Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
w1_ds28e04.c
Go to the documentation of this file.
1 /*
2  * w1_ds28e04.c - w1 family 1C (DS28E04) driver
3  *
4  * Copyright (c) 2012 Markus Franke <[email protected]>
5  *
6  * This source code is licensed under the GNU General Public License,
7  * Version 2. See the file COPYING for more details.
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/device.h>
14 #include <linux/types.h>
15 #include <linux/delay.h>
16 #include <linux/slab.h>
17 #include <linux/crc16.h>
18 #include <linux/uaccess.h>
19 
20 #define CRC16_INIT 0
21 #define CRC16_VALID 0xb001
22 
23 #include "../w1.h"
24 #include "../w1_int.h"
25 #include "../w1_family.h"
26 
27 MODULE_LICENSE("GPL");
29 MODULE_DESCRIPTION("w1 family 1C driver for DS28E04, 4kb EEPROM and PIO");
30 
31 /* Allow the strong pullup to be disabled, but default to enabled.
32  * If it was disabled a parasite powered device might not get the required
33  * current to copy the data from the scratchpad to EEPROM. If it is enabled
34  * parasite powered devices have a better chance of getting the current
35  * required.
36  */
37 static int w1_strong_pullup = 1;
38 module_param_named(strong_pullup, w1_strong_pullup, int, 0);
39 
40 /* enable/disable CRC checking on DS28E04-100 memory accesses */
41 static char w1_enable_crccheck = 1;
42 
43 #define W1_EEPROM_SIZE 512
44 #define W1_PAGE_COUNT 16
45 #define W1_PAGE_SIZE 32
46 #define W1_PAGE_BITS 5
47 #define W1_PAGE_MASK 0x1F
48 
49 #define W1_F1C_READ_EEPROM 0xF0
50 #define W1_F1C_WRITE_SCRATCH 0x0F
51 #define W1_F1C_READ_SCRATCH 0xAA
52 #define W1_F1C_COPY_SCRATCH 0x55
53 #define W1_F1C_ACCESS_WRITE 0x5A
54 
55 #define W1_1C_REG_LOGIC_STATE 0x220
56 
57 struct w1_f1C_data {
60 };
61 
66 static inline size_t w1_f1C_fix_count(loff_t off, size_t count, size_t size)
67 {
68  if (off > size)
69  return 0;
70 
71  if ((off + count) > size)
72  return size - off;
73 
74  return count;
75 }
76 
77 static int w1_f1C_refresh_block(struct w1_slave *sl, struct w1_f1C_data *data,
78  int block)
79 {
80  u8 wrbuf[3];
81  int off = block * W1_PAGE_SIZE;
82 
83  if (data->validcrc & (1 << block))
84  return 0;
85 
86  if (w1_reset_select_slave(sl)) {
87  data->validcrc = 0;
88  return -EIO;
89  }
90 
91  wrbuf[0] = W1_F1C_READ_EEPROM;
92  wrbuf[1] = off & 0xff;
93  wrbuf[2] = off >> 8;
94  w1_write_block(sl->master, wrbuf, 3);
95  w1_read_block(sl->master, &data->memory[off], W1_PAGE_SIZE);
96 
97  /* cache the block if the CRC is valid */
98  if (crc16(CRC16_INIT, &data->memory[off], W1_PAGE_SIZE) == CRC16_VALID)
99  data->validcrc |= (1 << block);
100 
101  return 0;
102 }
103 
104 static int w1_f1C_read(struct w1_slave *sl, int addr, int len, char *data)
105 {
106  u8 wrbuf[3];
107 
108  /* read directly from the EEPROM */
109  if (w1_reset_select_slave(sl))
110  return -EIO;
111 
112  wrbuf[0] = W1_F1C_READ_EEPROM;
113  wrbuf[1] = addr & 0xff;
114  wrbuf[2] = addr >> 8;
115 
116  w1_write_block(sl->master, wrbuf, sizeof(wrbuf));
117  return w1_read_block(sl->master, data, len);
118 }
119 
120 static ssize_t w1_f1C_read_bin(struct file *filp, struct kobject *kobj,
121  struct bin_attribute *bin_attr,
122  char *buf, loff_t off, size_t count)
123 {
124  struct w1_slave *sl = kobj_to_w1_slave(kobj);
125  struct w1_f1C_data *data = sl->family_data;
126  int i, min_page, max_page;
127 
128  count = w1_f1C_fix_count(off, count, W1_EEPROM_SIZE);
129  if (count == 0)
130  return 0;
131 
132  mutex_lock(&sl->master->mutex);
133 
134  if (w1_enable_crccheck) {
135  min_page = (off >> W1_PAGE_BITS);
136  max_page = (off + count - 1) >> W1_PAGE_BITS;
137  for (i = min_page; i <= max_page; i++) {
138  if (w1_f1C_refresh_block(sl, data, i)) {
139  count = -EIO;
140  goto out_up;
141  }
142  }
143  memcpy(buf, &data->memory[off], count);
144  } else {
145  count = w1_f1C_read(sl, off, count, buf);
146  }
147 
148 out_up:
149  mutex_unlock(&sl->master->mutex);
150 
151  return count;
152 }
153 
166 static int w1_f1C_write(struct w1_slave *sl, int addr, int len, const u8 *data)
167 {
168  u8 wrbuf[4];
169  u8 rdbuf[W1_PAGE_SIZE + 3];
170  u8 es = (addr + len - 1) & 0x1f;
171  unsigned int tm = 10;
172  int i;
173  struct w1_f1C_data *f1C = sl->family_data;
174 
175  /* Write the data to the scratchpad */
176  if (w1_reset_select_slave(sl))
177  return -1;
178 
179  wrbuf[0] = W1_F1C_WRITE_SCRATCH;
180  wrbuf[1] = addr & 0xff;
181  wrbuf[2] = addr >> 8;
182 
183  w1_write_block(sl->master, wrbuf, 3);
184  w1_write_block(sl->master, data, len);
185 
186  /* Read the scratchpad and verify */
187  if (w1_reset_select_slave(sl))
188  return -1;
189 
190  w1_write_8(sl->master, W1_F1C_READ_SCRATCH);
191  w1_read_block(sl->master, rdbuf, len + 3);
192 
193  /* Compare what was read against the data written */
194  if ((rdbuf[0] != wrbuf[1]) || (rdbuf[1] != wrbuf[2]) ||
195  (rdbuf[2] != es) || (memcmp(data, &rdbuf[3], len) != 0))
196  return -1;
197 
198  /* Copy the scratchpad to EEPROM */
199  if (w1_reset_select_slave(sl))
200  return -1;
201 
202  wrbuf[0] = W1_F1C_COPY_SCRATCH;
203  wrbuf[3] = es;
204 
205  for (i = 0; i < sizeof(wrbuf); ++i) {
206  /* issue 10ms strong pullup (or delay) on the last byte
207  for writing the data from the scratchpad to EEPROM */
208  if (w1_strong_pullup && i == sizeof(wrbuf)-1)
209  w1_next_pullup(sl->master, tm);
210 
211  w1_write_8(sl->master, wrbuf[i]);
212  }
213 
214  if (!w1_strong_pullup)
215  msleep(tm);
216 
217  if (w1_enable_crccheck) {
218  /* invalidate cached data */
219  f1C->validcrc &= ~(1 << (addr >> W1_PAGE_BITS));
220  }
221 
222  /* Reset the bus to wake up the EEPROM (this may not be needed) */
223  w1_reset_bus(sl->master);
224 
225  return 0;
226 }
227 
228 static ssize_t w1_f1C_write_bin(struct file *filp, struct kobject *kobj,
229  struct bin_attribute *bin_attr,
230  char *buf, loff_t off, size_t count)
231 
232 {
233  struct w1_slave *sl = kobj_to_w1_slave(kobj);
234  int addr, len, idx;
235 
236  count = w1_f1C_fix_count(off, count, W1_EEPROM_SIZE);
237  if (count == 0)
238  return 0;
239 
240  if (w1_enable_crccheck) {
241  /* can only write full blocks in cached mode */
242  if ((off & W1_PAGE_MASK) || (count & W1_PAGE_MASK)) {
243  dev_err(&sl->dev, "invalid offset/count off=%d cnt=%zd\n",
244  (int)off, count);
245  return -EINVAL;
246  }
247 
248  /* make sure the block CRCs are valid */
249  for (idx = 0; idx < count; idx += W1_PAGE_SIZE) {
250  if (crc16(CRC16_INIT, &buf[idx], W1_PAGE_SIZE)
251  != CRC16_VALID) {
252  dev_err(&sl->dev, "bad CRC at offset %d\n",
253  (int)off);
254  return -EINVAL;
255  }
256  }
257  }
258 
259  mutex_lock(&sl->master->mutex);
260 
261  /* Can only write data to one page at a time */
262  idx = 0;
263  while (idx < count) {
264  addr = off + idx;
265  len = W1_PAGE_SIZE - (addr & W1_PAGE_MASK);
266  if (len > (count - idx))
267  len = count - idx;
268 
269  if (w1_f1C_write(sl, addr, len, &buf[idx]) < 0) {
270  count = -EIO;
271  goto out_up;
272  }
273  idx += len;
274  }
275 
276 out_up:
277  mutex_unlock(&sl->master->mutex);
278 
279  return count;
280 }
281 
282 static ssize_t w1_f1C_read_pio(struct file *filp, struct kobject *kobj,
283  struct bin_attribute *bin_attr,
284  char *buf, loff_t off, size_t count)
285 
286 {
287  struct w1_slave *sl = kobj_to_w1_slave(kobj);
288  int ret;
289 
290  /* check arguments */
291  if (off != 0 || count != 1 || buf == NULL)
292  return -EINVAL;
293 
294  mutex_lock(&sl->master->mutex);
295  ret = w1_f1C_read(sl, W1_1C_REG_LOGIC_STATE, count, buf);
296  mutex_unlock(&sl->master->mutex);
297 
298  return ret;
299 }
300 
301 static ssize_t w1_f1C_write_pio(struct file *filp, struct kobject *kobj,
302  struct bin_attribute *bin_attr,
303  char *buf, loff_t off, size_t count)
304 
305 {
306  struct w1_slave *sl = kobj_to_w1_slave(kobj);
307  u8 wrbuf[3];
308  u8 ack;
309 
310  /* check arguments */
311  if (off != 0 || count != 1 || buf == NULL)
312  return -EINVAL;
313 
314  mutex_lock(&sl->master->mutex);
315 
316  /* Write the PIO data */
317  if (w1_reset_select_slave(sl)) {
318  mutex_unlock(&sl->master->mutex);
319  return -1;
320  }
321 
322  /* set bit 7..2 to value '1' */
323  *buf = *buf | 0xFC;
324 
325  wrbuf[0] = W1_F1C_ACCESS_WRITE;
326  wrbuf[1] = *buf;
327  wrbuf[2] = ~(*buf);
328  w1_write_block(sl->master, wrbuf, 3);
329 
330  w1_read_block(sl->master, &ack, sizeof(ack));
331 
332  mutex_unlock(&sl->master->mutex);
333 
334  /* check for acknowledgement */
335  if (ack != 0xAA)
336  return -EIO;
337 
338  return count;
339 }
340 
341 static ssize_t w1_f1C_show_crccheck(struct device *dev,
342  struct device_attribute *attr, char *buf)
343 {
344  if (put_user(w1_enable_crccheck + 0x30, buf))
345  return -EFAULT;
346 
347  return sizeof(w1_enable_crccheck);
348 }
349 
350 static ssize_t w1_f1C_store_crccheck(struct device *dev,
351  struct device_attribute *attr,
352  const char *buf, size_t count)
353 {
354  char val;
355 
356  if (count != 1 || !buf)
357  return -EINVAL;
358 
359  if (get_user(val, buf))
360  return -EFAULT;
361 
362  /* convert to decimal */
363  val = val - 0x30;
364  if (val != 0 && val != 1)
365  return -EINVAL;
366 
367  /* set the new value */
368  w1_enable_crccheck = val;
369 
370  return sizeof(w1_enable_crccheck);
371 }
372 
373 #define NB_SYSFS_BIN_FILES 2
374 static struct bin_attribute w1_f1C_bin_attr[NB_SYSFS_BIN_FILES] = {
375  {
376  .attr = {
377  .name = "eeprom",
378  .mode = S_IRUGO | S_IWUSR,
379  },
380  .size = W1_EEPROM_SIZE,
381  .read = w1_f1C_read_bin,
382  .write = w1_f1C_write_bin,
383  },
384  {
385  .attr = {
386  .name = "pio",
387  .mode = S_IRUGO | S_IWUSR,
388  },
389  .size = 1,
390  .read = w1_f1C_read_pio,
391  .write = w1_f1C_write_pio,
392  }
393 };
394 
395 static DEVICE_ATTR(crccheck, S_IWUSR | S_IRUGO,
396  w1_f1C_show_crccheck, w1_f1C_store_crccheck);
397 
398 static int w1_f1C_add_slave(struct w1_slave *sl)
399 {
400  int err = 0;
401  int i;
402  struct w1_f1C_data *data = NULL;
403 
404  if (w1_enable_crccheck) {
405  data = kzalloc(sizeof(struct w1_f1C_data), GFP_KERNEL);
406  if (!data)
407  return -ENOMEM;
408  sl->family_data = data;
409  }
410 
411  /* create binary sysfs attributes */
412  for (i = 0; i < NB_SYSFS_BIN_FILES && !err; ++i)
413  err = sysfs_create_bin_file(
414  &sl->dev.kobj, &(w1_f1C_bin_attr[i]));
415 
416  if (!err) {
417  /* create device attributes */
418  err = device_create_file(&sl->dev, &dev_attr_crccheck);
419  }
420 
421  if (err) {
422  /* remove binary sysfs attributes */
423  for (i = 0; i < NB_SYSFS_BIN_FILES; ++i)
425  &sl->dev.kobj, &(w1_f1C_bin_attr[i]));
426 
427  kfree(data);
428  }
429 
430  return err;
431 }
432 
433 static void w1_f1C_remove_slave(struct w1_slave *sl)
434 {
435  int i;
436 
437  kfree(sl->family_data);
438  sl->family_data = NULL;
439 
440  /* remove device attributes */
441  device_remove_file(&sl->dev, &dev_attr_crccheck);
442 
443  /* remove binary sysfs attributes */
444  for (i = 0; i < NB_SYSFS_BIN_FILES; ++i)
445  sysfs_remove_bin_file(&sl->dev.kobj, &(w1_f1C_bin_attr[i]));
446 }
447 
448 static struct w1_family_ops w1_f1C_fops = {
449  .add_slave = w1_f1C_add_slave,
450  .remove_slave = w1_f1C_remove_slave,
451 };
452 
453 static struct w1_family w1_family_1C = {
454  .fid = W1_FAMILY_DS28E04,
455  .fops = &w1_f1C_fops,
456 };
457 
458 static int __init w1_f1C_init(void)
459 {
460  return w1_register_family(&w1_family_1C);
461 }
462 
463 static void __exit w1_f1C_fini(void)
464 {
465  w1_unregister_family(&w1_family_1C);
466 }
467 
468 module_init(w1_f1C_init);
469 module_exit(w1_f1C_fini);