE_READ) ?
2257  &devc->rport : NULL);
2258  int ret, nb;
2259 
2260  DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
2261  file, buffer, count, ppos);
2262 
2263  if (!rport)
2264  return -EINVAL;
2265 
2266  if (rport->swbuf == NULL) {
2267  vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2268  &devc->wport : NULL;
2269  ret = pcm_setup(devc, rport, wport);
2270  if (ret < 0)
2271  return ret;
2272  }
2273 
2274  if (!access_ok(VERIFY_READ, buffer, count))
2275  return -EFAULT;
2276  ret = 0;
2277  while (count) {
2279  add_wait_queue(&rport->queue, &wait);
2280  while ((nb = swb_inc_u(rport, 0)) == 0) {
2281  DBGPV("blocking\n");
2283  if (rport->flags & DISABLED ||
2284  file->f_flags & O_NONBLOCK) {
2285  current->state = TASK_RUNNING;
2286  remove_wait_queue(&rport->queue, &wait);
2287  return ret ? ret : -EAGAIN;
2288  }
2289  schedule();
2290  if (signal_pending(current)) {
2291  current->state = TASK_RUNNING;
2292  remove_wait_queue(&rport->queue, &wait);
2293  return ret ? ret : -ERESTARTSYS;
2294  }
2295  }
2296  current->state = TASK_RUNNING;
2297  remove_wait_queue(&rport->queue, &wait);
2298  pcm_input(devc, 0, 0);
2299  /* nb bytes are available in userbuf. */
2300  if (nb > count)
2301  nb = count;
2302  DBGPV("nb = %d\n", nb);
2303  if (copy_to_user(buffer, rport->swbuf + rport->swb_u_idx, nb))
2304  return -EFAULT;
2305  (void) swb_inc_u(rport, nb);
2306  buffer += nb;
2307  count -= nb;
2308  ret += nb;
2309  }
2310  DBGPV("returning %d\n", ret);
2311  return ret;
2312 }
2313 
2314 static ssize_t vwsnd_audio_read(struct file *file,
2315  char *buffer,
2316  size_t count,
2317  loff_t *ppos)
2318 {
2319  vwsnd_dev_t *devc = file->private_data;
2320  ssize_t ret;
2321 
2322  mutex_lock(&devc->io_mutex);
2323  ret = vwsnd_audio_do_read(file, buffer, count, ppos);
2324  mutex_unlock(&devc->io_mutex);
2325  return ret;
2326 }
2327 
2328 static ssize_t vwsnd_audio_do_write(struct file *file,
2329  const char *buffer,
2330  size_t count,
2331  loff_t *ppos)
2332 {
2333  vwsnd_dev_t *devc = file->private_data;
2334  vwsnd_port_t *wport = ((file->f_mode & FMODE_WRITE) ?
2335  &devc->wport : NULL);
2336  int ret, nb;
2337 
2338  DBGEV("(file=0x%p, buffer=0x%p, count=%d, ppos=0x%p)\n",
2339  file, buffer, count, ppos);
2340 
2341  if (!wport)
2342  return -EINVAL;
2343 
2344  if (wport->swbuf == NULL) {
2345  vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2346  &devc->rport : NULL;
2347  ret = pcm_setup(devc, rport, wport);
2348  if (ret < 0)
2349  return ret;
2350  }
2351  if (!access_ok(VERIFY_WRITE, buffer, count))
2352  return -EFAULT;
2353  ret = 0;
2354  while (count) {
2356  add_wait_queue(&wport->queue, &wait);
2357  while ((nb = swb_inc_u(wport, 0)) == 0) {
2359  if (wport->flags & DISABLED ||
2360  file->f_flags & O_NONBLOCK) {
2361  current->state = TASK_RUNNING;
2362  remove_wait_queue(&wport->queue, &wait);
2363  return ret ? ret : -EAGAIN;
2364  }
2365  schedule();
2366  if (signal_pending(current)) {
2367  current->state = TASK_RUNNING;
2368  remove_wait_queue(&wport->queue, &wait);
2369  return ret ? ret : -ERESTARTSYS;
2370  }
2371  }
2372  current->state = TASK_RUNNING;
2373  remove_wait_queue(&wport->queue, &wait);
2374  /* nb bytes are available in userbuf. */
2375  if (nb > count)
2376  nb = count;
2377  DBGPV("nb = %d\n", nb);
2378  if (copy_from_user(wport->swbuf + wport->swb_u_idx, buffer, nb))
2379  return -EFAULT;
2380  pcm_output(devc, 0, nb);
2381  buffer += nb;
2382  count -= nb;
2383  ret += nb;
2384  }
2385  DBGPV("returning %d\n", ret);
2386  return ret;
2387 }
2388 
2389 static ssize_t vwsnd_audio_write(struct file *file,
2390  const char *buffer,
2391  size_t count,
2392  loff_t *ppos)
2393 {
2394  vwsnd_dev_t *devc = file->private_data;
2395  ssize_t ret;
2396 
2397  mutex_lock(&devc->io_mutex);
2398  ret = vwsnd_audio_do_write(file, buffer, count, ppos);
2399  mutex_unlock(&devc->io_mutex);
2400  return ret;
2401 }
2402 
2403 /* No kernel lock - fine */
2404 static unsigned int vwsnd_audio_poll(struct file *file,
2405  struct poll_table_struct *wait)
2406 {
2407  vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2408  vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2409  &devc->rport : NULL;
2410  vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2411  &devc->wport : NULL;
2412  unsigned int mask = 0;
2413 
2414  DBGEV("(file=0x%p, wait=0x%p)\n", file, wait);
2415 
2416  ASSERT(rport || wport);
2417  if (rport) {
2418  poll_wait(file, &rport->queue, wait);
2419  if (swb_inc_u(rport, 0))
2420  mask |= (POLLIN | POLLRDNORM);
2421  }
2422  if (wport) {
2423  poll_wait(file, &wport->queue, wait);
2424  if (wport->swbuf == NULL || swb_inc_u(wport, 0))
2425  mask |= (POLLOUT | POLLWRNORM);
2426  }
2427 
2428  DBGPV("returning 0x%x\n", mask);
2429  return mask;
2430 }
2431 
2432 static int vwsnd_audio_do_ioctl(struct file *file,
2433  unsigned int cmd,
2434  unsigned long arg)
2435 {
2436  vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2437  vwsnd_port_t *rport = (file->f_mode & FMODE_READ) ?
2438  &devc->rport : NULL;
2439  vwsnd_port_t *wport = (file->f_mode & FMODE_WRITE) ?
2440  &devc->wport : NULL;
2441  vwsnd_port_t *aport = rport ? rport : wport;
2442  struct audio_buf_info buf_info;
2443  struct count_info info;
2444  unsigned long flags;
2445  int ival;
2446 
2447 
2448  DBGEV("(file=0x%p, cmd=0x%x, arg=0x%lx)\n",
2449  file, cmd, arg);
2450  switch (cmd) {
2451  case OSS_GETVERSION: /* _SIOR ('M', 118, int) */
2452  DBGX("OSS_GETVERSION\n");
2453  ival = SOUND_VERSION;
2454  return put_user(ival, (int *) arg);
2455 
2456  case SNDCTL_DSP_GETCAPS: /* _SIOR ('P',15, int) */
2457  DBGX("SNDCTL_DSP_GETCAPS\n");
2459  return put_user(ival, (int *) arg);
2460 
2461  case SNDCTL_DSP_GETFMTS: /* _SIOR ('P',11, int) */
2462  DBGX("SNDCTL_DSP_GETFMTS\n");
2463  ival = (AFMT_S16_LE | AFMT_MU_LAW | AFMT_A_LAW |
2464  AFMT_U8 | AFMT_S8);
2465  return put_user(ival, (int *) arg);
2466  break;
2467 
2468  case SOUND_PCM_READ_RATE: /* _SIOR ('P', 2, int) */
2469  DBGX("SOUND_PCM_READ_RATE\n");
2470  ival = aport->sw_framerate;
2471  return put_user(ival, (int *) arg);
2472 
2473  case SOUND_PCM_READ_CHANNELS: /* _SIOR ('P', 6, int) */
2474  DBGX("SOUND_PCM_READ_CHANNELS\n");
2475  ival = aport->sw_channels;
2476  return put_user(ival, (int *) arg);
2477 
2478  case SNDCTL_DSP_SPEED: /* _SIOWR('P', 2, int) */
2479  if (get_user(ival, (int *) arg))
2480  return -EFAULT;
2481  DBGX("SNDCTL_DSP_SPEED %d\n", ival);
2482  if (ival) {
2483  if (aport->swstate != SW_INITIAL) {
2484  DBGX("SNDCTL_DSP_SPEED failed: swstate = %d\n",
2485  aport->swstate);
2486  return -EINVAL;
2487  }
2488  if (ival < MIN_SPEED)
2489  ival = MIN_SPEED;
2490  if (ival > MAX_SPEED)
2491  ival = MAX_SPEED;
2492  if (rport)
2493  rport->sw_framerate = ival;
2494  if (wport)
2495  wport->sw_framerate = ival;
2496  } else
2497  ival = aport->sw_framerate;
2498  return put_user(ival, (int *) arg);
2499 
2500  case SNDCTL_DSP_STEREO: /* _SIOWR('P', 3, int) */
2501  if (get_user(ival, (int *) arg))
2502  return -EFAULT;
2503  DBGX("SNDCTL_DSP_STEREO %d\n", ival);
2504  if (ival != 0 && ival != 1)
2505  return -EINVAL;
2506  if (aport->swstate != SW_INITIAL)
2507  return -EINVAL;
2508  if (rport)
2509  rport->sw_channels = ival + 1;
2510  if (wport)
2511  wport->sw_channels = ival + 1;
2512  return put_user(ival, (int *) arg);
2513 
2514  case SNDCTL_DSP_CHANNELS: /* _SIOWR('P', 6, int) */
2515  if (get_user(ival, (int *) arg))
2516  return -EFAULT;
2517  DBGX("SNDCTL_DSP_CHANNELS %d\n", ival);
2518  if (ival != 1 && ival != 2)
2519  return -EINVAL;
2520  if (aport->swstate != SW_INITIAL)
2521  return -EINVAL;
2522  if (rport)
2523  rport->sw_channels = ival;
2524  if (wport)
2525  wport->sw_channels = ival;
2526  return put_user(ival, (int *) arg);
2527 
2528  case SNDCTL_DSP_GETBLKSIZE: /* _SIOWR('P', 4, int) */
2529  ival = pcm_setup(devc, rport, wport);
2530  if (ival < 0) {
2531  DBGX("SNDCTL_DSP_GETBLKSIZE failed, errno %d\n", ival);
2532  return ival;
2533  }
2534  ival = 1 << aport->sw_fragshift;
2535  DBGX("SNDCTL_DSP_GETBLKSIZE returning %d\n", ival);
2536  return put_user(ival, (int *) arg);
2537 
2538  case SNDCTL_DSP_SETFRAGMENT: /* _SIOWR('P',10, int) */
2539  if (get_user(ival, (int *) arg))
2540  return -EFAULT;
2541  DBGX("SNDCTL_DSP_SETFRAGMENT %d:%d\n",
2542  ival >> 16, ival & 0xFFFF);
2543  if (aport->swstate != SW_INITIAL)
2544  return -EINVAL;
2545  {
2546  int sw_fragshift = ival & 0xFFFF;
2547  int sw_subdivshift = aport->sw_subdivshift;
2548  int hw_fragshift = sw_fragshift - sw_subdivshift;
2549  int sw_fragcount = (ival >> 16) & 0xFFFF;
2550  int hw_fragsize;
2551  if (hw_fragshift < MIN_FRAGSHIFT)
2552  hw_fragshift = MIN_FRAGSHIFT;
2553  if (hw_fragshift > MAX_FRAGSHIFT)
2554  hw_fragshift = MAX_FRAGSHIFT;
2555  sw_fragshift = hw_fragshift + aport->sw_subdivshift;
2556  hw_fragsize = 1 << hw_fragshift;
2557  if (sw_fragcount < MIN_FRAGCOUNT(hw_fragsize))
2558  sw_fragcount = MIN_FRAGCOUNT(hw_fragsize);
2559  if (sw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
2560  sw_fragcount = MAX_FRAGCOUNT(hw_fragsize);
2561  DBGPV("sw_fragshift = %d\n", sw_fragshift);
2562  DBGPV("rport = 0x%p, wport = 0x%p\n", rport, wport);
2563  if (rport) {
2564  rport->sw_fragshift = sw_fragshift;
2565  rport->sw_fragcount = sw_fragcount;
2566  }
2567  if (wport) {
2568  wport->sw_fragshift = sw_fragshift;
2569  wport->sw_fragcount = sw_fragcount;
2570  }
2571  ival = sw_fragcount << 16 | sw_fragshift;
2572  }
2573  DBGX("SNDCTL_DSP_SETFRAGMENT returns %d:%d\n",
2574  ival >> 16, ival & 0xFFFF);
2575  return put_user(ival, (int *) arg);
2576 
2577  case SNDCTL_DSP_SUBDIVIDE: /* _SIOWR('P', 9, int) */
2578  if (get_user(ival, (int *) arg))
2579  return -EFAULT;
2580  DBGX("SNDCTL_DSP_SUBDIVIDE %d\n", ival);
2581  if (aport->swstate != SW_INITIAL)
2582  return -EINVAL;
2583  {
2584  int subdivshift;
2585  int hw_fragshift, hw_fragsize, hw_fragcount;
2586  switch (ival) {
2587  case 1: subdivshift = 0; break;
2588  case 2: subdivshift = 1; break;
2589  case 4: subdivshift = 2; break;
2590  default: return -EINVAL;
2591  }
2592  hw_fragshift = aport->sw_fragshift - subdivshift;
2593  if (hw_fragshift < MIN_FRAGSHIFT ||
2594  hw_fragshift > MAX_FRAGSHIFT)
2595  return -EINVAL;
2596  hw_fragsize = 1 << hw_fragshift;
2597  hw_fragcount = aport->sw_fragcount >> subdivshift;
2598  if (hw_fragcount < MIN_FRAGCOUNT(hw_fragsize) ||
2599  hw_fragcount > MAX_FRAGCOUNT(hw_fragsize))
2600  return -EINVAL;
2601  if (rport)
2602  rport->sw_subdivshift = subdivshift;
2603  if (wport)
2604  wport->sw_subdivshift = subdivshift;
2605  }
2606  return 0;
2607 
2608  case SNDCTL_DSP_SETFMT: /* _SIOWR('P',5, int) */
2609  if (get_user(ival, (int *) arg))
2610  return -EFAULT;
2611  DBGX("SNDCTL_DSP_SETFMT %d\n", ival);
2612  if (ival != AFMT_QUERY) {
2613  if (aport->swstate != SW_INITIAL) {
2614  DBGP("SETFMT failed, swstate = %d\n",
2615  aport->swstate);
2616  return -EINVAL;
2617  }
2618  switch (ival) {
2619  case AFMT_MU_LAW:
2620  case AFMT_A_LAW:
2621  case AFMT_U8:
2622  case AFMT_S8:
2623  case AFMT_S16_LE:
2624  if (rport)
2625  rport->sw_samplefmt = ival;
2626  if (wport)
2627  wport->sw_samplefmt = ival;
2628  break;
2629  default:
2630  return -EINVAL;
2631  }
2632  }
2633  ival = aport->sw_samplefmt;
2634  return put_user(ival, (int *) arg);
2635 
2636  case SNDCTL_DSP_GETOSPACE: /* _SIOR ('P',12, audio_buf_info) */
2637  DBGXV("SNDCTL_DSP_GETOSPACE\n");
2638  if (!wport)
2639  return -EINVAL;
2640  ival = pcm_setup(devc, rport, wport);
2641  if (ival < 0)
2642  return ival;
2643  ival = swb_inc_u(wport, 0);
2644  buf_info.fragments = ival >> wport->sw_fragshift;
2645  buf_info.fragstotal = wport->sw_fragcount;
2646  buf_info.fragsize = 1 << wport->sw_fragshift;
2647  buf_info.bytes = ival;
2648  DBGXV("SNDCTL_DSP_GETOSPACE returns { %d %d %d %d }\n",
2649  buf_info.fragments, buf_info.fragstotal,
2650  buf_info.fragsize, buf_info.bytes);
2651  if (copy_to_user((void *) arg, &buf_info, sizeof buf_info))
2652  return -EFAULT;
2653  return 0;
2654 
2655  case SNDCTL_DSP_GETISPACE: /* _SIOR ('P',13, audio_buf_info) */
2656  DBGX("SNDCTL_DSP_GETISPACE\n");
2657  if (!rport)
2658  return -EINVAL;
2659  ival = pcm_setup(devc, rport, wport);
2660  if (ival < 0)
2661  return ival;
2662  ival = swb_inc_u(rport, 0);
2663  buf_info.fragments = ival >> rport->sw_fragshift;
2664  buf_info.fragstotal = rport->sw_fragcount;
2665  buf_info.fragsize = 1 << rport->sw_fragshift;
2666  buf_info.bytes = ival;
2667  DBGX("SNDCTL_DSP_GETISPACE returns { %d %d %d %d }\n",
2668  buf_info.fragments, buf_info.fragstotal,
2669  buf_info.fragsize, buf_info.bytes);
2670  if (copy_to_user((void *) arg, &buf_info, sizeof buf_info))
2671  return -EFAULT;
2672  return 0;
2673 
2674  case SNDCTL_DSP_NONBLOCK: /* _SIO ('P',14) */
2675  DBGX("SNDCTL_DSP_NONBLOCK\n");
2676  spin_lock(&file->f_lock);
2677  file->f_flags |= O_NONBLOCK;
2678  spin_unlock(&file->f_lock);
2679  return 0;
2680 
2681  case SNDCTL_DSP_RESET: /* _SIO ('P', 0) */
2682  DBGX("SNDCTL_DSP_RESET\n");
2683  /*
2684  * Nothing special needs to be done for input. Input
2685  * samples sit in swbuf, but it will be reinitialized
2686  * to empty when pcm_setup() is called.
2687  */
2688  if (wport && wport->swbuf) {
2689  wport->swstate = SW_INITIAL;
2690  pcm_output(devc, 0, 0);
2691  pcm_write_sync(devc);
2692  }
2693  pcm_shutdown(devc, rport, wport);
2694  return 0;
2695 
2696  case SNDCTL_DSP_SYNC: /* _SIO ('P', 1) */
2697  DBGX("SNDCTL_DSP_SYNC\n");
2698  if (wport) {
2699  pcm_flush_frag(devc);
2700  pcm_write_sync(devc);
2701  }
2702  pcm_shutdown(devc, rport, wport);
2703  return 0;
2704 
2705  case SNDCTL_DSP_POST: /* _SIO ('P', 8) */
2706  DBGX("SNDCTL_DSP_POST\n");
2707  if (!wport)
2708  return -EINVAL;
2709  pcm_flush_frag(devc);
2710  return 0;
2711 
2712  case SNDCTL_DSP_GETIPTR: /* _SIOR ('P', 17, count_info) */
2713  DBGX("SNDCTL_DSP_GETIPTR\n");
2714  if (!rport)
2715  return -EINVAL;
2716  spin_lock_irqsave(&rport->lock, flags);
2717  {
2718  ustmsc_t ustmsc;
2719  if (rport->hwstate == HW_RUNNING) {
2720  ASSERT(rport->swstate == SW_RUN);
2721  li_read_USTMSC(&rport->chan, &ustmsc);
2722  info.bytes = ustmsc.msc - rport->MSC_offset;
2723  info.bytes *= rport->frame_size;
2724  } else {
2725  info.bytes = rport->byte_count;
2726  }
2727  info.blocks = rport->frag_count;
2728  info.ptr = 0; /* not implemented */
2729  rport->frag_count = 0;
2730  }
2731  spin_unlock_irqrestore(&rport->lock, flags);
2732  if (copy_to_user((void *) arg, &info, sizeof info))
2733  return -EFAULT;
2734  return 0;
2735 
2736  case SNDCTL_DSP_GETOPTR: /* _SIOR ('P',18, count_info) */
2737  DBGX("SNDCTL_DSP_GETOPTR\n");
2738  if (!wport)
2739  return -EINVAL;
2740  spin_lock_irqsave(&wport->lock, flags);
2741  {
2742  ustmsc_t ustmsc;
2743  if (wport->hwstate == HW_RUNNING) {
2744  ASSERT(wport->swstate == SW_RUN);
2745  li_read_USTMSC(&wport->chan, &ustmsc);
2746  info.bytes = ustmsc.msc - wport->MSC_offset;
2747  info.bytes *= wport->frame_size;
2748  } else {
2749  info.bytes = wport->byte_count;
2750  }
2751  info.blocks = wport->frag_count;
2752  info.ptr = 0; /* not implemented */
2753  wport->frag_count = 0;
2754  }
2755  spin_unlock_irqrestore(&wport->lock, flags);
2756  if (copy_to_user((void *) arg, &info, sizeof info))
2757  return -EFAULT;
2758  return 0;
2759 
2760  case SNDCTL_DSP_GETODELAY: /* _SIOR ('P', 23, int) */
2761  DBGX("SNDCTL_DSP_GETODELAY\n");
2762  if (!wport)
2763  return -EINVAL;
2764  spin_lock_irqsave(&wport->lock, flags);
2765  {
2766  int fsize = wport->frame_size;
2767  ival = wport->swb_i_avail / fsize;
2768  if (wport->hwstate == HW_RUNNING) {
2769  int swptr, hwptr, hwframes, hwbytes, hwsize;
2770  int totalhwbytes;
2771  ustmsc_t ustmsc;
2772 
2773  hwsize = wport->hwbuf_size;
2774  swptr = li_read_swptr(&wport->chan);
2775  li_read_USTMSC(&wport->chan, &ustmsc);
2776  hwframes = ustmsc.msc - wport->MSC_offset;
2777  totalhwbytes = hwframes * fsize;
2778  hwptr = totalhwbytes % hwsize;
2779  hwbytes = (swptr - hwptr + hwsize) % hwsize;
2780  ival += hwbytes / fsize;
2781  }
2782  }
2783  spin_unlock_irqrestore(&wport->lock, flags);
2784  return put_user(ival, (int *) arg);
2785 
2786  case SNDCTL_DSP_PROFILE: /* _SIOW ('P', 23, int) */
2787  DBGX("SNDCTL_DSP_PROFILE\n");
2788 
2789  /*
2790  * Thomas Sailer explains SNDCTL_DSP_PROFILE
2791  * (private email, March 24, 1999):
2792  *
2793  * This gives the sound driver a hint on what it
2794  * should do with partial fragments
2795  * (i.e. fragments partially filled with write).
2796  * This can direct the driver to zero them or
2797  * leave them alone. But don't ask me what this
2798  * is good for, my driver just zeroes the last
2799  * fragment before the receiver stops, no idea
2800  * what good for any other behaviour could
2801  * be. Implementing it as NOP seems safe.
2802  */
2803 
2804  break;
2805 
2806  case SNDCTL_DSP_GETTRIGGER: /* _SIOR ('P',16, int) */
2807  DBGX("SNDCTL_DSP_GETTRIGGER\n");
2808  ival = 0;
2809  if (rport) {
2810  spin_lock_irqsave(&rport->lock, flags);
2811  {
2812  if (!(rport->flags & DISABLED))
2813  ival |= PCM_ENABLE_INPUT;
2814  }
2815  spin_unlock_irqrestore(&rport->lock, flags);
2816  }
2817  if (wport) {
2818  spin_lock_irqsave(&wport->lock, flags);
2819  {
2820  if (!(wport->flags & DISABLED))
2821  ival |= PCM_ENABLE_OUTPUT;
2822  }
2823  spin_unlock_irqrestore(&wport->lock, flags);
2824  }
2825  return put_user(ival, (int *) arg);
2826 
2827  case SNDCTL_DSP_SETTRIGGER: /* _SIOW ('P',16, int) */
2828  if (get_user(ival, (int *) arg))
2829  return -EFAULT;
2830  DBGX("SNDCTL_DSP_SETTRIGGER %d\n", ival);
2831 
2832  /*
2833  * If user is disabling I/O and port is not in initial
2834  * state, fail with EINVAL.
2835  */
2836 
2837  if (((rport && !(ival & PCM_ENABLE_INPUT)) ||
2838  (wport && !(ival & PCM_ENABLE_OUTPUT))) &&
2839  aport->swstate != SW_INITIAL)
2840  return -EINVAL;
2841 
2842  if (rport) {
2843  vwsnd_port_hwstate_t hwstate;
2844  spin_lock_irqsave(&rport->lock, flags);
2845  {
2846  hwstate = rport->hwstate;
2847  if (ival & PCM_ENABLE_INPUT)
2848  rport->flags &= ~DISABLED;
2849  else
2850  rport->flags |= DISABLED;
2851  }
2852  spin_unlock_irqrestore(&rport->lock, flags);
2853  if (hwstate != HW_RUNNING && ival & PCM_ENABLE_INPUT) {
2854 
2855  if (rport->swstate == SW_INITIAL)
2856  pcm_setup(devc, rport, wport);
2857  else
2858  li_activate_dma(&rport->chan);
2859  }
2860  }
2861  if (wport) {
2862  vwsnd_port_flags_t pflags;
2863  spin_lock_irqsave(&wport->lock, flags);
2864  {
2865  pflags = wport->flags;
2866  if (ival & PCM_ENABLE_OUTPUT)
2867  wport->flags &= ~DISABLED;
2868  else
2869  wport->flags |= DISABLED;
2870  }
2871  spin_unlock_irqrestore(&wport->lock, flags);
2872  if (pflags & DISABLED && ival & PCM_ENABLE_OUTPUT) {
2873  if (wport->swstate == SW_RUN)
2874  pcm_output(devc, 0, 0);
2875  }
2876  }
2877  return 0;
2878 
2879  default:
2880  DBGP("unknown ioctl 0x%x\n", cmd);
2881  return -EINVAL;
2882  }
2883  DBGP("unimplemented ioctl 0x%x\n", cmd);
2884  return -EINVAL;
2885 }
2886 
2887 static long vwsnd_audio_ioctl(struct file *file,
2888  unsigned int cmd,
2889  unsigned long arg)
2890 {
2891  vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
2892  int ret;
2893 
2894  mutex_lock(&vwsnd_mutex);
2895  mutex_lock(&devc->io_mutex);
2896  ret = vwsnd_audio_do_ioctl(file, cmd, arg);
2897  mutex_unlock(&devc->io_mutex);
2898  mutex_unlock(&vwsnd_mutex);
2899 
2900  return ret;
2901 }
2902 
2903 /* No mmap. */
2904 
2905 static int vwsnd_audio_mmap(struct file *file, struct vm_area_struct *vma)
2906 {
2907  DBGE("(file=0x%p, vma=0x%p)\n", file, vma);
2908  return -ENODEV;
2909 }
2910 
2911 /*
2912  * Open the audio device for read and/or write.
2913  *
2914  * Returns 0 on success, -errno on failure.
2915  */
2916 
2917 static int vwsnd_audio_open(struct inode *inode, struct file *file)
2918 {
2919  vwsnd_dev_t *devc;
2920  int minor = iminor(inode);
2921  int sw_samplefmt;
2922 
2923  DBGE("(inode=0x%p, file=0x%p)\n", inode, file);
2924 
2925  mutex_lock(&vwsnd_mutex);
2926  INC_USE_COUNT;
2927  for (devc = vwsnd_dev_list; devc; devc = devc->next_dev)
2928  if ((devc->audio_minor & ~0x0F) == (minor & ~0x0F))
2929  break;
2930 
2931  if (devc == NULL) {
2932  DEC_USE_COUNT;
2933  mutex_unlock(&vwsnd_mutex);
2934  return -ENODEV;
2935  }
2936 
2937  mutex_lock(&devc->open_mutex);
2938  while (devc->open_mode & file->f_mode) {
2939  mutex_unlock(&devc->open_mutex);
2940  if (file->f_flags & O_NONBLOCK) {
2941  DEC_USE_COUNT;
2942  mutex_unlock(&vwsnd_mutex);
2943  return -EBUSY;
2944  }
2946  if (signal_pending(current)) {
2947  DEC_USE_COUNT;
2948  mutex_unlock(&vwsnd_mutex);
2949  return -ERESTARTSYS;
2950  }
2951  mutex_lock(&devc->open_mutex);
2952  }
2953  devc->open_mode |= file->f_mode & (FMODE_READ | FMODE_WRITE);
2954  mutex_unlock(&devc->open_mutex);
2955 
2956  /* get default sample format from minor number. */
2957 
2958  sw_samplefmt = 0;
2959  if ((minor & 0xF) == SND_DEV_DSP)
2960  sw_samplefmt = AFMT_U8;
2961  else if ((minor & 0xF) == SND_DEV_AUDIO)
2962  sw_samplefmt = AFMT_MU_LAW;
2963  else if ((minor & 0xF) == SND_DEV_DSP16)
2964  sw_samplefmt = AFMT_S16_LE;
2965  else
2966  ASSERT(0);
2967 
2968  /* Initialize vwsnd_ports. */
2969 
2970  mutex_lock(&devc->io_mutex);
2971  {
2972  if (file->f_mode & FMODE_READ) {
2973  devc->rport.swstate = SW_INITIAL;
2974  devc->rport.flags = 0;
2975  devc->rport.sw_channels = 1;
2976  devc->rport.sw_samplefmt = sw_samplefmt;
2977  devc->rport.sw_framerate = 8000;
2981  devc->rport.byte_count = 0;
2982  devc->rport.frag_count = 0;
2983  }
2984  if (file->f_mode & FMODE_WRITE) {
2985  devc->wport.swstate = SW_INITIAL;
2986  devc->wport.flags = 0;
2987  devc->wport.sw_channels = 1;
2988  devc->wport.sw_samplefmt = sw_samplefmt;
2989  devc->wport.sw_framerate = 8000;
2993  devc->wport.byte_count = 0;
2994  devc->wport.frag_count = 0;
2995  }
2996  }
2997  mutex_unlock(&devc->io_mutex);
2998 
2999  file->private_data = devc;
3000  DBGRV();
3001  mutex_unlock(&vwsnd_mutex);
3002  return 0;
3003 }
3004 
3005 /*
3006  * Release (close) the audio device.
3007  */
3008 
3009 static int vwsnd_audio_release(struct inode *inode, struct file *file)
3010 {
3011  vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
3012  vwsnd_port_t *wport = NULL, *rport = NULL;
3013  int err = 0;
3014 
3015  mutex_lock(&vwsnd_mutex);
3016  mutex_lock(&devc->io_mutex);
3017  {
3018  DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3019 
3020  if (file->f_mode & FMODE_READ)
3021  rport = &devc->rport;
3022  if (file->f_mode & FMODE_WRITE) {
3023  wport = &devc->wport;
3024  pcm_flush_frag(devc);
3025  pcm_write_sync(devc);
3026  }
3027  pcm_shutdown(devc, rport, wport);
3028  if (rport)
3029  rport->swstate = SW_OFF;
3030  if (wport)
3031  wport->swstate = SW_OFF;
3032  }
3033  mutex_unlock(&devc->io_mutex);
3034 
3035  mutex_lock(&devc->open_mutex);
3036  {
3037  devc->open_mode &= ~file->f_mode;
3038  }
3039  mutex_unlock(&devc->open_mutex);
3040  wake_up(&devc->open_wait);
3041  DEC_USE_COUNT;
3042  DBGR();
3043  mutex_unlock(&vwsnd_mutex);
3044  return err;
3045 }
3046 
3047 static const struct file_operations vwsnd_audio_fops = {
3048  .owner = THIS_MODULE,
3049  .llseek = no_llseek,
3050  .read = vwsnd_audio_read,
3051  .write = vwsnd_audio_write,
3052  .poll = vwsnd_audio_poll,
3053  .unlocked_ioctl = vwsnd_audio_ioctl,
3054  .mmap = vwsnd_audio_mmap,
3055  .open = vwsnd_audio_open,
3056  .release = vwsnd_audio_release,
3057 };
3058 
3059 /*****************************************************************************/
3060 /* mixer driver */
3061 
3062 /* open the mixer device. */
3063 
3064 static int vwsnd_mixer_open(struct inode *inode, struct file *file)
3065 {
3066  vwsnd_dev_t *devc;
3067 
3068  DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3069 
3070  INC_USE_COUNT;
3071  mutex_lock(&vwsnd_mutex);
3072  for (devc = vwsnd_dev_list; devc; devc = devc->next_dev)
3073  if (devc->mixer_minor == iminor(inode))
3074  break;
3075 
3076  if (devc == NULL) {
3077  DEC_USE_COUNT;
3078  mutex_unlock(&vwsnd_mutex);
3079  return -ENODEV;
3080  }
3081  file->private_data = devc;
3082  mutex_unlock(&vwsnd_mutex);
3083  return 0;
3084 }
3085 
3086 /* release (close) the mixer device. */
3087 
3088 static int vwsnd_mixer_release(struct inode *inode, struct file *file)
3089 {
3090  DBGEV("(inode=0x%p, file=0x%p)\n", inode, file);
3091  DEC_USE_COUNT;
3092  return 0;
3093 }
3094 
3095 /* mixer_read_ioctl handles all read ioctls on the mixer device. */
3096 
3097 static int mixer_read_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg)
3098 {
3099  int val = -1;
3100 
3101  DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg);
3102 
3103  switch (nr) {
3104  case SOUND_MIXER_CAPS:
3105  val = SOUND_CAP_EXCL_INPUT;
3106  break;
3107 
3108  case SOUND_MIXER_DEVMASK:
3109  val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3111  break;
3112 
3114  val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3116  break;
3117 
3118  case SOUND_MIXER_OUTMASK:
3119  val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3121  break;
3122 
3123  case SOUND_MIXER_RECMASK:
3124  val = (SOUND_MASK_PCM | SOUND_MASK_LINE |
3126  break;
3127 
3128  case SOUND_MIXER_PCM:
3129  val = ad1843_get_gain(&devc->lith, &ad1843_gain_PCM);
3130  break;
3131 
3132  case SOUND_MIXER_LINE:
3133  val = ad1843_get_gain(&devc->lith, &ad1843_gain_LINE);
3134  break;
3135 
3136  case SOUND_MIXER_MIC:
3137  val = ad1843_get_gain(&devc->lith, &ad1843_gain_MIC);
3138  break;
3139 
3140  case SOUND_MIXER_CD:
3141  val = ad1843_get_gain(&devc->lith, &ad1843_gain_CD);
3142  break;
3143 
3144  case SOUND_MIXER_RECLEV:
3145  val = ad1843_get_gain(&devc->lith, &ad1843_gain_RECLEV);
3146  break;
3147 
3148  case SOUND_MIXER_RECSRC:
3149  val = ad1843_get_recsrc(&devc->lith);
3150  break;
3151 
3152  case SOUND_MIXER_OUTSRC:
3153  val = ad1843_get_outsrc(&devc->lith);
3154  break;
3155 
3156  default:
3157  return -EINVAL;
3158  }
3159  return put_user(val, (int __user *) arg);
3160 }
3161 
3162 /* mixer_write_ioctl handles all write ioctls on the mixer device. */
3163 
3164 static int mixer_write_ioctl(vwsnd_dev_t *devc, unsigned int nr, void __user *arg)
3165 {
3166  int val;
3167  int err;
3168 
3169  DBGEV("(devc=0x%p, nr=0x%x, arg=0x%p)\n", devc, nr, arg);
3170 
3171  err = get_user(val, (int __user *) arg);
3172  if (err)
3173  return -EFAULT;
3174  switch (nr) {
3175  case SOUND_MIXER_PCM:
3176  val = ad1843_set_gain(&devc->lith, &ad1843_gain_PCM, val);
3177  break;
3178 
3179  case SOUND_MIXER_LINE:
3180  val = ad1843_set_gain(&devc->lith, &ad1843_gain_LINE, val);
3181  break;
3182 
3183  case SOUND_MIXER_MIC:
3184  val = ad1843_set_gain(&devc->lith, &ad1843_gain_MIC, val);
3185  break;
3186 
3187  case SOUND_MIXER_CD:
3188  val = ad1843_set_gain(&devc->lith, &ad1843_gain_CD, val);
3189  break;
3190 
3191  case SOUND_MIXER_RECLEV:
3192  val = ad1843_set_gain(&devc->lith, &ad1843_gain_RECLEV, val);
3193  break;
3194 
3195  case SOUND_MIXER_RECSRC:
3196  if (devc->rport.swbuf || devc->wport.swbuf)
3197  return -EBUSY; /* can't change recsrc while running */
3198  val = ad1843_set_recsrc(&devc->lith, val);
3199  break;
3200 
3201  case SOUND_MIXER_OUTSRC:
3202  val = ad1843_set_outsrc(&devc->lith, val);
3203  break;
3204 
3205  default:
3206  return -EINVAL;
3207  }
3208  if (val < 0)
3209  return val;
3210  return put_user(val, (int __user *) arg);
3211 }
3212 
3213 /* This is the ioctl entry to the mixer driver. */
3214 
3215 static long vwsnd_mixer_ioctl(struct file *file,
3216  unsigned int cmd,
3217  unsigned long arg)
3218 {
3219  vwsnd_dev_t *devc = (vwsnd_dev_t *) file->private_data;
3220  const unsigned int nrmask = _IOC_NRMASK << _IOC_NRSHIFT;
3221  const unsigned int nr = (cmd & nrmask) >> _IOC_NRSHIFT;
3222  int retval;
3223 
3224  DBGEV("(devc=0x%p, cmd=0x%x, arg=0x%lx)\n", devc, cmd, arg);
3225 
3226  mutex_lock(&vwsnd_mutex);
3227  mutex_lock(&devc->mix_mutex);
3228  {
3229  if ((cmd & ~nrmask) == MIXER_READ(0))
3230  retval = mixer_read_ioctl(devc, nr, (void __user *) arg);
3231  else if ((cmd & ~nrmask) == MIXER_WRITE(0))
3232  retval = mixer_write_ioctl(devc, nr, (void __user *) arg);
3233  else
3234  retval = -EINVAL;
3235  }
3236  mutex_unlock(&devc->mix_mutex);
3237  mutex_unlock(&vwsnd_mutex);
3238  return retval;
3239 }
3240 
3241 static const struct file_operations vwsnd_mixer_fops = {
3242  .owner = THIS_MODULE,
3243  .llseek = no_llseek,
3244  .unlocked_ioctl = vwsnd_mixer_ioctl,
3245  .open = vwsnd_mixer_open,
3246  .release = vwsnd_mixer_release,
3247 };
3248 
3249 /*****************************************************************************/
3250 /* probe/attach/unload */
3251 
3252 /* driver probe routine. Return nonzero if hardware is found. */
3253 
3254 static int __init probe_vwsnd(struct address_info *hw_config)
3255 {
3256  lithium_t lith;
3257  int w;
3258  unsigned long later;
3259 
3260  DBGEV("(hw_config=0x%p)\n", hw_config);
3261 
3262  /* XXX verify lithium present (to prevent crash on non-vw) */
3263 
3264  if (li_create(&lith, hw_config->io_base) != 0) {
3265  printk(KERN_WARNING "probe_vwsnd: can't map lithium\n");
3266  return 0;
3267  }
3268  later = jiffies + 2;
3269  li_writel(&lith, LI_HOST_CONTROLLER, LI_HC_LINK_ENABLE);
3270  do {
3271  w = li_readl(&lith, LI_HOST_CONTROLLER);
3272  } while (w == LI_HC_LINK_ENABLE && time_before(jiffies, later));
3273 
3274  li_destroy(&lith);
3275 
3276  DBGPV("HC = 0x%04x\n", w);
3277 
3278  if ((w == LI_HC_LINK_ENABLE) || (w & LI_HC_LINK_CODEC)) {
3279 
3280  /* This may indicate a beta machine with no audio,
3281  * or a future machine with different audio.
3282  * On beta-release 320 w/ no audio, HC == 0x4000 */
3283 
3284  printk(KERN_WARNING "probe_vwsnd: audio codec not found\n");
3285  return 0;
3286  }
3287 
3288  if (w & LI_HC_LINK_FAILURE) {
3289  printk(KERN_WARNING "probe_vwsnd: can't init audio codec\n");
3290  return 0;
3291  }
3292 
3293  printk(KERN_INFO "vwsnd: lithium audio at mmio %#x irq %d\n",
3294  hw_config->io_base, hw_config->irq);
3295 
3296  return 1;
3297 }
3298 
3299 /*
3300  * driver attach routine. Initialize driver data structures and
3301  * initialize hardware. A new vwsnd_dev_t is allocated and put
3302  * onto the global list, vwsnd_dev_list.
3303  *
3304  * Return +minor_dev on success, -errno on failure.
3305  */
3306 
3307 static int __init attach_vwsnd(struct address_info *hw_config)
3308 {
3309  vwsnd_dev_t *devc = NULL;
3310  int err = -ENOMEM;
3311 
3312  DBGEV("(hw_config=0x%p)\n", hw_config);
3313 
3314  devc = kmalloc(sizeof (vwsnd_dev_t), GFP_KERNEL);
3315  if (devc == NULL)
3316  goto fail0;
3317 
3318  err = li_create(&devc->lith, hw_config->io_base);
3319  if (err)
3320  goto fail1;
3321 
3323 
3324  devc->rport.hwbuf_size = HWBUF_SIZE;
3326  if (!devc->rport.hwbuf_vaddr)
3327  goto fail2;
3328  devc->rport.hwbuf = (void *) devc->rport.hwbuf_vaddr;
3329  devc->rport.hwbuf_paddr = virt_to_phys(devc->rport.hwbuf);
3330 
3331  /*
3332  * Quote from the NT driver:
3333  *
3334  * // WARNING!!! HACK to setup output dma!!!
3335  * // This is required because even on output there is some data
3336  * // trickling into the input DMA channel. This is a bug in the
3337  * // Lithium microcode.
3338  * // --sde
3339  *
3340  * We set the input side's DMA base address here. It will remain
3341  * valid until the driver is unloaded.
3342  */
3343 
3344  li_writel(&devc->lith, LI_COMM1_BASE,
3345  devc->rport.hwbuf_paddr >> 8 | 1 << (37 - 8));
3346 
3347  devc->wport.hwbuf_size = HWBUF_SIZE;
3349  if (!devc->wport.hwbuf_vaddr)
3350  goto fail3;
3351  devc->wport.hwbuf = (void *) devc->wport.hwbuf_vaddr;
3352  devc->wport.hwbuf_paddr = virt_to_phys(devc->wport.hwbuf);
3353  DBGP("wport hwbuf = 0x%p\n", devc->wport.hwbuf);
3354 
3355  DBGDO(shut_up++);
3356  err = ad1843_init(&devc->lith);
3357  DBGDO(shut_up--);
3358  if (err)
3359  goto fail4;
3360 
3361  /* install interrupt handler */
3362 
3363  err = request_irq(hw_config->irq, vwsnd_audio_intr, 0, "vwsnd", devc);
3364  if (err)
3365  goto fail5;
3366 
3367  /* register this device's drivers. */
3368 
3369  devc->audio_minor = register_sound_dsp(&vwsnd_audio_fops, -1);
3370  if ((err = devc->audio_minor) < 0) {
3372  "attach_vwsnd: register_sound_dsp error %d\n",
3373  err));
3374  goto fail6;
3375  }
3376  devc->mixer_minor = register_sound_mixer(&vwsnd_mixer_fops,
3377  devc->audio_minor >> 4);
3378  if ((err = devc->mixer_minor) < 0) {
3380  "attach_vwsnd: register_sound_mixer error %d\n",
3381  err));
3382  goto fail7;
3383  }
3384 
3385  /* Squirrel away device indices for unload routine. */
3386 
3387  hw_config->slots[0] = devc->audio_minor;
3388 
3389  /* Initialize as much of *devc as possible */
3390 
3391  mutex_init(&devc->open_mutex);
3392  mutex_init(&devc->io_mutex);
3393  mutex_init(&devc->mix_mutex);
3394  devc->open_mode = 0;
3395  spin_lock_init(&devc->rport.lock);
3397  devc->rport.swstate = SW_OFF;
3398  devc->rport.hwstate = HW_STOPPED;
3399  devc->rport.flags = 0;
3400  devc->rport.swbuf = NULL;
3401  spin_lock_init(&devc->wport.lock);
3403  devc->wport.swstate = SW_OFF;
3404  devc->wport.hwstate = HW_STOPPED;
3405  devc->wport.flags = 0;
3406  devc->wport.swbuf = NULL;
3407 
3408  /* Success. Link us onto the local device list. */
3409 
3410  devc->next_dev = vwsnd_dev_list;
3411  vwsnd_dev_list = devc;
3412  return devc->audio_minor;
3413 
3414  /* So many ways to fail. Undo what we did. */
3415 
3416  fail7:
3418  fail6:
3419  free_irq(hw_config->irq, devc);
3420  fail5:
3421  fail4:
3423  fail3:
3425  fail2:
3426  li_destroy(&devc->lith);
3427  fail1:
3428  kfree(devc);
3429  fail0:
3430  return err;
3431 }
3432 
3433 static int __exit unload_vwsnd(struct address_info *hw_config)
3434 {
3435  vwsnd_dev_t *devc, **devcp;
3436 
3437  DBGE("()\n");
3438 
3439  devcp = &vwsnd_dev_list;
3440  while ((devc = *devcp)) {
3441  if (devc->audio_minor == hw_config->slots[0]) {
3442  *devcp = devc->next_dev;
3443  break;
3444  }
3445  devcp = &devc->next_dev;
3446  }
3447 
3448  if (!devc)
3449  return -ENODEV;
3450 
3453  free_irq(hw_config->irq, devc);
3456  li_destroy(&devc->lith);
3457  kfree(devc);
3458 
3459  return 0;
3460 }
3461 
3462 /*****************************************************************************/
3463 /* initialization and loadable kernel module interface */
3464 
3465 static struct address_info the_hw_config = {
3466  0xFF001000, /* lithium phys addr */
3467  CO_IRQ(CO_APIC_LI_AUDIO) /* irq */
3468 };
3469 
3470 MODULE_DESCRIPTION("SGI Visual Workstation sound module");
3471 MODULE_AUTHOR("Bob Miller <[email protected]>");
3472 MODULE_LICENSE("GPL");
3473 
3474 static int __init init_vwsnd(void)
3475 {
3476  int err;
3477 
3478  DBGXV("\n");
3479  DBGXV("sound::vwsnd::init_module()\n");
3480 
3481  if (!probe_vwsnd(&the_hw_config))
3482  return -ENODEV;
3483 
3484  err = attach_vwsnd(&the_hw_config);
3485  if (err < 0)
3486  return err;
3487  return 0;
3488 }
3489 
3490 static void __exit cleanup_vwsnd(void)
3491 {
3492  DBGX("sound::vwsnd::cleanup_module()\n");
3493 
3494  unload_vwsnd(&the_hw_config);
3495 }
3496 
3497 module_init(init_vwsnd);
3498 module_exit(cleanup_vwsnd);