Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
w83791d.c
Go to the documentation of this file.
1 /*
2  * w83791d.c - Part of lm_sensors, Linux kernel modules for hardware
3  * monitoring
4  *
5  * Copyright (C) 2006-2007 Charles Spirakis <[email protected]>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
20  */
21 
22 /*
23  * Supports following chips:
24  *
25  * Chip #vin #fanin #pwm #temp wchipid vendid i2c ISA
26  * w83791d 10 5 5 3 0x71 0x5ca3 yes no
27  *
28  * The w83791d chip appears to be part way between the 83781d and the
29  * 83792d. Thus, this file is derived from both the w83792d.c and
30  * w83781d.c files.
31  *
32  * The w83791g chip is the same as the w83791d but lead-free.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/i2c.h>
39 #include <linux/hwmon.h>
40 #include <linux/hwmon-vid.h>
41 #include <linux/hwmon-sysfs.h>
42 #include <linux/err.h>
43 #include <linux/mutex.h>
44 #include <linux/jiffies.h>
45 
46 #define NUMBER_OF_VIN 10
47 #define NUMBER_OF_FANIN 5
48 #define NUMBER_OF_TEMPIN 3
49 #define NUMBER_OF_PWM 5
50 
51 /* Addresses to scan */
52 static const unsigned short normal_i2c[] = { 0x2c, 0x2d, 0x2e, 0x2f,
54 
55 /* Insmod parameters */
56 
57 static unsigned short force_subclients[4];
58 module_param_array(force_subclients, short, NULL, 0);
59 MODULE_PARM_DESC(force_subclients, "List of subclient addresses: "
60  "{bus, clientaddr, subclientaddr1, subclientaddr2}");
61 
62 static bool reset;
63 module_param(reset, bool, 0);
64 MODULE_PARM_DESC(reset, "Set to one to force a hardware chip reset");
65 
66 static bool init;
67 module_param(init, bool, 0);
68 MODULE_PARM_DESC(init, "Set to one to force extra software initialization");
69 
70 /* The W83791D registers */
71 static const u8 W83791D_REG_IN[NUMBER_OF_VIN] = {
72  0x20, /* VCOREA in DataSheet */
73  0x21, /* VINR0 in DataSheet */
74  0x22, /* +3.3VIN in DataSheet */
75  0x23, /* VDD5V in DataSheet */
76  0x24, /* +12VIN in DataSheet */
77  0x25, /* -12VIN in DataSheet */
78  0x26, /* -5VIN in DataSheet */
79  0xB0, /* 5VSB in DataSheet */
80  0xB1, /* VBAT in DataSheet */
81  0xB2 /* VINR1 in DataSheet */
82 };
83 
84 static const u8 W83791D_REG_IN_MAX[NUMBER_OF_VIN] = {
85  0x2B, /* VCOREA High Limit in DataSheet */
86  0x2D, /* VINR0 High Limit in DataSheet */
87  0x2F, /* +3.3VIN High Limit in DataSheet */
88  0x31, /* VDD5V High Limit in DataSheet */
89  0x33, /* +12VIN High Limit in DataSheet */
90  0x35, /* -12VIN High Limit in DataSheet */
91  0x37, /* -5VIN High Limit in DataSheet */
92  0xB4, /* 5VSB High Limit in DataSheet */
93  0xB6, /* VBAT High Limit in DataSheet */
94  0xB8 /* VINR1 High Limit in DataSheet */
95 };
96 static const u8 W83791D_REG_IN_MIN[NUMBER_OF_VIN] = {
97  0x2C, /* VCOREA Low Limit in DataSheet */
98  0x2E, /* VINR0 Low Limit in DataSheet */
99  0x30, /* +3.3VIN Low Limit in DataSheet */
100  0x32, /* VDD5V Low Limit in DataSheet */
101  0x34, /* +12VIN Low Limit in DataSheet */
102  0x36, /* -12VIN Low Limit in DataSheet */
103  0x38, /* -5VIN Low Limit in DataSheet */
104  0xB5, /* 5VSB Low Limit in DataSheet */
105  0xB7, /* VBAT Low Limit in DataSheet */
106  0xB9 /* VINR1 Low Limit in DataSheet */
107 };
108 static const u8 W83791D_REG_FAN[NUMBER_OF_FANIN] = {
109  0x28, /* FAN 1 Count in DataSheet */
110  0x29, /* FAN 2 Count in DataSheet */
111  0x2A, /* FAN 3 Count in DataSheet */
112  0xBA, /* FAN 4 Count in DataSheet */
113  0xBB, /* FAN 5 Count in DataSheet */
114 };
115 static const u8 W83791D_REG_FAN_MIN[NUMBER_OF_FANIN] = {
116  0x3B, /* FAN 1 Count Low Limit in DataSheet */
117  0x3C, /* FAN 2 Count Low Limit in DataSheet */
118  0x3D, /* FAN 3 Count Low Limit in DataSheet */
119  0xBC, /* FAN 4 Count Low Limit in DataSheet */
120  0xBD, /* FAN 5 Count Low Limit in DataSheet */
121 };
122 
123 static const u8 W83791D_REG_PWM[NUMBER_OF_PWM] = {
124  0x81, /* PWM 1 duty cycle register in DataSheet */
125  0x83, /* PWM 2 duty cycle register in DataSheet */
126  0x94, /* PWM 3 duty cycle register in DataSheet */
127  0xA0, /* PWM 4 duty cycle register in DataSheet */
128  0xA1, /* PWM 5 duty cycle register in DataSheet */
129 };
130 
131 static const u8 W83791D_REG_TEMP_TARGET[3] = {
132  0x85, /* PWM 1 target temperature for temp 1 */
133  0x86, /* PWM 2 target temperature for temp 2 */
134  0x96, /* PWM 3 target temperature for temp 3 */
135 };
136 
137 static const u8 W83791D_REG_TEMP_TOL[2] = {
138  0x87, /* PWM 1/2 temperature tolerance */
139  0x97, /* PWM 3 temperature tolerance */
140 };
141 
142 static const u8 W83791D_REG_FAN_CFG[2] = {
143  0x84, /* FAN 1/2 configuration */
144  0x95, /* FAN 3 configuration */
145 };
146 
147 static const u8 W83791D_REG_FAN_DIV[3] = {
148  0x47, /* contains FAN1 and FAN2 Divisor */
149  0x4b, /* contains FAN3 Divisor */
150  0x5C, /* contains FAN4 and FAN5 Divisor */
151 };
152 
153 #define W83791D_REG_BANK 0x4E
154 #define W83791D_REG_TEMP2_CONFIG 0xC2
155 #define W83791D_REG_TEMP3_CONFIG 0xCA
156 
157 static const u8 W83791D_REG_TEMP1[3] = {
158  0x27, /* TEMP 1 in DataSheet */
159  0x39, /* TEMP 1 Over in DataSheet */
160  0x3A, /* TEMP 1 Hyst in DataSheet */
161 };
162 
163 static const u8 W83791D_REG_TEMP_ADD[2][6] = {
164  {0xC0, /* TEMP 2 in DataSheet */
165  0xC1, /* TEMP 2(0.5 deg) in DataSheet */
166  0xC5, /* TEMP 2 Over High part in DataSheet */
167  0xC6, /* TEMP 2 Over Low part in DataSheet */
168  0xC3, /* TEMP 2 Thyst High part in DataSheet */
169  0xC4}, /* TEMP 2 Thyst Low part in DataSheet */
170  {0xC8, /* TEMP 3 in DataSheet */
171  0xC9, /* TEMP 3(0.5 deg) in DataSheet */
172  0xCD, /* TEMP 3 Over High part in DataSheet */
173  0xCE, /* TEMP 3 Over Low part in DataSheet */
174  0xCB, /* TEMP 3 Thyst High part in DataSheet */
175  0xCC} /* TEMP 3 Thyst Low part in DataSheet */
176 };
177 
178 #define W83791D_REG_BEEP_CONFIG 0x4D
179 
180 static const u8 W83791D_REG_BEEP_CTRL[3] = {
181  0x56, /* BEEP Control Register 1 */
182  0x57, /* BEEP Control Register 2 */
183  0xA3, /* BEEP Control Register 3 */
184 };
185 
186 #define W83791D_REG_GPIO 0x15
187 #define W83791D_REG_CONFIG 0x40
188 #define W83791D_REG_VID_FANDIV 0x47
189 #define W83791D_REG_DID_VID4 0x49
190 #define W83791D_REG_WCHIPID 0x58
191 #define W83791D_REG_CHIPMAN 0x4F
192 #define W83791D_REG_PIN 0x4B
193 #define W83791D_REG_I2C_SUBADDR 0x4A
194 
195 #define W83791D_REG_ALARM1 0xA9 /* realtime status register1 */
196 #define W83791D_REG_ALARM2 0xAA /* realtime status register2 */
197 #define W83791D_REG_ALARM3 0xAB /* realtime status register3 */
198 
199 #define W83791D_REG_VBAT 0x5D
200 #define W83791D_REG_I2C_ADDR 0x48
201 
202 /*
203  * The SMBus locks itself. The Winbond W83791D has a bank select register
204  * (index 0x4e), but the driver only accesses registers in bank 0. Since
205  * we don't switch banks, we don't need any special code to handle
206  * locking access between bank switches
207  */
208 static inline int w83791d_read(struct i2c_client *client, u8 reg)
209 {
210  return i2c_smbus_read_byte_data(client, reg);
211 }
212 
213 static inline int w83791d_write(struct i2c_client *client, u8 reg, u8 value)
214 {
215  return i2c_smbus_write_byte_data(client, reg, value);
216 }
217 
218 /*
219  * The analog voltage inputs have 16mV LSB. Since the sysfs output is
220  * in mV as would be measured on the chip input pin, need to just
221  * multiply/divide by 16 to translate from/to register values.
222  */
223 #define IN_TO_REG(val) (SENSORS_LIMIT((((val) + 8) / 16), 0, 255))
224 #define IN_FROM_REG(val) ((val) * 16)
225 
226 static u8 fan_to_reg(long rpm, int div)
227 {
228  if (rpm == 0)
229  return 255;
230  rpm = SENSORS_LIMIT(rpm, 1, 1000000);
231  return SENSORS_LIMIT((1350000 + rpm * div / 2) / (rpm * div), 1, 254);
232 }
233 
234 #define FAN_FROM_REG(val, div) ((val) == 0 ? -1 : \
235  ((val) == 255 ? 0 : \
236  1350000 / ((val) * (div))))
237 
238 /* for temp1 which is 8-bit resolution, LSB = 1 degree Celsius */
239 #define TEMP1_FROM_REG(val) ((val) * 1000)
240 #define TEMP1_TO_REG(val) ((val) <= -128000 ? -128 : \
241  (val) >= 127000 ? 127 : \
242  (val) < 0 ? ((val) - 500) / 1000 : \
243  ((val) + 500) / 1000)
244 
245 /*
246  * for temp2 and temp3 which are 9-bit resolution, LSB = 0.5 degree Celsius
247  * Assumes the top 8 bits are the integral amount and the bottom 8 bits
248  * are the fractional amount. Since we only have 0.5 degree resolution,
249  * the bottom 7 bits will always be zero
250  */
251 #define TEMP23_FROM_REG(val) ((val) / 128 * 500)
252 #define TEMP23_TO_REG(val) ((val) <= -128000 ? 0x8000 : \
253  (val) >= 127500 ? 0x7F80 : \
254  (val) < 0 ? ((val) - 250) / 500 * 128 : \
255  ((val) + 250) / 500 * 128)
256 
257 /* for thermal cruise target temp, 7-bits, LSB = 1 degree Celsius */
258 #define TARGET_TEMP_TO_REG(val) ((val) < 0 ? 0 : \
259  (val) >= 127000 ? 127 : \
260  ((val) + 500) / 1000)
261 
262 /* for thermal cruise temp tolerance, 4-bits, LSB = 1 degree Celsius */
263 #define TOL_TEMP_TO_REG(val) ((val) >= 15000 ? 15 : \
264  ((val) + 500) / 1000)
265 
266 #define BEEP_MASK_TO_REG(val) ((val) & 0xffffff)
267 #define BEEP_MASK_FROM_REG(val) ((val) & 0xffffff)
268 
269 #define DIV_FROM_REG(val) (1 << (val))
270 
271 static u8 div_to_reg(int nr, long val)
272 {
273  int i;
274 
275  /* fan divisors max out at 128 */
276  val = SENSORS_LIMIT(val, 1, 128) >> 1;
277  for (i = 0; i < 7; i++) {
278  if (val == 0)
279  break;
280  val >>= 1;
281  }
282  return (u8) i;
283 }
284 
285 struct w83791d_data {
286  struct device *hwmon_dev;
288 
289  char valid; /* !=0 if following fields are valid */
290  unsigned long last_updated; /* In jiffies */
291 
292  /* array of 2 pointers to subclients */
293  struct i2c_client *lm75[2];
294 
295  /* volts */
296  u8 in[NUMBER_OF_VIN]; /* Register value */
297  u8 in_max[NUMBER_OF_VIN]; /* Register value */
298  u8 in_min[NUMBER_OF_VIN]; /* Register value */
299 
300  /* fans */
301  u8 fan[NUMBER_OF_FANIN]; /* Register value */
302  u8 fan_min[NUMBER_OF_FANIN]; /* Register value */
303  u8 fan_div[NUMBER_OF_FANIN]; /* Register encoding, shifted right */
304 
305  /* Temperature sensors */
306 
307  s8 temp1[3]; /* current, over, thyst */
308  s16 temp_add[2][3]; /* fixed point value. Top 8 bits are the
309  * integral part, bottom 8 bits are the
310  * fractional part. We only use the top
311  * 9 bits as the resolution is only
312  * to the 0.5 degree C...
313  * two sensors with three values
314  * (cur, over, hyst)
315  */
316 
317  /* PWMs */
318  u8 pwm[5]; /* pwm duty cycle */
319  u8 pwm_enable[3]; /* pwm enable status for fan 1-3
320  * (fan 4-5 only support manual mode)
321  */
322 
323  u8 temp_target[3]; /* pwm 1-3 target temperature */
324  u8 temp_tolerance[3]; /* pwm 1-3 temperature tolerance */
325 
326  /* Misc */
327  u32 alarms; /* realtime status register encoding,combined */
328  u8 beep_enable; /* Global beep enable */
329  u32 beep_mask; /* Mask off specific beeps */
330  u8 vid; /* Register encoding, combined */
331  u8 vrm; /* hwmon-vid */
332 };
333 
334 static int w83791d_probe(struct i2c_client *client,
335  const struct i2c_device_id *id);
336 static int w83791d_detect(struct i2c_client *client,
337  struct i2c_board_info *info);
338 static int w83791d_remove(struct i2c_client *client);
339 
340 static int w83791d_read(struct i2c_client *client, u8 reg);
341 static int w83791d_write(struct i2c_client *client, u8 reg, u8 value);
342 static struct w83791d_data *w83791d_update_device(struct device *dev);
343 
344 #ifdef DEBUG
345 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev);
346 #endif
347 
348 static void w83791d_init_client(struct i2c_client *client);
349 
350 static const struct i2c_device_id w83791d_id[] = {
351  { "w83791d", 0 },
352  { }
353 };
354 MODULE_DEVICE_TABLE(i2c, w83791d_id);
355 
356 static struct i2c_driver w83791d_driver = {
357  .class = I2C_CLASS_HWMON,
358  .driver = {
359  .name = "w83791d",
360  },
361  .probe = w83791d_probe,
362  .remove = w83791d_remove,
363  .id_table = w83791d_id,
364  .detect = w83791d_detect,
365  .address_list = normal_i2c,
366 };
367 
368 /* following are the sysfs callback functions */
369 #define show_in_reg(reg) \
370 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
371  char *buf) \
372 { \
373  struct sensor_device_attribute *sensor_attr = \
374  to_sensor_dev_attr(attr); \
375  struct w83791d_data *data = w83791d_update_device(dev); \
376  int nr = sensor_attr->index; \
377  return sprintf(buf, "%d\n", IN_FROM_REG(data->reg[nr])); \
378 }
379 
380 show_in_reg(in);
381 show_in_reg(in_min);
382 show_in_reg(in_max);
383 
384 #define store_in_reg(REG, reg) \
385 static ssize_t store_in_##reg(struct device *dev, \
386  struct device_attribute *attr, \
387  const char *buf, size_t count) \
388 { \
389  struct sensor_device_attribute *sensor_attr = \
390  to_sensor_dev_attr(attr); \
391  struct i2c_client *client = to_i2c_client(dev); \
392  struct w83791d_data *data = i2c_get_clientdata(client); \
393  int nr = sensor_attr->index; \
394  unsigned long val; \
395  int err = kstrtoul(buf, 10, &val); \
396  if (err) \
397  return err; \
398  mutex_lock(&data->update_lock); \
399  data->in_##reg[nr] = IN_TO_REG(val); \
400  w83791d_write(client, W83791D_REG_IN_##REG[nr], data->in_##reg[nr]); \
401  mutex_unlock(&data->update_lock); \
402  \
403  return count; \
404 }
407 
408 static struct sensor_device_attribute sda_in_input[] = {
409  SENSOR_ATTR(in0_input, S_IRUGO, show_in, NULL, 0),
410  SENSOR_ATTR(in1_input, S_IRUGO, show_in, NULL, 1),
411  SENSOR_ATTR(in2_input, S_IRUGO, show_in, NULL, 2),
412  SENSOR_ATTR(in3_input, S_IRUGO, show_in, NULL, 3),
413  SENSOR_ATTR(in4_input, S_IRUGO, show_in, NULL, 4),
414  SENSOR_ATTR(in5_input, S_IRUGO, show_in, NULL, 5),
415  SENSOR_ATTR(in6_input, S_IRUGO, show_in, NULL, 6),
416  SENSOR_ATTR(in7_input, S_IRUGO, show_in, NULL, 7),
417  SENSOR_ATTR(in8_input, S_IRUGO, show_in, NULL, 8),
418  SENSOR_ATTR(in9_input, S_IRUGO, show_in, NULL, 9),
419 };
420 
421 static struct sensor_device_attribute sda_in_min[] = {
422  SENSOR_ATTR(in0_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 0),
423  SENSOR_ATTR(in1_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 1),
424  SENSOR_ATTR(in2_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 2),
425  SENSOR_ATTR(in3_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 3),
426  SENSOR_ATTR(in4_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 4),
427  SENSOR_ATTR(in5_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 5),
428  SENSOR_ATTR(in6_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 6),
429  SENSOR_ATTR(in7_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 7),
430  SENSOR_ATTR(in8_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 8),
431  SENSOR_ATTR(in9_min, S_IWUSR | S_IRUGO, show_in_min, store_in_min, 9),
432 };
433 
434 static struct sensor_device_attribute sda_in_max[] = {
435  SENSOR_ATTR(in0_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 0),
436  SENSOR_ATTR(in1_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 1),
437  SENSOR_ATTR(in2_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 2),
438  SENSOR_ATTR(in3_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 3),
439  SENSOR_ATTR(in4_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 4),
440  SENSOR_ATTR(in5_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 5),
441  SENSOR_ATTR(in6_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 6),
442  SENSOR_ATTR(in7_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 7),
443  SENSOR_ATTR(in8_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 8),
444  SENSOR_ATTR(in9_max, S_IWUSR | S_IRUGO, show_in_max, store_in_max, 9),
445 };
446 
447 
448 static ssize_t show_beep(struct device *dev, struct device_attribute *attr,
449  char *buf)
450 {
451  struct sensor_device_attribute *sensor_attr =
452  to_sensor_dev_attr(attr);
453  struct w83791d_data *data = w83791d_update_device(dev);
454  int bitnr = sensor_attr->index;
455 
456  return sprintf(buf, "%d\n", (data->beep_mask >> bitnr) & 1);
457 }
458 
459 static ssize_t store_beep(struct device *dev, struct device_attribute *attr,
460  const char *buf, size_t count)
461 {
462  struct sensor_device_attribute *sensor_attr =
463  to_sensor_dev_attr(attr);
464  struct i2c_client *client = to_i2c_client(dev);
465  struct w83791d_data *data = i2c_get_clientdata(client);
466  int bitnr = sensor_attr->index;
467  int bytenr = bitnr / 8;
468  unsigned long val;
469  int err;
470 
471  err = kstrtoul(buf, 10, &val);
472  if (err)
473  return err;
474 
475  val = val ? 1 : 0;
476 
477  mutex_lock(&data->update_lock);
478 
479  data->beep_mask &= ~(0xff << (bytenr * 8));
480  data->beep_mask |= w83791d_read(client, W83791D_REG_BEEP_CTRL[bytenr])
481  << (bytenr * 8);
482 
483  data->beep_mask &= ~(1 << bitnr);
484  data->beep_mask |= val << bitnr;
485 
486  w83791d_write(client, W83791D_REG_BEEP_CTRL[bytenr],
487  (data->beep_mask >> (bytenr * 8)) & 0xff);
488 
489  mutex_unlock(&data->update_lock);
490 
491  return count;
492 }
493 
494 static ssize_t show_alarm(struct device *dev, struct device_attribute *attr,
495  char *buf)
496 {
497  struct sensor_device_attribute *sensor_attr =
498  to_sensor_dev_attr(attr);
499  struct w83791d_data *data = w83791d_update_device(dev);
500  int bitnr = sensor_attr->index;
501 
502  return sprintf(buf, "%d\n", (data->alarms >> bitnr) & 1);
503 }
504 
505 /*
506  * Note: The bitmask for the beep enable/disable is different than
507  * the bitmask for the alarm.
508  */
509 static struct sensor_device_attribute sda_in_beep[] = {
510  SENSOR_ATTR(in0_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 0),
511  SENSOR_ATTR(in1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 13),
512  SENSOR_ATTR(in2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 2),
513  SENSOR_ATTR(in3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 3),
514  SENSOR_ATTR(in4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 8),
515  SENSOR_ATTR(in5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 9),
516  SENSOR_ATTR(in6_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 10),
517  SENSOR_ATTR(in7_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 16),
518  SENSOR_ATTR(in8_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 17),
519  SENSOR_ATTR(in9_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 14),
520 };
521 
522 static struct sensor_device_attribute sda_in_alarm[] = {
523  SENSOR_ATTR(in0_alarm, S_IRUGO, show_alarm, NULL, 0),
524  SENSOR_ATTR(in1_alarm, S_IRUGO, show_alarm, NULL, 1),
525  SENSOR_ATTR(in2_alarm, S_IRUGO, show_alarm, NULL, 2),
526  SENSOR_ATTR(in3_alarm, S_IRUGO, show_alarm, NULL, 3),
527  SENSOR_ATTR(in4_alarm, S_IRUGO, show_alarm, NULL, 8),
528  SENSOR_ATTR(in5_alarm, S_IRUGO, show_alarm, NULL, 9),
529  SENSOR_ATTR(in6_alarm, S_IRUGO, show_alarm, NULL, 10),
530  SENSOR_ATTR(in7_alarm, S_IRUGO, show_alarm, NULL, 19),
531  SENSOR_ATTR(in8_alarm, S_IRUGO, show_alarm, NULL, 20),
532  SENSOR_ATTR(in9_alarm, S_IRUGO, show_alarm, NULL, 14),
533 };
534 
535 #define show_fan_reg(reg) \
536 static ssize_t show_##reg(struct device *dev, struct device_attribute *attr, \
537  char *buf) \
538 { \
539  struct sensor_device_attribute *sensor_attr = \
540  to_sensor_dev_attr(attr); \
541  struct w83791d_data *data = w83791d_update_device(dev); \
542  int nr = sensor_attr->index; \
543  return sprintf(buf, "%d\n", \
544  FAN_FROM_REG(data->reg[nr], DIV_FROM_REG(data->fan_div[nr]))); \
545 }
546 
548 show_fan_reg(fan_min);
549 
550 static ssize_t store_fan_min(struct device *dev, struct device_attribute *attr,
551  const char *buf, size_t count)
552 {
553  struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
554  struct i2c_client *client = to_i2c_client(dev);
555  struct w83791d_data *data = i2c_get_clientdata(client);
556  int nr = sensor_attr->index;
557  unsigned long val;
558  int err;
559 
560  err = kstrtoul(buf, 10, &val);
561  if (err)
562  return err;
563 
564  mutex_lock(&data->update_lock);
565  data->fan_min[nr] = fan_to_reg(val, DIV_FROM_REG(data->fan_div[nr]));
566  w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
567  mutex_unlock(&data->update_lock);
568 
569  return count;
570 }
571 
572 static ssize_t show_fan_div(struct device *dev, struct device_attribute *attr,
573  char *buf)
574 {
575  struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
576  int nr = sensor_attr->index;
577  struct w83791d_data *data = w83791d_update_device(dev);
578  return sprintf(buf, "%u\n", DIV_FROM_REG(data->fan_div[nr]));
579 }
580 
581 /*
582  * Note: we save and restore the fan minimum here, because its value is
583  * determined in part by the fan divisor. This follows the principle of
584  * least surprise; the user doesn't expect the fan minimum to change just
585  * because the divisor changed.
586  */
587 static ssize_t store_fan_div(struct device *dev, struct device_attribute *attr,
588  const char *buf, size_t count)
589 {
590  struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
591  struct i2c_client *client = to_i2c_client(dev);
592  struct w83791d_data *data = i2c_get_clientdata(client);
593  int nr = sensor_attr->index;
594  unsigned long min;
595  u8 tmp_fan_div;
596  u8 fan_div_reg;
597  u8 vbat_reg;
598  int indx = 0;
599  u8 keep_mask = 0;
600  u8 new_shift = 0;
601  unsigned long val;
602  int err;
603 
604  err = kstrtoul(buf, 10, &val);
605  if (err)
606  return err;
607 
608  /* Save fan_min */
609  min = FAN_FROM_REG(data->fan_min[nr], DIV_FROM_REG(data->fan_div[nr]));
610 
611  mutex_lock(&data->update_lock);
612  data->fan_div[nr] = div_to_reg(nr, val);
613 
614  switch (nr) {
615  case 0:
616  indx = 0;
617  keep_mask = 0xcf;
618  new_shift = 4;
619  break;
620  case 1:
621  indx = 0;
622  keep_mask = 0x3f;
623  new_shift = 6;
624  break;
625  case 2:
626  indx = 1;
627  keep_mask = 0x3f;
628  new_shift = 6;
629  break;
630  case 3:
631  indx = 2;
632  keep_mask = 0xf8;
633  new_shift = 0;
634  break;
635  case 4:
636  indx = 2;
637  keep_mask = 0x8f;
638  new_shift = 4;
639  break;
640 #ifdef DEBUG
641  default:
642  dev_warn(dev, "store_fan_div: Unexpected nr seen: %d\n", nr);
643  count = -EINVAL;
644  goto err_exit;
645 #endif
646  }
647 
648  fan_div_reg = w83791d_read(client, W83791D_REG_FAN_DIV[indx])
649  & keep_mask;
650  tmp_fan_div = (data->fan_div[nr] << new_shift) & ~keep_mask;
651 
652  w83791d_write(client, W83791D_REG_FAN_DIV[indx],
653  fan_div_reg | tmp_fan_div);
654 
655  /* Bit 2 of fans 0-2 is stored in the vbat register (bits 5-7) */
656  if (nr < 3) {
657  keep_mask = ~(1 << (nr + 5));
658  vbat_reg = w83791d_read(client, W83791D_REG_VBAT)
659  & keep_mask;
660  tmp_fan_div = (data->fan_div[nr] << (3 + nr)) & ~keep_mask;
661  w83791d_write(client, W83791D_REG_VBAT,
662  vbat_reg | tmp_fan_div);
663  }
664 
665  /* Restore fan_min */
666  data->fan_min[nr] = fan_to_reg(min, DIV_FROM_REG(data->fan_div[nr]));
667  w83791d_write(client, W83791D_REG_FAN_MIN[nr], data->fan_min[nr]);
668 
669 #ifdef DEBUG
670 err_exit:
671 #endif
672  mutex_unlock(&data->update_lock);
673 
674  return count;
675 }
676 
677 static struct sensor_device_attribute sda_fan_input[] = {
678  SENSOR_ATTR(fan1_input, S_IRUGO, show_fan, NULL, 0),
679  SENSOR_ATTR(fan2_input, S_IRUGO, show_fan, NULL, 1),
680  SENSOR_ATTR(fan3_input, S_IRUGO, show_fan, NULL, 2),
681  SENSOR_ATTR(fan4_input, S_IRUGO, show_fan, NULL, 3),
682  SENSOR_ATTR(fan5_input, S_IRUGO, show_fan, NULL, 4),
683 };
684 
685 static struct sensor_device_attribute sda_fan_min[] = {
686  SENSOR_ATTR(fan1_min, S_IWUSR | S_IRUGO,
687  show_fan_min, store_fan_min, 0),
688  SENSOR_ATTR(fan2_min, S_IWUSR | S_IRUGO,
689  show_fan_min, store_fan_min, 1),
690  SENSOR_ATTR(fan3_min, S_IWUSR | S_IRUGO,
691  show_fan_min, store_fan_min, 2),
692  SENSOR_ATTR(fan4_min, S_IWUSR | S_IRUGO,
693  show_fan_min, store_fan_min, 3),
694  SENSOR_ATTR(fan5_min, S_IWUSR | S_IRUGO,
695  show_fan_min, store_fan_min, 4),
696 };
697 
698 static struct sensor_device_attribute sda_fan_div[] = {
699  SENSOR_ATTR(fan1_div, S_IWUSR | S_IRUGO,
700  show_fan_div, store_fan_div, 0),
701  SENSOR_ATTR(fan2_div, S_IWUSR | S_IRUGO,
702  show_fan_div, store_fan_div, 1),
703  SENSOR_ATTR(fan3_div, S_IWUSR | S_IRUGO,
704  show_fan_div, store_fan_div, 2),
705  SENSOR_ATTR(fan4_div, S_IWUSR | S_IRUGO,
706  show_fan_div, store_fan_div, 3),
707  SENSOR_ATTR(fan5_div, S_IWUSR | S_IRUGO,
708  show_fan_div, store_fan_div, 4),
709 };
710 
711 static struct sensor_device_attribute sda_fan_beep[] = {
712  SENSOR_ATTR(fan1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 6),
713  SENSOR_ATTR(fan2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 7),
714  SENSOR_ATTR(fan3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 11),
715  SENSOR_ATTR(fan4_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 21),
716  SENSOR_ATTR(fan5_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 22),
717 };
718 
719 static struct sensor_device_attribute sda_fan_alarm[] = {
720  SENSOR_ATTR(fan1_alarm, S_IRUGO, show_alarm, NULL, 6),
721  SENSOR_ATTR(fan2_alarm, S_IRUGO, show_alarm, NULL, 7),
722  SENSOR_ATTR(fan3_alarm, S_IRUGO, show_alarm, NULL, 11),
723  SENSOR_ATTR(fan4_alarm, S_IRUGO, show_alarm, NULL, 21),
724  SENSOR_ATTR(fan5_alarm, S_IRUGO, show_alarm, NULL, 22),
725 };
726 
727 /* read/write PWMs */
728 static ssize_t show_pwm(struct device *dev, struct device_attribute *attr,
729  char *buf)
730 {
731  struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
732  int nr = sensor_attr->index;
733  struct w83791d_data *data = w83791d_update_device(dev);
734  return sprintf(buf, "%u\n", data->pwm[nr]);
735 }
736 
737 static ssize_t store_pwm(struct device *dev, struct device_attribute *attr,
738  const char *buf, size_t count)
739 {
740  struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
741  struct i2c_client *client = to_i2c_client(dev);
742  struct w83791d_data *data = i2c_get_clientdata(client);
743  int nr = sensor_attr->index;
744  unsigned long val;
745 
746  if (kstrtoul(buf, 10, &val))
747  return -EINVAL;
748 
749  mutex_lock(&data->update_lock);
750  data->pwm[nr] = SENSORS_LIMIT(val, 0, 255);
751  w83791d_write(client, W83791D_REG_PWM[nr], data->pwm[nr]);
752  mutex_unlock(&data->update_lock);
753  return count;
754 }
755 
756 static struct sensor_device_attribute sda_pwm[] = {
758  show_pwm, store_pwm, 0),
760  show_pwm, store_pwm, 1),
762  show_pwm, store_pwm, 2),
764  show_pwm, store_pwm, 3),
765  SENSOR_ATTR(pwm5, S_IWUSR | S_IRUGO,
766  show_pwm, store_pwm, 4),
767 };
768 
769 static ssize_t show_pwmenable(struct device *dev, struct device_attribute *attr,
770  char *buf)
771 {
772  struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
773  int nr = sensor_attr->index;
774  struct w83791d_data *data = w83791d_update_device(dev);
775  return sprintf(buf, "%u\n", data->pwm_enable[nr] + 1);
776 }
777 
778 static ssize_t store_pwmenable(struct device *dev,
779  struct device_attribute *attr, const char *buf, size_t count)
780 {
781  struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
782  struct i2c_client *client = to_i2c_client(dev);
783  struct w83791d_data *data = i2c_get_clientdata(client);
784  int nr = sensor_attr->index;
785  unsigned long val;
786  u8 reg_cfg_tmp;
787  u8 reg_idx = 0;
788  u8 val_shift = 0;
789  u8 keep_mask = 0;
790 
791  int ret = kstrtoul(buf, 10, &val);
792 
793  if (ret || val < 1 || val > 3)
794  return -EINVAL;
795 
796  mutex_lock(&data->update_lock);
797  data->pwm_enable[nr] = val - 1;
798  switch (nr) {
799  case 0:
800  reg_idx = 0;
801  val_shift = 2;
802  keep_mask = 0xf3;
803  break;
804  case 1:
805  reg_idx = 0;
806  val_shift = 4;
807  keep_mask = 0xcf;
808  break;
809  case 2:
810  reg_idx = 1;
811  val_shift = 2;
812  keep_mask = 0xf3;
813  break;
814  }
815 
816  reg_cfg_tmp = w83791d_read(client, W83791D_REG_FAN_CFG[reg_idx]);
817  reg_cfg_tmp = (reg_cfg_tmp & keep_mask) |
818  data->pwm_enable[nr] << val_shift;
819 
820  w83791d_write(client, W83791D_REG_FAN_CFG[reg_idx], reg_cfg_tmp);
821  mutex_unlock(&data->update_lock);
822 
823  return count;
824 }
825 static struct sensor_device_attribute sda_pwmenable[] = {
826  SENSOR_ATTR(pwm1_enable, S_IWUSR | S_IRUGO,
827  show_pwmenable, store_pwmenable, 0),
828  SENSOR_ATTR(pwm2_enable, S_IWUSR | S_IRUGO,
829  show_pwmenable, store_pwmenable, 1),
830  SENSOR_ATTR(pwm3_enable, S_IWUSR | S_IRUGO,
831  show_pwmenable, store_pwmenable, 2),
832 };
833 
834 /* For Smart Fan I / Thermal Cruise */
835 static ssize_t show_temp_target(struct device *dev,
836  struct device_attribute *attr, char *buf)
837 {
838  struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
839  struct w83791d_data *data = w83791d_update_device(dev);
840  int nr = sensor_attr->index;
841  return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_target[nr]));
842 }
843 
844 static ssize_t store_temp_target(struct device *dev,
845  struct device_attribute *attr, const char *buf, size_t count)
846 {
847  struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
848  struct i2c_client *client = to_i2c_client(dev);
849  struct w83791d_data *data = i2c_get_clientdata(client);
850  int nr = sensor_attr->index;
851  long val;
852  u8 target_mask;
853 
854  if (kstrtol(buf, 10, &val))
855  return -EINVAL;
856 
857  mutex_lock(&data->update_lock);
858  data->temp_target[nr] = TARGET_TEMP_TO_REG(val);
859  target_mask = w83791d_read(client,
860  W83791D_REG_TEMP_TARGET[nr]) & 0x80;
861  w83791d_write(client, W83791D_REG_TEMP_TARGET[nr],
862  data->temp_target[nr] | target_mask);
863  mutex_unlock(&data->update_lock);
864  return count;
865 }
866 
867 static struct sensor_device_attribute sda_temp_target[] = {
868  SENSOR_ATTR(temp1_target, S_IWUSR | S_IRUGO,
869  show_temp_target, store_temp_target, 0),
870  SENSOR_ATTR(temp2_target, S_IWUSR | S_IRUGO,
871  show_temp_target, store_temp_target, 1),
872  SENSOR_ATTR(temp3_target, S_IWUSR | S_IRUGO,
873  show_temp_target, store_temp_target, 2),
874 };
875 
876 static ssize_t show_temp_tolerance(struct device *dev,
877  struct device_attribute *attr, char *buf)
878 {
879  struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
880  struct w83791d_data *data = w83791d_update_device(dev);
881  int nr = sensor_attr->index;
882  return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp_tolerance[nr]));
883 }
884 
885 static ssize_t store_temp_tolerance(struct device *dev,
886  struct device_attribute *attr, const char *buf, size_t count)
887 {
888  struct sensor_device_attribute *sensor_attr = to_sensor_dev_attr(attr);
889  struct i2c_client *client = to_i2c_client(dev);
890  struct w83791d_data *data = i2c_get_clientdata(client);
891  int nr = sensor_attr->index;
892  unsigned long val;
893  u8 target_mask;
894  u8 reg_idx = 0;
895  u8 val_shift = 0;
896  u8 keep_mask = 0;
897 
898  if (kstrtoul(buf, 10, &val))
899  return -EINVAL;
900 
901  switch (nr) {
902  case 0:
903  reg_idx = 0;
904  val_shift = 0;
905  keep_mask = 0xf0;
906  break;
907  case 1:
908  reg_idx = 0;
909  val_shift = 4;
910  keep_mask = 0x0f;
911  break;
912  case 2:
913  reg_idx = 1;
914  val_shift = 0;
915  keep_mask = 0xf0;
916  break;
917  }
918 
919  mutex_lock(&data->update_lock);
920  data->temp_tolerance[nr] = TOL_TEMP_TO_REG(val);
921  target_mask = w83791d_read(client,
922  W83791D_REG_TEMP_TOL[reg_idx]) & keep_mask;
923  w83791d_write(client, W83791D_REG_TEMP_TOL[reg_idx],
924  (data->temp_tolerance[nr] << val_shift) | target_mask);
925  mutex_unlock(&data->update_lock);
926  return count;
927 }
928 
929 static struct sensor_device_attribute sda_temp_tolerance[] = {
930  SENSOR_ATTR(temp1_tolerance, S_IWUSR | S_IRUGO,
931  show_temp_tolerance, store_temp_tolerance, 0),
932  SENSOR_ATTR(temp2_tolerance, S_IWUSR | S_IRUGO,
933  show_temp_tolerance, store_temp_tolerance, 1),
934  SENSOR_ATTR(temp3_tolerance, S_IWUSR | S_IRUGO,
935  show_temp_tolerance, store_temp_tolerance, 2),
936 };
937 
938 /* read/write the temperature1, includes measured value and limits */
939 static ssize_t show_temp1(struct device *dev, struct device_attribute *devattr,
940  char *buf)
941 {
942  struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
943  struct w83791d_data *data = w83791d_update_device(dev);
944  return sprintf(buf, "%d\n", TEMP1_FROM_REG(data->temp1[attr->index]));
945 }
946 
947 static ssize_t store_temp1(struct device *dev, struct device_attribute *devattr,
948  const char *buf, size_t count)
949 {
950  struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr);
951  struct i2c_client *client = to_i2c_client(dev);
952  struct w83791d_data *data = i2c_get_clientdata(client);
953  int nr = attr->index;
954  long val;
955  int err;
956 
957  err = kstrtol(buf, 10, &val);
958  if (err)
959  return err;
960 
961  mutex_lock(&data->update_lock);
962  data->temp1[nr] = TEMP1_TO_REG(val);
963  w83791d_write(client, W83791D_REG_TEMP1[nr], data->temp1[nr]);
964  mutex_unlock(&data->update_lock);
965  return count;
966 }
967 
968 /* read/write temperature2-3, includes measured value and limits */
969 static ssize_t show_temp23(struct device *dev, struct device_attribute *devattr,
970  char *buf)
971 {
972  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
973  struct w83791d_data *data = w83791d_update_device(dev);
974  int nr = attr->nr;
975  int index = attr->index;
976  return sprintf(buf, "%d\n", TEMP23_FROM_REG(data->temp_add[nr][index]));
977 }
978 
979 static ssize_t store_temp23(struct device *dev,
980  struct device_attribute *devattr,
981  const char *buf, size_t count)
982 {
983  struct sensor_device_attribute_2 *attr = to_sensor_dev_attr_2(devattr);
984  struct i2c_client *client = to_i2c_client(dev);
985  struct w83791d_data *data = i2c_get_clientdata(client);
986  long val;
987  int err;
988  int nr = attr->nr;
989  int index = attr->index;
990 
991  err = kstrtol(buf, 10, &val);
992  if (err)
993  return err;
994 
995  mutex_lock(&data->update_lock);
996  data->temp_add[nr][index] = TEMP23_TO_REG(val);
997  w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2],
998  data->temp_add[nr][index] >> 8);
999  w83791d_write(client, W83791D_REG_TEMP_ADD[nr][index * 2 + 1],
1000  data->temp_add[nr][index] & 0x80);
1001  mutex_unlock(&data->update_lock);
1002 
1003  return count;
1004 }
1005 
1006 static struct sensor_device_attribute_2 sda_temp_input[] = {
1007  SENSOR_ATTR_2(temp1_input, S_IRUGO, show_temp1, NULL, 0, 0),
1008  SENSOR_ATTR_2(temp2_input, S_IRUGO, show_temp23, NULL, 0, 0),
1009  SENSOR_ATTR_2(temp3_input, S_IRUGO, show_temp23, NULL, 1, 0),
1010 };
1011 
1012 static struct sensor_device_attribute_2 sda_temp_max[] = {
1013  SENSOR_ATTR_2(temp1_max, S_IRUGO | S_IWUSR,
1014  show_temp1, store_temp1, 0, 1),
1015  SENSOR_ATTR_2(temp2_max, S_IRUGO | S_IWUSR,
1016  show_temp23, store_temp23, 0, 1),
1017  SENSOR_ATTR_2(temp3_max, S_IRUGO | S_IWUSR,
1018  show_temp23, store_temp23, 1, 1),
1019 };
1020 
1021 static struct sensor_device_attribute_2 sda_temp_max_hyst[] = {
1022  SENSOR_ATTR_2(temp1_max_hyst, S_IRUGO | S_IWUSR,
1023  show_temp1, store_temp1, 0, 2),
1024  SENSOR_ATTR_2(temp2_max_hyst, S_IRUGO | S_IWUSR,
1025  show_temp23, store_temp23, 0, 2),
1026  SENSOR_ATTR_2(temp3_max_hyst, S_IRUGO | S_IWUSR,
1027  show_temp23, store_temp23, 1, 2),
1028 };
1029 
1030 /*
1031  * Note: The bitmask for the beep enable/disable is different than
1032  * the bitmask for the alarm.
1033  */
1034 static struct sensor_device_attribute sda_temp_beep[] = {
1035  SENSOR_ATTR(temp1_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 4),
1036  SENSOR_ATTR(temp2_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 5),
1037  SENSOR_ATTR(temp3_beep, S_IWUSR | S_IRUGO, show_beep, store_beep, 1),
1038 };
1039 
1040 static struct sensor_device_attribute sda_temp_alarm[] = {
1041  SENSOR_ATTR(temp1_alarm, S_IRUGO, show_alarm, NULL, 4),
1042  SENSOR_ATTR(temp2_alarm, S_IRUGO, show_alarm, NULL, 5),
1043  SENSOR_ATTR(temp3_alarm, S_IRUGO, show_alarm, NULL, 13),
1044 };
1045 
1046 /* get reatime status of all sensors items: voltage, temp, fan */
1047 static ssize_t show_alarms_reg(struct device *dev,
1048  struct device_attribute *attr, char *buf)
1049 {
1050  struct w83791d_data *data = w83791d_update_device(dev);
1051  return sprintf(buf, "%u\n", data->alarms);
1052 }
1053 
1054 static DEVICE_ATTR(alarms, S_IRUGO, show_alarms_reg, NULL);
1055 
1056 /* Beep control */
1057 
1058 #define GLOBAL_BEEP_ENABLE_SHIFT 15
1059 #define GLOBAL_BEEP_ENABLE_MASK (1 << GLOBAL_BEEP_ENABLE_SHIFT)
1060 
1061 static ssize_t show_beep_enable(struct device *dev,
1062  struct device_attribute *attr, char *buf)
1063 {
1064  struct w83791d_data *data = w83791d_update_device(dev);
1065  return sprintf(buf, "%d\n", data->beep_enable);
1066 }
1067 
1068 static ssize_t show_beep_mask(struct device *dev,
1069  struct device_attribute *attr, char *buf)
1070 {
1071  struct w83791d_data *data = w83791d_update_device(dev);
1072  return sprintf(buf, "%d\n", BEEP_MASK_FROM_REG(data->beep_mask));
1073 }
1074 
1075 
1076 static ssize_t store_beep_mask(struct device *dev,
1077  struct device_attribute *attr,
1078  const char *buf, size_t count)
1079 {
1080  struct i2c_client *client = to_i2c_client(dev);
1081  struct w83791d_data *data = i2c_get_clientdata(client);
1082  int i;
1083  long val;
1084  int err;
1085 
1086  err = kstrtol(buf, 10, &val);
1087  if (err)
1088  return err;
1089 
1090  mutex_lock(&data->update_lock);
1091 
1092  /*
1093  * The beep_enable state overrides any enabling request from
1094  * the masks
1095  */
1097  data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1098 
1099  val = data->beep_mask;
1100 
1101  for (i = 0; i < 3; i++) {
1102  w83791d_write(client, W83791D_REG_BEEP_CTRL[i], (val & 0xff));
1103  val >>= 8;
1104  }
1105 
1106  mutex_unlock(&data->update_lock);
1107 
1108  return count;
1109 }
1110 
1111 static ssize_t store_beep_enable(struct device *dev,
1112  struct device_attribute *attr,
1113  const char *buf, size_t count)
1114 {
1115  struct i2c_client *client = to_i2c_client(dev);
1116  struct w83791d_data *data = i2c_get_clientdata(client);
1117  long val;
1118  int err;
1119 
1120  err = kstrtol(buf, 10, &val);
1121  if (err)
1122  return err;
1123 
1124  mutex_lock(&data->update_lock);
1125 
1126  data->beep_enable = val ? 1 : 0;
1127 
1128  /* Keep the full mask value in sync with the current enable */
1130  data->beep_mask |= (data->beep_enable << GLOBAL_BEEP_ENABLE_SHIFT);
1131 
1132  /*
1133  * The global control is in the second beep control register
1134  * so only need to update that register
1135  */
1136  val = (data->beep_mask >> 8) & 0xff;
1137 
1138  w83791d_write(client, W83791D_REG_BEEP_CTRL[1], val);
1139 
1140  mutex_unlock(&data->update_lock);
1141 
1142  return count;
1143 }
1144 
1145 static struct sensor_device_attribute sda_beep_ctrl[] = {
1146  SENSOR_ATTR(beep_enable, S_IRUGO | S_IWUSR,
1147  show_beep_enable, store_beep_enable, 0),
1148  SENSOR_ATTR(beep_mask, S_IRUGO | S_IWUSR,
1149  show_beep_mask, store_beep_mask, 1)
1150 };
1151 
1152 /* cpu voltage regulation information */
1153 static ssize_t show_vid_reg(struct device *dev,
1154  struct device_attribute *attr, char *buf)
1155 {
1156  struct w83791d_data *data = w83791d_update_device(dev);
1157  return sprintf(buf, "%d\n", vid_from_reg(data->vid, data->vrm));
1158 }
1159 
1160 static DEVICE_ATTR(cpu0_vid, S_IRUGO, show_vid_reg, NULL);
1161 
1162 static ssize_t show_vrm_reg(struct device *dev,
1163  struct device_attribute *attr, char *buf)
1164 {
1165  struct w83791d_data *data = dev_get_drvdata(dev);
1166  return sprintf(buf, "%d\n", data->vrm);
1167 }
1168 
1169 static ssize_t store_vrm_reg(struct device *dev,
1170  struct device_attribute *attr,
1171  const char *buf, size_t count)
1172 {
1173  struct w83791d_data *data = dev_get_drvdata(dev);
1174  unsigned long val;
1175  int err;
1176 
1177  /*
1178  * No lock needed as vrm is internal to the driver
1179  * (not read from a chip register) and so is not
1180  * updated in w83791d_update_device()
1181  */
1182 
1183  err = kstrtoul(buf, 10, &val);
1184  if (err)
1185  return err;
1186 
1187  data->vrm = val;
1188  return count;
1189 }
1190 
1191 static DEVICE_ATTR(vrm, S_IRUGO | S_IWUSR, show_vrm_reg, store_vrm_reg);
1192 
1193 #define IN_UNIT_ATTRS(X) \
1194  &sda_in_input[X].dev_attr.attr, \
1195  &sda_in_min[X].dev_attr.attr, \
1196  &sda_in_max[X].dev_attr.attr, \
1197  &sda_in_beep[X].dev_attr.attr, \
1198  &sda_in_alarm[X].dev_attr.attr
1199 
1200 #define FAN_UNIT_ATTRS(X) \
1201  &sda_fan_input[X].dev_attr.attr, \
1202  &sda_fan_min[X].dev_attr.attr, \
1203  &sda_fan_div[X].dev_attr.attr, \
1204  &sda_fan_beep[X].dev_attr.attr, \
1205  &sda_fan_alarm[X].dev_attr.attr
1206 
1207 #define TEMP_UNIT_ATTRS(X) \
1208  &sda_temp_input[X].dev_attr.attr, \
1209  &sda_temp_max[X].dev_attr.attr, \
1210  &sda_temp_max_hyst[X].dev_attr.attr, \
1211  &sda_temp_beep[X].dev_attr.attr, \
1212  &sda_temp_alarm[X].dev_attr.attr
1213 
1214 static struct attribute *w83791d_attributes[] = {
1215  IN_UNIT_ATTRS(0),
1216  IN_UNIT_ATTRS(1),
1217  IN_UNIT_ATTRS(2),
1218  IN_UNIT_ATTRS(3),
1219  IN_UNIT_ATTRS(4),
1220  IN_UNIT_ATTRS(5),
1221  IN_UNIT_ATTRS(6),
1222  IN_UNIT_ATTRS(7),
1223  IN_UNIT_ATTRS(8),
1224  IN_UNIT_ATTRS(9),
1225  FAN_UNIT_ATTRS(0),
1226  FAN_UNIT_ATTRS(1),
1227  FAN_UNIT_ATTRS(2),
1228  TEMP_UNIT_ATTRS(0),
1229  TEMP_UNIT_ATTRS(1),
1230  TEMP_UNIT_ATTRS(2),
1231  &dev_attr_alarms.attr,
1232  &sda_beep_ctrl[0].dev_attr.attr,
1233  &sda_beep_ctrl[1].dev_attr.attr,
1234  &dev_attr_cpu0_vid.attr,
1235  &dev_attr_vrm.attr,
1236  &sda_pwm[0].dev_attr.attr,
1237  &sda_pwm[1].dev_attr.attr,
1238  &sda_pwm[2].dev_attr.attr,
1239  &sda_pwmenable[0].dev_attr.attr,
1240  &sda_pwmenable[1].dev_attr.attr,
1241  &sda_pwmenable[2].dev_attr.attr,
1242  &sda_temp_target[0].dev_attr.attr,
1243  &sda_temp_target[1].dev_attr.attr,
1244  &sda_temp_target[2].dev_attr.attr,
1245  &sda_temp_tolerance[0].dev_attr.attr,
1246  &sda_temp_tolerance[1].dev_attr.attr,
1247  &sda_temp_tolerance[2].dev_attr.attr,
1248  NULL
1249 };
1250 
1251 static const struct attribute_group w83791d_group = {
1252  .attrs = w83791d_attributes,
1253 };
1254 
1255 /*
1256  * Separate group of attributes for fan/pwm 4-5. Their pins can also be
1257  * in use for GPIO in which case their sysfs-interface should not be made
1258  * available
1259  */
1260 static struct attribute *w83791d_attributes_fanpwm45[] = {
1261  FAN_UNIT_ATTRS(3),
1262  FAN_UNIT_ATTRS(4),
1263  &sda_pwm[3].dev_attr.attr,
1264  &sda_pwm[4].dev_attr.attr,
1265  NULL
1266 };
1267 
1268 static const struct attribute_group w83791d_group_fanpwm45 = {
1269  .attrs = w83791d_attributes_fanpwm45,
1270 };
1271 
1272 static int w83791d_detect_subclients(struct i2c_client *client)
1273 {
1274  struct i2c_adapter *adapter = client->adapter;
1275  struct w83791d_data *data = i2c_get_clientdata(client);
1276  int address = client->addr;
1277  int i, id, err;
1278  u8 val;
1279 
1280  id = i2c_adapter_id(adapter);
1281  if (force_subclients[0] == id && force_subclients[1] == address) {
1282  for (i = 2; i <= 3; i++) {
1283  if (force_subclients[i] < 0x48 ||
1284  force_subclients[i] > 0x4f) {
1285  dev_err(&client->dev,
1286  "invalid subclient "
1287  "address %d; must be 0x48-0x4f\n",
1288  force_subclients[i]);
1289  err = -ENODEV;
1290  goto error_sc_0;
1291  }
1292  }
1293  w83791d_write(client, W83791D_REG_I2C_SUBADDR,
1294  (force_subclients[2] & 0x07) |
1295  ((force_subclients[3] & 0x07) << 4));
1296  }
1297 
1298  val = w83791d_read(client, W83791D_REG_I2C_SUBADDR);
1299  if (!(val & 0x08))
1300  data->lm75[0] = i2c_new_dummy(adapter, 0x48 + (val & 0x7));
1301  if (!(val & 0x80)) {
1302  if ((data->lm75[0] != NULL) &&
1303  ((val & 0x7) == ((val >> 4) & 0x7))) {
1304  dev_err(&client->dev,
1305  "duplicate addresses 0x%x, "
1306  "use force_subclient\n",
1307  data->lm75[0]->addr);
1308  err = -ENODEV;
1309  goto error_sc_1;
1310  }
1311  data->lm75[1] = i2c_new_dummy(adapter,
1312  0x48 + ((val >> 4) & 0x7));
1313  }
1314 
1315  return 0;
1316 
1317 /* Undo inits in case of errors */
1318 
1319 error_sc_1:
1320  if (data->lm75[0] != NULL)
1321  i2c_unregister_device(data->lm75[0]);
1322 error_sc_0:
1323  return err;
1324 }
1325 
1326 
1327 /* Return 0 if detection is successful, -ENODEV otherwise */
1328 static int w83791d_detect(struct i2c_client *client,
1329  struct i2c_board_info *info)
1330 {
1331  struct i2c_adapter *adapter = client->adapter;
1332  int val1, val2;
1333  unsigned short address = client->addr;
1334 
1335  if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_BYTE_DATA))
1336  return -ENODEV;
1337 
1338  if (w83791d_read(client, W83791D_REG_CONFIG) & 0x80)
1339  return -ENODEV;
1340 
1341  val1 = w83791d_read(client, W83791D_REG_BANK);
1342  val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1343  /* Check for Winbond ID if in bank 0 */
1344  if (!(val1 & 0x07)) {
1345  if ((!(val1 & 0x80) && val2 != 0xa3) ||
1346  ((val1 & 0x80) && val2 != 0x5c)) {
1347  return -ENODEV;
1348  }
1349  }
1350  /*
1351  * If Winbond chip, address of chip and W83791D_REG_I2C_ADDR
1352  * should match
1353  */
1354  if (w83791d_read(client, W83791D_REG_I2C_ADDR) != address)
1355  return -ENODEV;
1356 
1357  /* We want bank 0 and Vendor ID high byte */
1358  val1 = w83791d_read(client, W83791D_REG_BANK) & 0x78;
1359  w83791d_write(client, W83791D_REG_BANK, val1 | 0x80);
1360 
1361  /* Verify it is a Winbond w83791d */
1362  val1 = w83791d_read(client, W83791D_REG_WCHIPID);
1363  val2 = w83791d_read(client, W83791D_REG_CHIPMAN);
1364  if (val1 != 0x71 || val2 != 0x5c)
1365  return -ENODEV;
1366 
1367  strlcpy(info->type, "w83791d", I2C_NAME_SIZE);
1368 
1369  return 0;
1370 }
1371 
1372 static int w83791d_probe(struct i2c_client *client,
1373  const struct i2c_device_id *id)
1374 {
1375  struct w83791d_data *data;
1376  struct device *dev = &client->dev;
1377  int i, err;
1378  u8 has_fanpwm45;
1379 
1380 #ifdef DEBUG
1381  int val1;
1382  val1 = w83791d_read(client, W83791D_REG_DID_VID4);
1383  dev_dbg(dev, "Device ID version: %d.%d (0x%02x)\n",
1384  (val1 >> 5) & 0x07, (val1 >> 1) & 0x0f, val1);
1385 #endif
1386 
1387  data = devm_kzalloc(&client->dev, sizeof(struct w83791d_data),
1388  GFP_KERNEL);
1389  if (!data)
1390  return -ENOMEM;
1391 
1392  i2c_set_clientdata(client, data);
1393  mutex_init(&data->update_lock);
1394 
1395  err = w83791d_detect_subclients(client);
1396  if (err)
1397  return err;
1398 
1399  /* Initialize the chip */
1400  w83791d_init_client(client);
1401 
1402  /*
1403  * If the fan_div is changed, make sure there is a rational
1404  * fan_min in place
1405  */
1406  for (i = 0; i < NUMBER_OF_FANIN; i++)
1407  data->fan_min[i] = w83791d_read(client, W83791D_REG_FAN_MIN[i]);
1408 
1409  /* Register sysfs hooks */
1410  err = sysfs_create_group(&client->dev.kobj, &w83791d_group);
1411  if (err)
1412  goto error3;
1413 
1414  /* Check if pins of fan/pwm 4-5 are in use as GPIO */
1415  has_fanpwm45 = w83791d_read(client, W83791D_REG_GPIO) & 0x10;
1416  if (has_fanpwm45) {
1417  err = sysfs_create_group(&client->dev.kobj,
1418  &w83791d_group_fanpwm45);
1419  if (err)
1420  goto error4;
1421  }
1422 
1423  /* Everything is ready, now register the working device */
1424  data->hwmon_dev = hwmon_device_register(dev);
1425  if (IS_ERR(data->hwmon_dev)) {
1426  err = PTR_ERR(data->hwmon_dev);
1427  goto error5;
1428  }
1429 
1430  return 0;
1431 
1432 error5:
1433  if (has_fanpwm45)
1434  sysfs_remove_group(&client->dev.kobj, &w83791d_group_fanpwm45);
1435 error4:
1436  sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1437 error3:
1438  if (data->lm75[0] != NULL)
1439  i2c_unregister_device(data->lm75[0]);
1440  if (data->lm75[1] != NULL)
1441  i2c_unregister_device(data->lm75[1]);
1442  return err;
1443 }
1444 
1445 static int w83791d_remove(struct i2c_client *client)
1446 {
1447  struct w83791d_data *data = i2c_get_clientdata(client);
1448 
1450  sysfs_remove_group(&client->dev.kobj, &w83791d_group);
1451 
1452  if (data->lm75[0] != NULL)
1453  i2c_unregister_device(data->lm75[0]);
1454  if (data->lm75[1] != NULL)
1455  i2c_unregister_device(data->lm75[1]);
1456 
1457  return 0;
1458 }
1459 
1460 static void w83791d_init_client(struct i2c_client *client)
1461 {
1462  struct w83791d_data *data = i2c_get_clientdata(client);
1463  u8 tmp;
1464  u8 old_beep;
1465 
1466  /*
1467  * The difference between reset and init is that reset
1468  * does a hard reset of the chip via index 0x40, bit 7,
1469  * but init simply forces certain registers to have "sane"
1470  * values. The hope is that the BIOS has done the right
1471  * thing (which is why the default is reset=0, init=0),
1472  * but if not, reset is the hard hammer and init
1473  * is the soft mallet both of which are trying to whack
1474  * things into place...
1475  * NOTE: The data sheet makes a distinction between
1476  * "power on defaults" and "reset by MR". As far as I can tell,
1477  * the hard reset puts everything into a power-on state so I'm
1478  * not sure what "reset by MR" means or how it can happen.
1479  */
1480  if (reset || init) {
1481  /* keep some BIOS settings when we... */
1482  old_beep = w83791d_read(client, W83791D_REG_BEEP_CONFIG);
1483 
1484  if (reset) {
1485  /* ... reset the chip and ... */
1486  w83791d_write(client, W83791D_REG_CONFIG, 0x80);
1487  }
1488 
1489  /* ... disable power-on abnormal beep */
1490  w83791d_write(client, W83791D_REG_BEEP_CONFIG, old_beep | 0x80);
1491 
1492  /* disable the global beep (not done by hard reset) */
1493  tmp = w83791d_read(client, W83791D_REG_BEEP_CTRL[1]);
1494  w83791d_write(client, W83791D_REG_BEEP_CTRL[1], tmp & 0xef);
1495 
1496  if (init) {
1497  /* Make sure monitoring is turned on for add-ons */
1498  tmp = w83791d_read(client, W83791D_REG_TEMP2_CONFIG);
1499  if (tmp & 1) {
1500  w83791d_write(client, W83791D_REG_TEMP2_CONFIG,
1501  tmp & 0xfe);
1502  }
1503 
1504  tmp = w83791d_read(client, W83791D_REG_TEMP3_CONFIG);
1505  if (tmp & 1) {
1506  w83791d_write(client, W83791D_REG_TEMP3_CONFIG,
1507  tmp & 0xfe);
1508  }
1509 
1510  /* Start monitoring */
1511  tmp = w83791d_read(client, W83791D_REG_CONFIG) & 0xf7;
1512  w83791d_write(client, W83791D_REG_CONFIG, tmp | 0x01);
1513  }
1514  }
1515 
1516  data->vrm = vid_which_vrm();
1517 }
1518 
1519 static struct w83791d_data *w83791d_update_device(struct device *dev)
1520 {
1521  struct i2c_client *client = to_i2c_client(dev);
1522  struct w83791d_data *data = i2c_get_clientdata(client);
1523  int i, j;
1524  u8 reg_array_tmp[3];
1525  u8 vbat_reg;
1526 
1527  mutex_lock(&data->update_lock);
1528 
1529  if (time_after(jiffies, data->last_updated + (HZ * 3))
1530  || !data->valid) {
1531  dev_dbg(dev, "Starting w83791d device update\n");
1532 
1533  /* Update the voltages measured value and limits */
1534  for (i = 0; i < NUMBER_OF_VIN; i++) {
1535  data->in[i] = w83791d_read(client,
1536  W83791D_REG_IN[i]);
1537  data->in_max[i] = w83791d_read(client,
1538  W83791D_REG_IN_MAX[i]);
1539  data->in_min[i] = w83791d_read(client,
1540  W83791D_REG_IN_MIN[i]);
1541  }
1542 
1543  /* Update the fan counts and limits */
1544  for (i = 0; i < NUMBER_OF_FANIN; i++) {
1545  /* Update the Fan measured value and limits */
1546  data->fan[i] = w83791d_read(client,
1547  W83791D_REG_FAN[i]);
1548  data->fan_min[i] = w83791d_read(client,
1549  W83791D_REG_FAN_MIN[i]);
1550  }
1551 
1552  /* Update the fan divisor */
1553  for (i = 0; i < 3; i++) {
1554  reg_array_tmp[i] = w83791d_read(client,
1555  W83791D_REG_FAN_DIV[i]);
1556  }
1557  data->fan_div[0] = (reg_array_tmp[0] >> 4) & 0x03;
1558  data->fan_div[1] = (reg_array_tmp[0] >> 6) & 0x03;
1559  data->fan_div[2] = (reg_array_tmp[1] >> 6) & 0x03;
1560  data->fan_div[3] = reg_array_tmp[2] & 0x07;
1561  data->fan_div[4] = (reg_array_tmp[2] >> 4) & 0x07;
1562 
1563  /*
1564  * The fan divisor for fans 0-2 get bit 2 from
1565  * bits 5-7 respectively of vbat register
1566  */
1567  vbat_reg = w83791d_read(client, W83791D_REG_VBAT);
1568  for (i = 0; i < 3; i++)
1569  data->fan_div[i] |= (vbat_reg >> (3 + i)) & 0x04;
1570 
1571  /* Update PWM duty cycle */
1572  for (i = 0; i < NUMBER_OF_PWM; i++) {
1573  data->pwm[i] = w83791d_read(client,
1574  W83791D_REG_PWM[i]);
1575  }
1576 
1577  /* Update PWM enable status */
1578  for (i = 0; i < 2; i++) {
1579  reg_array_tmp[i] = w83791d_read(client,
1580  W83791D_REG_FAN_CFG[i]);
1581  }
1582  data->pwm_enable[0] = (reg_array_tmp[0] >> 2) & 0x03;
1583  data->pwm_enable[1] = (reg_array_tmp[0] >> 4) & 0x03;
1584  data->pwm_enable[2] = (reg_array_tmp[1] >> 2) & 0x03;
1585 
1586  /* Update PWM target temperature */
1587  for (i = 0; i < 3; i++) {
1588  data->temp_target[i] = w83791d_read(client,
1589  W83791D_REG_TEMP_TARGET[i]) & 0x7f;
1590  }
1591 
1592  /* Update PWM temperature tolerance */
1593  for (i = 0; i < 2; i++) {
1594  reg_array_tmp[i] = w83791d_read(client,
1595  W83791D_REG_TEMP_TOL[i]);
1596  }
1597  data->temp_tolerance[0] = reg_array_tmp[0] & 0x0f;
1598  data->temp_tolerance[1] = (reg_array_tmp[0] >> 4) & 0x0f;
1599  data->temp_tolerance[2] = reg_array_tmp[1] & 0x0f;
1600 
1601  /* Update the first temperature sensor */
1602  for (i = 0; i < 3; i++) {
1603  data->temp1[i] = w83791d_read(client,
1604  W83791D_REG_TEMP1[i]);
1605  }
1606 
1607  /* Update the rest of the temperature sensors */
1608  for (i = 0; i < 2; i++) {
1609  for (j = 0; j < 3; j++) {
1610  data->temp_add[i][j] =
1611  (w83791d_read(client,
1612  W83791D_REG_TEMP_ADD[i][j * 2]) << 8) |
1613  w83791d_read(client,
1614  W83791D_REG_TEMP_ADD[i][j * 2 + 1]);
1615  }
1616  }
1617 
1618  /* Update the realtime status */
1619  data->alarms =
1620  w83791d_read(client, W83791D_REG_ALARM1) +
1621  (w83791d_read(client, W83791D_REG_ALARM2) << 8) +
1622  (w83791d_read(client, W83791D_REG_ALARM3) << 16);
1623 
1624  /* Update the beep configuration information */
1625  data->beep_mask =
1626  w83791d_read(client, W83791D_REG_BEEP_CTRL[0]) +
1627  (w83791d_read(client, W83791D_REG_BEEP_CTRL[1]) << 8) +
1628  (w83791d_read(client, W83791D_REG_BEEP_CTRL[2]) << 16);
1629 
1630  /* Extract global beep enable flag */
1631  data->beep_enable =
1632  (data->beep_mask >> GLOBAL_BEEP_ENABLE_SHIFT) & 0x01;
1633 
1634  /* Update the cpu voltage information */
1635  i = w83791d_read(client, W83791D_REG_VID_FANDIV);
1636  data->vid = i & 0x0f;
1637  data->vid |= (w83791d_read(client, W83791D_REG_DID_VID4) & 0x01)
1638  << 4;
1639 
1640  data->last_updated = jiffies;
1641  data->valid = 1;
1642  }
1643 
1644  mutex_unlock(&data->update_lock);
1645 
1646 #ifdef DEBUG
1647  w83791d_print_debug(data, dev);
1648 #endif
1649 
1650  return data;
1651 }
1652 
1653 #ifdef DEBUG
1654 static void w83791d_print_debug(struct w83791d_data *data, struct device *dev)
1655 {
1656  int i = 0, j = 0;
1657 
1658  dev_dbg(dev, "======Start of w83791d debug values======\n");
1659  dev_dbg(dev, "%d set of Voltages: ===>\n", NUMBER_OF_VIN);
1660  for (i = 0; i < NUMBER_OF_VIN; i++) {
1661  dev_dbg(dev, "vin[%d] is: 0x%02x\n", i, data->in[i]);
1662  dev_dbg(dev, "vin[%d] min is: 0x%02x\n", i, data->in_min[i]);
1663  dev_dbg(dev, "vin[%d] max is: 0x%02x\n", i, data->in_max[i]);
1664  }
1665  dev_dbg(dev, "%d set of Fan Counts/Divisors: ===>\n", NUMBER_OF_FANIN);
1666  for (i = 0; i < NUMBER_OF_FANIN; i++) {
1667  dev_dbg(dev, "fan[%d] is: 0x%02x\n", i, data->fan[i]);
1668  dev_dbg(dev, "fan[%d] min is: 0x%02x\n", i, data->fan_min[i]);
1669  dev_dbg(dev, "fan_div[%d] is: 0x%02x\n", i, data->fan_div[i]);
1670  }
1671 
1672  /*
1673  * temperature math is signed, but only print out the
1674  * bits that matter
1675  */
1676  dev_dbg(dev, "%d set of Temperatures: ===>\n", NUMBER_OF_TEMPIN);
1677  for (i = 0; i < 3; i++)
1678  dev_dbg(dev, "temp1[%d] is: 0x%02x\n", i, (u8) data->temp1[i]);
1679  for (i = 0; i < 2; i++) {
1680  for (j = 0; j < 3; j++) {
1681  dev_dbg(dev, "temp_add[%d][%d] is: 0x%04x\n", i, j,
1682  (u16) data->temp_add[i][j]);
1683  }
1684  }
1685 
1686  dev_dbg(dev, "Misc Information: ===>\n");
1687  dev_dbg(dev, "alarm is: 0x%08x\n", data->alarms);
1688  dev_dbg(dev, "beep_mask is: 0x%08x\n", data->beep_mask);
1689  dev_dbg(dev, "beep_enable is: %d\n", data->beep_enable);
1690  dev_dbg(dev, "vid is: 0x%02x\n", data->vid);
1691  dev_dbg(dev, "vrm is: 0x%02x\n", data->vrm);
1692  dev_dbg(dev, "=======End of w83791d debug values========\n");
1693  dev_dbg(dev, "\n");
1694 }
1695 #endif
1696 
1697 module_i2c_driver(w83791d_driver);
1698 
1699 MODULE_AUTHOR("Charles Spirakis <[email protected]>");
1700 MODULE_DESCRIPTION("W83791D driver");
1701 MODULE_LICENSE("GPL");