Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
wm8978.c
Go to the documentation of this file.
1 /*
2  * wm8978.c -- WM8978 ALSA SoC Audio Codec driver
3  *
4  * Copyright (C) 2009-2010 Guennadi Liakhovetski <[email protected]>
5  * Copyright (C) 2007 Carlos Munoz <[email protected]>
6  * Copyright 2006-2009 Wolfson Microelectronics PLC.
7  * Based on wm8974 and wm8990 by Liam Girdwood <[email protected]>
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #include <linux/module.h>
15 #include <linux/moduleparam.h>
16 #include <linux/kernel.h>
17 #include <linux/init.h>
18 #include <linux/delay.h>
19 #include <linux/pm.h>
20 #include <linux/i2c.h>
21 #include <linux/regmap.h>
22 #include <linux/slab.h>
23 #include <sound/core.h>
24 #include <sound/pcm.h>
25 #include <sound/pcm_params.h>
26 #include <sound/soc.h>
27 #include <sound/initval.h>
28 #include <sound/tlv.h>
29 #include <asm/div64.h>
30 
31 #include "wm8978.h"
32 
33 static const struct reg_default wm8978_reg_defaults[] = {
34  { 1, 0x0000 },
35  { 2, 0x0000 },
36  { 3, 0x0000 },
37  { 4, 0x0050 },
38  { 5, 0x0000 },
39  { 6, 0x0140 },
40  { 7, 0x0000 },
41  { 8, 0x0000 },
42  { 9, 0x0000 },
43  { 10, 0x0000 },
44  { 11, 0x00ff },
45  { 12, 0x00ff },
46  { 13, 0x0000 },
47  { 14, 0x0100 },
48  { 15, 0x00ff },
49  { 16, 0x00ff },
50  { 17, 0x0000 },
51  { 18, 0x012c },
52  { 19, 0x002c },
53  { 20, 0x002c },
54  { 21, 0x002c },
55  { 22, 0x002c },
56  { 23, 0x0000 },
57  { 24, 0x0032 },
58  { 25, 0x0000 },
59  { 26, 0x0000 },
60  { 27, 0x0000 },
61  { 28, 0x0000 },
62  { 29, 0x0000 },
63  { 30, 0x0000 },
64  { 31, 0x0000 },
65  { 32, 0x0038 },
66  { 33, 0x000b },
67  { 34, 0x0032 },
68  { 35, 0x0000 },
69  { 36, 0x0008 },
70  { 37, 0x000c },
71  { 38, 0x0093 },
72  { 39, 0x00e9 },
73  { 40, 0x0000 },
74  { 41, 0x0000 },
75  { 42, 0x0000 },
76  { 43, 0x0000 },
77  { 44, 0x0033 },
78  { 45, 0x0010 },
79  { 46, 0x0010 },
80  { 47, 0x0100 },
81  { 48, 0x0100 },
82  { 49, 0x0002 },
83  { 50, 0x0001 },
84  { 51, 0x0001 },
85  { 52, 0x0039 },
86  { 53, 0x0039 },
87  { 54, 0x0039 },
88  { 55, 0x0039 },
89  { 56, 0x0001 },
90  { 57, 0x0001 },
91 };
92 
93 static bool wm8978_volatile(struct device *dev, unsigned int reg)
94 {
95  return reg == WM8978_RESET;
96 }
97 
98 /* codec private data */
99 struct wm8978_priv {
100  struct regmap *regmap;
101  unsigned int f_pllout;
102  unsigned int f_mclk;
103  unsigned int f_256fs;
104  unsigned int f_opclk;
105  int mclk_idx;
107 };
108 
109 static const char *wm8978_companding[] = {"Off", "NC", "u-law", "A-law"};
110 static const char *wm8978_eqmode[] = {"Capture", "Playback"};
111 static const char *wm8978_bw[] = {"Narrow", "Wide"};
112 static const char *wm8978_eq1[] = {"80Hz", "105Hz", "135Hz", "175Hz"};
113 static const char *wm8978_eq2[] = {"230Hz", "300Hz", "385Hz", "500Hz"};
114 static const char *wm8978_eq3[] = {"650Hz", "850Hz", "1.1kHz", "1.4kHz"};
115 static const char *wm8978_eq4[] = {"1.8kHz", "2.4kHz", "3.2kHz", "4.1kHz"};
116 static const char *wm8978_eq5[] = {"5.3kHz", "6.9kHz", "9kHz", "11.7kHz"};
117 static const char *wm8978_alc3[] = {"ALC", "Limiter"};
118 static const char *wm8978_alc1[] = {"Off", "Right", "Left", "Both"};
119 
120 static const SOC_ENUM_SINGLE_DECL(adc_compand, WM8978_COMPANDING_CONTROL, 1,
121  wm8978_companding);
122 static const SOC_ENUM_SINGLE_DECL(dac_compand, WM8978_COMPANDING_CONTROL, 3,
123  wm8978_companding);
124 static const SOC_ENUM_SINGLE_DECL(eqmode, WM8978_EQ1, 8, wm8978_eqmode);
125 static const SOC_ENUM_SINGLE_DECL(eq1, WM8978_EQ1, 5, wm8978_eq1);
126 static const SOC_ENUM_SINGLE_DECL(eq2bw, WM8978_EQ2, 8, wm8978_bw);
127 static const SOC_ENUM_SINGLE_DECL(eq2, WM8978_EQ2, 5, wm8978_eq2);
128 static const SOC_ENUM_SINGLE_DECL(eq3bw, WM8978_EQ3, 8, wm8978_bw);
129 static const SOC_ENUM_SINGLE_DECL(eq3, WM8978_EQ3, 5, wm8978_eq3);
130 static const SOC_ENUM_SINGLE_DECL(eq4bw, WM8978_EQ4, 8, wm8978_bw);
131 static const SOC_ENUM_SINGLE_DECL(eq4, WM8978_EQ4, 5, wm8978_eq4);
132 static const SOC_ENUM_SINGLE_DECL(eq5, WM8978_EQ5, 5, wm8978_eq5);
133 static const SOC_ENUM_SINGLE_DECL(alc3, WM8978_ALC_CONTROL_3, 8, wm8978_alc3);
134 static const SOC_ENUM_SINGLE_DECL(alc1, WM8978_ALC_CONTROL_1, 7, wm8978_alc1);
135 
136 static const DECLARE_TLV_DB_SCALE(digital_tlv, -12750, 50, 1);
137 static const DECLARE_TLV_DB_SCALE(eq_tlv, -1200, 100, 0);
138 static const DECLARE_TLV_DB_SCALE(inpga_tlv, -1200, 75, 0);
139 static const DECLARE_TLV_DB_SCALE(spk_tlv, -5700, 100, 0);
140 static const DECLARE_TLV_DB_SCALE(boost_tlv, -1500, 300, 1);
141 static const DECLARE_TLV_DB_SCALE(limiter_tlv, 0, 100, 0);
142 
143 static const struct snd_kcontrol_new wm8978_snd_controls[] = {
144 
145  SOC_SINGLE("Digital Loopback Switch",
146  WM8978_COMPANDING_CONTROL, 0, 1, 0),
147 
148  SOC_ENUM("ADC Companding", adc_compand),
149  SOC_ENUM("DAC Companding", dac_compand),
150 
151  SOC_DOUBLE("DAC Inversion Switch", WM8978_DAC_CONTROL, 0, 1, 1, 0),
152 
153  SOC_DOUBLE_R_TLV("PCM Volume",
155  0, 255, 0, digital_tlv),
156 
157  SOC_SINGLE("High Pass Filter Switch", WM8978_ADC_CONTROL, 8, 1, 0),
158  SOC_SINGLE("High Pass Cut Off", WM8978_ADC_CONTROL, 4, 7, 0),
159  SOC_DOUBLE("ADC Inversion Switch", WM8978_ADC_CONTROL, 0, 1, 1, 0),
160 
161  SOC_DOUBLE_R_TLV("ADC Volume",
163  0, 255, 0, digital_tlv),
164 
165  SOC_ENUM("Equaliser Function", eqmode),
166  SOC_ENUM("EQ1 Cut Off", eq1),
167  SOC_SINGLE_TLV("EQ1 Volume", WM8978_EQ1, 0, 24, 1, eq_tlv),
168 
169  SOC_ENUM("Equaliser EQ2 Bandwith", eq2bw),
170  SOC_ENUM("EQ2 Cut Off", eq2),
171  SOC_SINGLE_TLV("EQ2 Volume", WM8978_EQ2, 0, 24, 1, eq_tlv),
172 
173  SOC_ENUM("Equaliser EQ3 Bandwith", eq3bw),
174  SOC_ENUM("EQ3 Cut Off", eq3),
175  SOC_SINGLE_TLV("EQ3 Volume", WM8978_EQ3, 0, 24, 1, eq_tlv),
176 
177  SOC_ENUM("Equaliser EQ4 Bandwith", eq4bw),
178  SOC_ENUM("EQ4 Cut Off", eq4),
179  SOC_SINGLE_TLV("EQ4 Volume", WM8978_EQ4, 0, 24, 1, eq_tlv),
180 
181  SOC_ENUM("EQ5 Cut Off", eq5),
182  SOC_SINGLE_TLV("EQ5 Volume", WM8978_EQ5, 0, 24, 1, eq_tlv),
183 
184  SOC_SINGLE("DAC Playback Limiter Switch",
185  WM8978_DAC_LIMITER_1, 8, 1, 0),
186  SOC_SINGLE("DAC Playback Limiter Decay",
187  WM8978_DAC_LIMITER_1, 4, 15, 0),
188  SOC_SINGLE("DAC Playback Limiter Attack",
189  WM8978_DAC_LIMITER_1, 0, 15, 0),
190 
191  SOC_SINGLE("DAC Playback Limiter Threshold",
192  WM8978_DAC_LIMITER_2, 4, 7, 0),
193  SOC_SINGLE_TLV("DAC Playback Limiter Volume",
194  WM8978_DAC_LIMITER_2, 0, 12, 0, limiter_tlv),
195 
196  SOC_ENUM("ALC Enable Switch", alc1),
197  SOC_SINGLE("ALC Capture Min Gain", WM8978_ALC_CONTROL_1, 0, 7, 0),
198  SOC_SINGLE("ALC Capture Max Gain", WM8978_ALC_CONTROL_1, 3, 7, 0),
199 
200  SOC_SINGLE("ALC Capture Hold", WM8978_ALC_CONTROL_2, 4, 10, 0),
201  SOC_SINGLE("ALC Capture Target", WM8978_ALC_CONTROL_2, 0, 15, 0),
202 
203  SOC_ENUM("ALC Capture Mode", alc3),
204  SOC_SINGLE("ALC Capture Decay", WM8978_ALC_CONTROL_3, 4, 10, 0),
205  SOC_SINGLE("ALC Capture Attack", WM8978_ALC_CONTROL_3, 0, 10, 0),
206 
207  SOC_SINGLE("ALC Capture Noise Gate Switch", WM8978_NOISE_GATE, 3, 1, 0),
208  SOC_SINGLE("ALC Capture Noise Gate Threshold",
209  WM8978_NOISE_GATE, 0, 7, 0),
210 
211  SOC_DOUBLE_R("Capture PGA ZC Switch",
213  7, 1, 0),
214 
215  /* OUT1 - Headphones */
216  SOC_DOUBLE_R("Headphone Playback ZC Switch",
218 
219  SOC_DOUBLE_R_TLV("Headphone Playback Volume",
221  0, 63, 0, spk_tlv),
222 
223  /* OUT2 - Speakers */
224  SOC_DOUBLE_R("Speaker Playback ZC Switch",
226 
227  SOC_DOUBLE_R_TLV("Speaker Playback Volume",
229  0, 63, 0, spk_tlv),
230 
231  /* OUT3/4 - Line Output */
232  SOC_DOUBLE_R("Line Playback Switch",
234 
235  /* Mixer #3: Boost (Input) mixer */
236  SOC_DOUBLE_R("PGA Boost (+20dB)",
238  8, 1, 0),
239  SOC_DOUBLE_R_TLV("L2/R2 Boost Volume",
241  4, 7, 0, boost_tlv),
242  SOC_DOUBLE_R_TLV("Aux Boost Volume",
244  0, 7, 0, boost_tlv),
245 
246  /* Input PGA volume */
247  SOC_DOUBLE_R_TLV("Input PGA Volume",
249  0, 63, 0, inpga_tlv),
250 
251  /* Headphone */
252  SOC_DOUBLE_R("Headphone Switch",
254 
255  /* Speaker */
256  SOC_DOUBLE_R("Speaker Switch",
258 
259  /* DAC / ADC oversampling */
260  SOC_SINGLE("DAC 128x Oversampling Switch", WM8978_DAC_CONTROL,
261  5, 1, 0),
262  SOC_SINGLE("ADC 128x Oversampling Switch", WM8978_ADC_CONTROL,
263  5, 1, 0),
264 };
265 
266 /* Mixer #1: Output (OUT1, OUT2) Mixer: mix AUX, Input mixer output and DAC */
267 static const struct snd_kcontrol_new wm8978_left_out_mixer[] = {
268  SOC_DAPM_SINGLE("Line Bypass Switch", WM8978_LEFT_MIXER_CONTROL, 1, 1, 0),
269  SOC_DAPM_SINGLE("Aux Playback Switch", WM8978_LEFT_MIXER_CONTROL, 5, 1, 0),
270  SOC_DAPM_SINGLE("PCM Playback Switch", WM8978_LEFT_MIXER_CONTROL, 0, 1, 0),
271 };
272 
273 static const struct snd_kcontrol_new wm8978_right_out_mixer[] = {
274  SOC_DAPM_SINGLE("Line Bypass Switch", WM8978_RIGHT_MIXER_CONTROL, 1, 1, 0),
275  SOC_DAPM_SINGLE("Aux Playback Switch", WM8978_RIGHT_MIXER_CONTROL, 5, 1, 0),
276  SOC_DAPM_SINGLE("PCM Playback Switch", WM8978_RIGHT_MIXER_CONTROL, 0, 1, 0),
277 };
278 
279 /* OUT3/OUT4 Mixer not implemented */
280 
281 /* Mixer #2: Input PGA Mute */
282 static const struct snd_kcontrol_new wm8978_left_input_mixer[] = {
283  SOC_DAPM_SINGLE("L2 Switch", WM8978_INPUT_CONTROL, 2, 1, 0),
284  SOC_DAPM_SINGLE("MicN Switch", WM8978_INPUT_CONTROL, 1, 1, 0),
285  SOC_DAPM_SINGLE("MicP Switch", WM8978_INPUT_CONTROL, 0, 1, 0),
286 };
287 static const struct snd_kcontrol_new wm8978_right_input_mixer[] = {
288  SOC_DAPM_SINGLE("R2 Switch", WM8978_INPUT_CONTROL, 6, 1, 0),
289  SOC_DAPM_SINGLE("MicN Switch", WM8978_INPUT_CONTROL, 5, 1, 0),
290  SOC_DAPM_SINGLE("MicP Switch", WM8978_INPUT_CONTROL, 4, 1, 0),
291 };
292 
293 static const struct snd_soc_dapm_widget wm8978_dapm_widgets[] = {
294  SND_SOC_DAPM_DAC("Left DAC", "Left HiFi Playback",
296  SND_SOC_DAPM_DAC("Right DAC", "Right HiFi Playback",
298  SND_SOC_DAPM_ADC("Left ADC", "Left HiFi Capture",
300  SND_SOC_DAPM_ADC("Right ADC", "Right HiFi Capture",
302 
303  /* Mixer #1: OUT1,2 */
304  SOC_MIXER_ARRAY("Left Output Mixer", WM8978_POWER_MANAGEMENT_3,
305  2, 0, wm8978_left_out_mixer),
306  SOC_MIXER_ARRAY("Right Output Mixer", WM8978_POWER_MANAGEMENT_3,
307  3, 0, wm8978_right_out_mixer),
308 
309  SOC_MIXER_ARRAY("Left Input Mixer", WM8978_POWER_MANAGEMENT_2,
310  2, 0, wm8978_left_input_mixer),
311  SOC_MIXER_ARRAY("Right Input Mixer", WM8978_POWER_MANAGEMENT_2,
312  3, 0, wm8978_right_input_mixer),
313 
314  SND_SOC_DAPM_PGA("Left Boost Mixer", WM8978_POWER_MANAGEMENT_2,
315  4, 0, NULL, 0),
316  SND_SOC_DAPM_PGA("Right Boost Mixer", WM8978_POWER_MANAGEMENT_2,
317  5, 0, NULL, 0),
318 
319  SND_SOC_DAPM_PGA("Left Capture PGA", WM8978_LEFT_INP_PGA_CONTROL,
320  6, 1, NULL, 0),
321  SND_SOC_DAPM_PGA("Right Capture PGA", WM8978_RIGHT_INP_PGA_CONTROL,
322  6, 1, NULL, 0),
323 
324  SND_SOC_DAPM_PGA("Left Headphone Out", WM8978_POWER_MANAGEMENT_2,
325  7, 0, NULL, 0),
326  SND_SOC_DAPM_PGA("Right Headphone Out", WM8978_POWER_MANAGEMENT_2,
327  8, 0, NULL, 0),
328 
329  SND_SOC_DAPM_PGA("Left Speaker Out", WM8978_POWER_MANAGEMENT_3,
330  6, 0, NULL, 0),
331  SND_SOC_DAPM_PGA("Right Speaker Out", WM8978_POWER_MANAGEMENT_3,
332  5, 0, NULL, 0),
333 
335  8, 0, NULL, 0),
336 
338 
339  SND_SOC_DAPM_INPUT("LMICN"),
340  SND_SOC_DAPM_INPUT("LMICP"),
341  SND_SOC_DAPM_INPUT("RMICN"),
342  SND_SOC_DAPM_INPUT("RMICP"),
343  SND_SOC_DAPM_INPUT("LAUX"),
344  SND_SOC_DAPM_INPUT("RAUX"),
345  SND_SOC_DAPM_INPUT("L2"),
346  SND_SOC_DAPM_INPUT("R2"),
347  SND_SOC_DAPM_OUTPUT("LHP"),
348  SND_SOC_DAPM_OUTPUT("RHP"),
349  SND_SOC_DAPM_OUTPUT("LSPK"),
350  SND_SOC_DAPM_OUTPUT("RSPK"),
351 };
352 
353 static const struct snd_soc_dapm_route wm8978_dapm_routes[] = {
354  /* Output mixer */
355  {"Right Output Mixer", "PCM Playback Switch", "Right DAC"},
356  {"Right Output Mixer", "Aux Playback Switch", "RAUX"},
357  {"Right Output Mixer", "Line Bypass Switch", "Right Boost Mixer"},
358 
359  {"Left Output Mixer", "PCM Playback Switch", "Left DAC"},
360  {"Left Output Mixer", "Aux Playback Switch", "LAUX"},
361  {"Left Output Mixer", "Line Bypass Switch", "Left Boost Mixer"},
362 
363  /* Outputs */
364  {"Right Headphone Out", NULL, "Right Output Mixer"},
365  {"RHP", NULL, "Right Headphone Out"},
366 
367  {"Left Headphone Out", NULL, "Left Output Mixer"},
368  {"LHP", NULL, "Left Headphone Out"},
369 
370  {"Right Speaker Out", NULL, "Right Output Mixer"},
371  {"RSPK", NULL, "Right Speaker Out"},
372 
373  {"Left Speaker Out", NULL, "Left Output Mixer"},
374  {"LSPK", NULL, "Left Speaker Out"},
375 
376  /* Boost Mixer */
377  {"Right ADC", NULL, "Right Boost Mixer"},
378 
379  {"Right Boost Mixer", NULL, "RAUX"},
380  {"Right Boost Mixer", NULL, "Right Capture PGA"},
381  {"Right Boost Mixer", NULL, "R2"},
382 
383  {"Left ADC", NULL, "Left Boost Mixer"},
384 
385  {"Left Boost Mixer", NULL, "LAUX"},
386  {"Left Boost Mixer", NULL, "Left Capture PGA"},
387  {"Left Boost Mixer", NULL, "L2"},
388 
389  /* Input PGA */
390  {"Right Capture PGA", NULL, "Right Input Mixer"},
391  {"Left Capture PGA", NULL, "Left Input Mixer"},
392 
393  {"Right Input Mixer", "R2 Switch", "R2"},
394  {"Right Input Mixer", "MicN Switch", "RMICN"},
395  {"Right Input Mixer", "MicP Switch", "RMICP"},
396 
397  {"Left Input Mixer", "L2 Switch", "L2"},
398  {"Left Input Mixer", "MicN Switch", "LMICN"},
399  {"Left Input Mixer", "MicP Switch", "LMICP"},
400 };
401 
402 /* PLL divisors */
405  u8 n;
407 };
408 
409 #define FIXED_PLL_SIZE (1 << 24)
410 
411 static void pll_factors(struct snd_soc_codec *codec,
412  struct wm8978_pll_div *pll_div, unsigned int target, unsigned int source)
413 {
414  u64 k_part;
415  unsigned int k, n_div, n_mod;
416 
417  n_div = target / source;
418  if (n_div < 6) {
419  source >>= 1;
420  pll_div->div2 = 1;
421  n_div = target / source;
422  } else {
423  pll_div->div2 = 0;
424  }
425 
426  if (n_div < 6 || n_div > 12)
427  dev_warn(codec->dev,
428  "WM8978 N value exceeds recommended range! N = %u\n",
429  n_div);
430 
431  pll_div->n = n_div;
432  n_mod = target - source * n_div;
433  k_part = FIXED_PLL_SIZE * (long long)n_mod + source / 2;
434 
435  do_div(k_part, source);
436 
437  k = k_part & 0xFFFFFFFF;
438 
439  pll_div->k = k;
440 }
441 
442 /* MCLK dividers */
443 static const int mclk_numerator[] = {1, 3, 2, 3, 4, 6, 8, 12};
444 static const int mclk_denominator[] = {1, 2, 1, 1, 1, 1, 1, 1};
445 
446 /*
447  * find index >= idx, such that, for a given f_out,
448  * 3 * f_mclk / 4 <= f_PLLOUT < 13 * f_mclk / 4
449  * f_out can be f_256fs or f_opclk, currently only used for f_256fs. Can be
450  * generalised for f_opclk with suitable coefficient arrays, but currently
451  * the OPCLK divisor is calculated directly, not iteratively.
452  */
453 static int wm8978_enum_mclk(unsigned int f_out, unsigned int f_mclk,
454  unsigned int *f_pllout)
455 {
456  int i;
457 
458  for (i = 0; i < ARRAY_SIZE(mclk_numerator); i++) {
459  unsigned int f_pllout_x4 = 4 * f_out * mclk_numerator[i] /
460  mclk_denominator[i];
461  if (3 * f_mclk <= f_pllout_x4 && f_pllout_x4 < 13 * f_mclk) {
462  *f_pllout = f_pllout_x4 / 4;
463  return i;
464  }
465  }
466 
467  return -EINVAL;
468 }
469 
470 /*
471  * Calculate internal frequencies and dividers, according to Figure 40
472  * "PLL and Clock Select Circuit" in WM8978 datasheet Rev. 2.6
473  */
474 static int wm8978_configure_pll(struct snd_soc_codec *codec)
475 {
476  struct wm8978_priv *wm8978 = snd_soc_codec_get_drvdata(codec);
477  struct wm8978_pll_div pll_div;
478  unsigned int f_opclk = wm8978->f_opclk, f_mclk = wm8978->f_mclk,
479  f_256fs = wm8978->f_256fs;
480  unsigned int f2;
481 
482  if (!f_mclk)
483  return -EINVAL;
484 
485  if (f_opclk) {
486  unsigned int opclk_div;
487  /* Cannot set up MCLK divider now, do later */
488  wm8978->mclk_idx = -1;
489 
490  /*
491  * The user needs OPCLK. Choose OPCLKDIV to put
492  * 6 <= R = f2 / f1 < 13, 1 <= OPCLKDIV <= 4.
493  * f_opclk = f_mclk * prescale * R / 4 / OPCLKDIV, where
494  * prescale = 1, or prescale = 2. Prescale is calculated inside
495  * pll_factors(). We have to select f_PLLOUT, such that
496  * f_mclk * 3 / 4 <= f_PLLOUT < f_mclk * 13 / 4. Must be
497  * f_mclk * 3 / 16 <= f_opclk < f_mclk * 13 / 4.
498  */
499  if (16 * f_opclk < 3 * f_mclk || 4 * f_opclk >= 13 * f_mclk)
500  return -EINVAL;
501 
502  if (4 * f_opclk < 3 * f_mclk)
503  /* Have to use OPCLKDIV */
504  opclk_div = (3 * f_mclk / 4 + f_opclk - 1) / f_opclk;
505  else
506  opclk_div = 1;
507 
508  dev_dbg(codec->dev, "%s: OPCLKDIV=%d\n", __func__, opclk_div);
509 
511  (opclk_div - 1) << 4);
512 
513  wm8978->f_pllout = f_opclk * opclk_div;
514  } else if (f_256fs) {
515  /*
516  * Not using OPCLK, but PLL is used for the codec, choose R:
517  * 6 <= R = f2 / f1 < 13, to put 1 <= MCLKDIV <= 12.
518  * f_256fs = f_mclk * prescale * R / 4 / MCLKDIV, where
519  * prescale = 1, or prescale = 2. Prescale is calculated inside
520  * pll_factors(). We have to select f_PLLOUT, such that
521  * f_mclk * 3 / 4 <= f_PLLOUT < f_mclk * 13 / 4. Must be
522  * f_mclk * 3 / 48 <= f_256fs < f_mclk * 13 / 4. This means MCLK
523  * must be 3.781MHz <= f_MCLK <= 32.768MHz
524  */
525  int idx = wm8978_enum_mclk(f_256fs, f_mclk, &wm8978->f_pllout);
526  if (idx < 0)
527  return idx;
528 
529  wm8978->mclk_idx = idx;
530 
531  /* GPIO1 into default mode as input - before configuring PLL */
533  } else {
534  return -EINVAL;
535  }
536 
537  f2 = wm8978->f_pllout * 4;
538 
539  dev_dbg(codec->dev, "%s: f_MCLK=%uHz, f_PLLOUT=%uHz\n", __func__,
540  wm8978->f_mclk, wm8978->f_pllout);
541 
542  pll_factors(codec, &pll_div, f2, wm8978->f_mclk);
543 
544  dev_dbg(codec->dev, "%s: calculated PLL N=0x%x, K=0x%x, div2=%d\n",
545  __func__, pll_div.n, pll_div.k, pll_div.div2);
546 
547  /* Turn PLL off for configuration... */
549 
550  snd_soc_write(codec, WM8978_PLL_N, (pll_div.div2 << 4) | pll_div.n);
551  snd_soc_write(codec, WM8978_PLL_K1, pll_div.k >> 18);
552  snd_soc_write(codec, WM8978_PLL_K2, (pll_div.k >> 9) & 0x1ff);
553  snd_soc_write(codec, WM8978_PLL_K3, pll_div.k & 0x1ff);
554 
555  /* ...and on again */
557 
558  if (f_opclk)
559  /* Output PLL (OPCLK) to GPIO1 */
561 
562  return 0;
563 }
564 
565 /*
566  * Configure WM8978 clock dividers.
567  */
568 static int wm8978_set_dai_clkdiv(struct snd_soc_dai *codec_dai,
569  int div_id, int div)
570 {
571  struct snd_soc_codec *codec = codec_dai->codec;
572  struct wm8978_priv *wm8978 = snd_soc_codec_get_drvdata(codec);
573  int ret = 0;
574 
575  switch (div_id) {
576  case WM8978_OPCLKRATE:
577  wm8978->f_opclk = div;
578 
579  if (wm8978->f_mclk)
580  /*
581  * We know the MCLK frequency, the user has requested
582  * OPCLK, configure the PLL based on that and start it
583  * and OPCLK immediately. We will configure PLL to match
584  * user-requested OPCLK frquency as good as possible.
585  * In fact, it is likely, that matching the sampling
586  * rate, when it becomes known, is more important, and
587  * we will not be reconfiguring PLL then, because we
588  * must not interrupt OPCLK. But it should be fine,
589  * because typically the user will request OPCLK to run
590  * at 256fs or 512fs, and for these cases we will also
591  * find an exact MCLK divider configuration - it will
592  * be equal to or double the OPCLK divisor.
593  */
594  ret = wm8978_configure_pll(codec);
595  break;
596  case WM8978_BCLKDIV:
597  if (div & ~0x1c)
598  return -EINVAL;
599  snd_soc_update_bits(codec, WM8978_CLOCKING, 0x1c, div);
600  break;
601  default:
602  return -EINVAL;
603  }
604 
605  dev_dbg(codec->dev, "%s: ID %d, value %u\n", __func__, div_id, div);
606 
607  return ret;
608 }
609 
610 /*
611  * @freq: when .set_pll() us not used, freq is codec MCLK input frequency
612  */
613 static int wm8978_set_dai_sysclk(struct snd_soc_dai *codec_dai, int clk_id,
614  unsigned int freq, int dir)
615 {
616  struct snd_soc_codec *codec = codec_dai->codec;
617  struct wm8978_priv *wm8978 = snd_soc_codec_get_drvdata(codec);
618  int ret = 0;
619 
620  dev_dbg(codec->dev, "%s: ID %d, freq %u\n", __func__, clk_id, freq);
621 
622  if (freq) {
623  wm8978->f_mclk = freq;
624 
625  /* Even if MCLK is used for system clock, might have to drive OPCLK */
626  if (wm8978->f_opclk)
627  ret = wm8978_configure_pll(codec);
628 
629  /* Our sysclk is fixed to 256 * fs, will configure in .hw_params() */
630 
631  if (!ret)
632  wm8978->sysclk = clk_id;
633  }
634 
635  if (wm8978->sysclk == WM8978_PLL && (!freq || clk_id == WM8978_MCLK)) {
636  /* Clock CODEC directly from MCLK */
637  snd_soc_update_bits(codec, WM8978_CLOCKING, 0x100, 0);
638 
639  /* GPIO1 into default mode as input - before configuring PLL */
641 
642  /* Turn off PLL */
644  wm8978->sysclk = WM8978_MCLK;
645  wm8978->f_pllout = 0;
646  wm8978->f_opclk = 0;
647  }
648 
649  return ret;
650 }
651 
652 /*
653  * Set ADC and Voice DAC format.
654  */
655 static int wm8978_set_dai_fmt(struct snd_soc_dai *codec_dai, unsigned int fmt)
656 {
657  struct snd_soc_codec *codec = codec_dai->codec;
658  /*
659  * BCLK polarity mask = 0x100, LRC clock polarity mask = 0x80,
660  * Data Format mask = 0x18: all will be calculated anew
661  */
662  u16 iface = snd_soc_read(codec, WM8978_AUDIO_INTERFACE) & ~0x198;
664 
665  dev_dbg(codec->dev, "%s\n", __func__);
666 
667  /* set master/slave audio interface */
668  switch (fmt & SND_SOC_DAIFMT_MASTER_MASK) {
670  clk |= 1;
671  break;
673  clk &= ~1;
674  break;
675  default:
676  return -EINVAL;
677  }
678 
679  /* interface format */
680  switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
681  case SND_SOC_DAIFMT_I2S:
682  iface |= 0x10;
683  break;
685  break;
687  iface |= 0x8;
688  break;
690  iface |= 0x18;
691  break;
692  default:
693  return -EINVAL;
694  }
695 
696  /* clock inversion */
697  switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
699  break;
701  iface |= 0x180;
702  break;
704  iface |= 0x100;
705  break;
707  iface |= 0x80;
708  break;
709  default:
710  return -EINVAL;
711  }
712 
713  snd_soc_write(codec, WM8978_AUDIO_INTERFACE, iface);
714  snd_soc_write(codec, WM8978_CLOCKING, clk);
715 
716  return 0;
717 }
718 
719 /*
720  * Set PCM DAI bit size and sample rate.
721  */
722 static int wm8978_hw_params(struct snd_pcm_substream *substream,
723  struct snd_pcm_hw_params *params,
724  struct snd_soc_dai *dai)
725 {
726  struct snd_soc_codec *codec = dai->codec;
727  struct wm8978_priv *wm8978 = snd_soc_codec_get_drvdata(codec);
728  /* Word length mask = 0x60 */
729  u16 iface_ctl = snd_soc_read(codec, WM8978_AUDIO_INTERFACE) & ~0x60;
730  /* Sampling rate mask = 0xe (for filters) */
731  u16 add_ctl = snd_soc_read(codec, WM8978_ADDITIONAL_CONTROL) & ~0xe;
732  u16 clking = snd_soc_read(codec, WM8978_CLOCKING);
733  enum wm8978_sysclk_src current_clk_id = clking & 0x100 ?
735  unsigned int f_sel, diff, diff_best = INT_MAX;
736  int i, best = 0;
737 
738  if (!wm8978->f_mclk)
739  return -EINVAL;
740 
741  /* bit size */
742  switch (params_format(params)) {
744  break;
746  iface_ctl |= 0x20;
747  break;
749  iface_ctl |= 0x40;
750  break;
752  iface_ctl |= 0x60;
753  break;
754  }
755 
756  /* filter coefficient */
757  switch (params_rate(params)) {
758  case 8000:
759  add_ctl |= 0x5 << 1;
760  break;
761  case 11025:
762  add_ctl |= 0x4 << 1;
763  break;
764  case 16000:
765  add_ctl |= 0x3 << 1;
766  break;
767  case 22050:
768  add_ctl |= 0x2 << 1;
769  break;
770  case 32000:
771  add_ctl |= 0x1 << 1;
772  break;
773  case 44100:
774  case 48000:
775  break;
776  }
777 
778  /* Sampling rate is known now, can configure the MCLK divider */
779  wm8978->f_256fs = params_rate(params) * 256;
780 
781  if (wm8978->sysclk == WM8978_MCLK) {
782  wm8978->mclk_idx = -1;
783  f_sel = wm8978->f_mclk;
784  } else {
785  if (!wm8978->f_opclk) {
786  /* We only enter here, if OPCLK is not used */
787  int ret = wm8978_configure_pll(codec);
788  if (ret < 0)
789  return ret;
790  }
791  f_sel = wm8978->f_pllout;
792  }
793 
794  if (wm8978->mclk_idx < 0) {
795  /* Either MCLK is used directly, or OPCLK is used */
796  if (f_sel < wm8978->f_256fs || f_sel > 12 * wm8978->f_256fs)
797  return -EINVAL;
798 
799  for (i = 0; i < ARRAY_SIZE(mclk_numerator); i++) {
800  diff = abs(wm8978->f_256fs * 3 -
801  f_sel * 3 * mclk_denominator[i] / mclk_numerator[i]);
802 
803  if (diff < diff_best) {
804  diff_best = diff;
805  best = i;
806  }
807 
808  if (!diff)
809  break;
810  }
811  } else {
812  /* OPCLK not used, codec driven by PLL */
813  best = wm8978->mclk_idx;
814  diff = 0;
815  }
816 
817  if (diff)
818  dev_warn(codec->dev, "Imprecise sampling rate: %uHz%s\n",
819  f_sel * mclk_denominator[best] / mclk_numerator[best] / 256,
820  wm8978->sysclk == WM8978_MCLK ?
821  ", consider using PLL" : "");
822 
823  dev_dbg(codec->dev, "%s: fmt %d, rate %u, MCLK divisor #%d\n", __func__,
824  params_format(params), params_rate(params), best);
825 
826  /* MCLK divisor mask = 0xe0 */
827  snd_soc_update_bits(codec, WM8978_CLOCKING, 0xe0, best << 5);
828 
829  snd_soc_write(codec, WM8978_AUDIO_INTERFACE, iface_ctl);
830  snd_soc_write(codec, WM8978_ADDITIONAL_CONTROL, add_ctl);
831 
832  if (wm8978->sysclk != current_clk_id) {
833  if (wm8978->sysclk == WM8978_PLL)
834  /* Run CODEC from PLL instead of MCLK */
836  0x100, 0x100);
837  else
838  /* Clock CODEC directly from MCLK */
839  snd_soc_update_bits(codec, WM8978_CLOCKING, 0x100, 0);
840  }
841 
842  return 0;
843 }
844 
845 static int wm8978_mute(struct snd_soc_dai *dai, int mute)
846 {
847  struct snd_soc_codec *codec = dai->codec;
848 
849  dev_dbg(codec->dev, "%s: %d\n", __func__, mute);
850 
851  if (mute)
852  snd_soc_update_bits(codec, WM8978_DAC_CONTROL, 0x40, 0x40);
853  else
854  snd_soc_update_bits(codec, WM8978_DAC_CONTROL, 0x40, 0);
855 
856  return 0;
857 }
858 
859 static int wm8978_set_bias_level(struct snd_soc_codec *codec,
861 {
862  u16 power1 = snd_soc_read(codec, WM8978_POWER_MANAGEMENT_1) & ~3;
863 
864  switch (level) {
865  case SND_SOC_BIAS_ON:
867  power1 |= 1; /* VMID 75k */
869  break;
871  /* bit 3: enable bias, bit 2: enable I/O tie off buffer */
872  power1 |= 0xc;
873 
874  if (codec->dapm.bias_level == SND_SOC_BIAS_OFF) {
875  /* Initial cap charge at VMID 5k */
877  power1 | 0x3);
878  mdelay(100);
879  }
880 
881  power1 |= 0x2; /* VMID 500k */
883  break;
884  case SND_SOC_BIAS_OFF:
885  /* Preserve PLL - OPCLK may be used by someone */
889  break;
890  }
891 
892  dev_dbg(codec->dev, "%s: %d, %x\n", __func__, level, power1);
893 
894  codec->dapm.bias_level = level;
895  return 0;
896 }
897 
898 #define WM8978_FORMATS (SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S20_3LE | \
899  SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S32_LE)
900 
901 static const struct snd_soc_dai_ops wm8978_dai_ops = {
902  .hw_params = wm8978_hw_params,
903  .digital_mute = wm8978_mute,
904  .set_fmt = wm8978_set_dai_fmt,
905  .set_clkdiv = wm8978_set_dai_clkdiv,
906  .set_sysclk = wm8978_set_dai_sysclk,
907 };
908 
909 /* Also supports 12kHz */
910 static struct snd_soc_dai_driver wm8978_dai = {
911  .name = "wm8978-hifi",
912  .playback = {
913  .stream_name = "Playback",
914  .channels_min = 1,
915  .channels_max = 2,
916  .rates = SNDRV_PCM_RATE_8000_48000,
917  .formats = WM8978_FORMATS,
918  },
919  .capture = {
920  .stream_name = "Capture",
921  .channels_min = 1,
922  .channels_max = 2,
923  .rates = SNDRV_PCM_RATE_8000_48000,
924  .formats = WM8978_FORMATS,
925  },
926  .ops = &wm8978_dai_ops,
927 };
928 
929 static int wm8978_suspend(struct snd_soc_codec *codec)
930 {
931  struct wm8978_priv *wm8978 = snd_soc_codec_get_drvdata(codec);
932 
933  wm8978_set_bias_level(codec, SND_SOC_BIAS_OFF);
934  /* Also switch PLL off */
936 
937  regcache_mark_dirty(wm8978->regmap);
938 
939  return 0;
940 }
941 
942 static int wm8978_resume(struct snd_soc_codec *codec)
943 {
944  struct wm8978_priv *wm8978 = snd_soc_codec_get_drvdata(codec);
945 
946  /* Sync reg_cache with the hardware */
947  regcache_sync(wm8978->regmap);
948 
949  wm8978_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
950 
951  if (wm8978->f_pllout)
952  /* Switch PLL on */
954 
955  return 0;
956 }
957 
958 /*
959  * These registers contain an "update" bit - bit 8. This means, for example,
960  * that one can write new DAC digital volume for both channels, but only when
961  * the update bit is set, will also the volume be updated - simultaneously for
962  * both channels.
963  */
964 static const int update_reg[] = {
975 };
976 
977 static int wm8978_probe(struct snd_soc_codec *codec)
978 {
979  struct wm8978_priv *wm8978 = snd_soc_codec_get_drvdata(codec);
980  int ret = 0, i;
981 
982  /*
983  * Set default system clock to PLL, it is more precise, this is also the
984  * default hardware setting
985  */
986  wm8978->sysclk = WM8978_PLL;
987  codec->control_data = wm8978->regmap;
988  ret = snd_soc_codec_set_cache_io(codec, 7, 9, SND_SOC_REGMAP);
989  if (ret < 0) {
990  dev_err(codec->dev, "Failed to set cache I/O: %d\n", ret);
991  return ret;
992  }
993 
994  /*
995  * Set the update bit in all registers, that have one. This way all
996  * writes to those registers will also cause the update bit to be
997  * written.
998  */
999  for (i = 0; i < ARRAY_SIZE(update_reg); i++)
1000  snd_soc_update_bits(codec, update_reg[i], 0x100, 0x100);
1001 
1002  wm8978_set_bias_level(codec, SND_SOC_BIAS_STANDBY);
1003 
1004  return 0;
1005 }
1006 
1007 /* power down chip */
1008 static int wm8978_remove(struct snd_soc_codec *codec)
1009 {
1010  wm8978_set_bias_level(codec, SND_SOC_BIAS_OFF);
1011  return 0;
1012 }
1013 
1014 static struct snd_soc_codec_driver soc_codec_dev_wm8978 = {
1015  .probe = wm8978_probe,
1016  .remove = wm8978_remove,
1017  .suspend = wm8978_suspend,
1018  .resume = wm8978_resume,
1019  .set_bias_level = wm8978_set_bias_level,
1020 
1021  .controls = wm8978_snd_controls,
1022  .num_controls = ARRAY_SIZE(wm8978_snd_controls),
1023  .dapm_widgets = wm8978_dapm_widgets,
1024  .num_dapm_widgets = ARRAY_SIZE(wm8978_dapm_widgets),
1025  .dapm_routes = wm8978_dapm_routes,
1026  .num_dapm_routes = ARRAY_SIZE(wm8978_dapm_routes),
1027 };
1028 
1029 static const struct regmap_config wm8978_regmap_config = {
1030  .reg_bits = 7,
1031  .val_bits = 9,
1032 
1033  .max_register = WM8978_MAX_REGISTER,
1034  .volatile_reg = wm8978_volatile,
1035 
1036  .cache_type = REGCACHE_RBTREE,
1037  .reg_defaults = wm8978_reg_defaults,
1038  .num_reg_defaults = ARRAY_SIZE(wm8978_reg_defaults),
1039 };
1040 
1041 static __devinit int wm8978_i2c_probe(struct i2c_client *i2c,
1042  const struct i2c_device_id *id)
1043 {
1044  struct wm8978_priv *wm8978;
1045  int ret;
1046 
1047  wm8978 = devm_kzalloc(&i2c->dev, sizeof(struct wm8978_priv),
1048  GFP_KERNEL);
1049  if (wm8978 == NULL)
1050  return -ENOMEM;
1051 
1052  wm8978->regmap = regmap_init_i2c(i2c, &wm8978_regmap_config);
1053  if (IS_ERR(wm8978->regmap)) {
1054  ret = PTR_ERR(wm8978->regmap);
1055  dev_err(&i2c->dev, "Failed to allocate regmap: %d\n", ret);
1056  return ret;
1057  }
1058 
1059  i2c_set_clientdata(i2c, wm8978);
1060 
1061  /* Reset the codec */
1062  ret = regmap_write(wm8978->regmap, WM8978_RESET, 0);
1063  if (ret != 0) {
1064  dev_err(&i2c->dev, "Failed to issue reset: %d\n", ret);
1065  goto err;
1066  }
1067 
1068  ret = snd_soc_register_codec(&i2c->dev,
1069  &soc_codec_dev_wm8978, &wm8978_dai, 1);
1070  if (ret != 0) {
1071  dev_err(&i2c->dev, "Failed to register CODEC: %d\n", ret);
1072  goto err;
1073  }
1074 
1075  return 0;
1076 
1077 err:
1078  regmap_exit(wm8978->regmap);
1079  return ret;
1080 }
1081 
1082 static __devexit int wm8978_i2c_remove(struct i2c_client *client)
1083 {
1084  struct wm8978_priv *wm8978 = i2c_get_clientdata(client);
1085 
1086  snd_soc_unregister_codec(&client->dev);
1087  regmap_exit(wm8978->regmap);
1088 
1089  return 0;
1090 }
1091 
1092 static const struct i2c_device_id wm8978_i2c_id[] = {
1093  { "wm8978", 0 },
1094  { }
1095 };
1096 MODULE_DEVICE_TABLE(i2c, wm8978_i2c_id);
1097 
1098 static struct i2c_driver wm8978_i2c_driver = {
1099  .driver = {
1100  .name = "wm8978",
1101  .owner = THIS_MODULE,
1102  },
1103  .probe = wm8978_i2c_probe,
1104  .remove = __devexit_p(wm8978_i2c_remove),
1105  .id_table = wm8978_i2c_id,
1106 };
1107 
1108 module_i2c_driver(wm8978_i2c_driver);
1109 
1110 MODULE_DESCRIPTION("ASoC WM8978 codec driver");
1111 MODULE_AUTHOR("Guennadi Liakhovetski <[email protected]>");
1112 MODULE_LICENSE("GPL");