Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
nmi.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 1991, 1992 Linus Torvalds
3  * Copyright (C) 2000, 2001, 2002 Andi Kleen, SuSE Labs
4  * Copyright (C) 2011 Don Zickus Red Hat, Inc.
5  *
6  * Pentium III FXSR, SSE support
7  * Gareth Hughes <[email protected]>, May 2000
8  */
9 
10 /*
11  * Handle hardware traps and faults.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/kprobes.h>
15 #include <linux/kdebug.h>
16 #include <linux/nmi.h>
17 #include <linux/delay.h>
18 #include <linux/hardirq.h>
19 #include <linux/slab.h>
20 #include <linux/export.h>
21 
22 #if defined(CONFIG_EDAC)
23 #include <linux/edac.h>
24 #endif
25 
26 #include <linux/atomic.h>
27 #include <asm/traps.h>
28 #include <asm/mach_traps.h>
29 #include <asm/nmi.h>
30 #include <asm/x86_init.h>
31 
32 struct nmi_desc {
34  struct list_head head;
35 };
36 
37 static struct nmi_desc nmi_desc[NMI_MAX] =
38 {
39  {
40  .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[0].lock),
41  .head = LIST_HEAD_INIT(nmi_desc[0].head),
42  },
43  {
44  .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[1].lock),
45  .head = LIST_HEAD_INIT(nmi_desc[1].head),
46  },
47  {
48  .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[2].lock),
49  .head = LIST_HEAD_INIT(nmi_desc[2].head),
50  },
51  {
52  .lock = __SPIN_LOCK_UNLOCKED(&nmi_desc[3].lock),
53  .head = LIST_HEAD_INIT(nmi_desc[3].head),
54  },
55 
56 };
57 
58 struct nmi_stats {
59  unsigned int normal;
60  unsigned int unknown;
61  unsigned int external;
62  unsigned int swallow;
63 };
64 
65 static DEFINE_PER_CPU(struct nmi_stats, nmi_stats);
66 
67 static int ignore_nmis;
68 
70 /*
71  * Prevent NMI reason port (0x61) being accessed simultaneously, can
72  * only be used in NMI handler.
73  */
74 static DEFINE_RAW_SPINLOCK(nmi_reason_lock);
75 
76 static int __init setup_unknown_nmi_panic(char *str)
77 {
79  return 1;
80 }
81 __setup("unknown_nmi_panic", setup_unknown_nmi_panic);
82 
83 #define nmi_to_desc(type) (&nmi_desc[type])
84 
85 static int __kprobes nmi_handle(unsigned int type, struct pt_regs *regs, bool b2b)
86 {
87  struct nmi_desc *desc = nmi_to_desc(type);
88  struct nmiaction *a;
89  int handled=0;
90 
91  rcu_read_lock();
92 
93  /*
94  * NMIs are edge-triggered, which means if you have enough
95  * of them concurrently, you can lose some because only one
96  * can be latched at any given time. Walk the whole list
97  * to handle those situations.
98  */
99  list_for_each_entry_rcu(a, &desc->head, list)
100  handled += a->handler(type, regs);
101 
102  rcu_read_unlock();
103 
104  /* return total number of NMI events handled */
105  return handled;
106 }
107 
108 int __register_nmi_handler(unsigned int type, struct nmiaction *action)
109 {
110  struct nmi_desc *desc = nmi_to_desc(type);
111  unsigned long flags;
112 
113  if (!action->handler)
114  return -EINVAL;
115 
116  spin_lock_irqsave(&desc->lock, flags);
117 
118  /*
119  * most handlers of type NMI_UNKNOWN never return because
120  * they just assume the NMI is theirs. Just a sanity check
121  * to manage expectations
122  */
123  WARN_ON_ONCE(type == NMI_UNKNOWN && !list_empty(&desc->head));
124  WARN_ON_ONCE(type == NMI_SERR && !list_empty(&desc->head));
125  WARN_ON_ONCE(type == NMI_IO_CHECK && !list_empty(&desc->head));
126 
127  /*
128  * some handlers need to be executed first otherwise a fake
129  * event confuses some handlers (kdump uses this flag)
130  */
131  if (action->flags & NMI_FLAG_FIRST)
132  list_add_rcu(&action->list, &desc->head);
133  else
134  list_add_tail_rcu(&action->list, &desc->head);
135 
136  spin_unlock_irqrestore(&desc->lock, flags);
137  return 0;
138 }
140 
141 void unregister_nmi_handler(unsigned int type, const char *name)
142 {
143  struct nmi_desc *desc = nmi_to_desc(type);
144  struct nmiaction *n;
145  unsigned long flags;
146 
147  spin_lock_irqsave(&desc->lock, flags);
148 
149  list_for_each_entry_rcu(n, &desc->head, list) {
150  /*
151  * the name passed in to describe the nmi handler
152  * is used as the lookup key
153  */
154  if (!strcmp(n->name, name)) {
155  WARN(in_nmi(),
156  "Trying to free NMI (%s) from NMI context!\n", n->name);
157  list_del_rcu(&n->list);
158  break;
159  }
160  }
161 
162  spin_unlock_irqrestore(&desc->lock, flags);
163  synchronize_rcu();
164 }
166 
167 static __kprobes void
168 pci_serr_error(unsigned char reason, struct pt_regs *regs)
169 {
170  /* check to see if anyone registered against these types of errors */
171  if (nmi_handle(NMI_SERR, regs, false))
172  return;
173 
174  pr_emerg("NMI: PCI system error (SERR) for reason %02x on CPU %d.\n",
175  reason, smp_processor_id());
176 
177  /*
178  * On some machines, PCI SERR line is used to report memory
179  * errors. EDAC makes use of it.
180  */
181 #if defined(CONFIG_EDAC)
182  if (edac_handler_set()) {
184  return;
185  }
186 #endif
187 
189  panic("NMI: Not continuing");
190 
191  pr_emerg("Dazed and confused, but trying to continue\n");
192 
193  /* Clear and disable the PCI SERR error line. */
194  reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_SERR;
195  outb(reason, NMI_REASON_PORT);
196 }
197 
198 static __kprobes void
199 io_check_error(unsigned char reason, struct pt_regs *regs)
200 {
201  unsigned long i;
202 
203  /* check to see if anyone registered against these types of errors */
204  if (nmi_handle(NMI_IO_CHECK, regs, false))
205  return;
206 
207  pr_emerg(
208  "NMI: IOCK error (debug interrupt?) for reason %02x on CPU %d.\n",
209  reason, smp_processor_id());
210  show_regs(regs);
211 
212  if (panic_on_io_nmi)
213  panic("NMI IOCK error: Not continuing");
214 
215  /* Re-enable the IOCK line, wait for a few seconds */
216  reason = (reason & NMI_REASON_CLEAR_MASK) | NMI_REASON_CLEAR_IOCHK;
217  outb(reason, NMI_REASON_PORT);
218 
219  i = 20000;
220  while (--i) {
222  udelay(100);
223  }
224 
225  reason &= ~NMI_REASON_CLEAR_IOCHK;
226  outb(reason, NMI_REASON_PORT);
227 }
228 
229 static __kprobes void
230 unknown_nmi_error(unsigned char reason, struct pt_regs *regs)
231 {
232  int handled;
233 
234  /*
235  * Use 'false' as back-to-back NMIs are dealt with one level up.
236  * Of course this makes having multiple 'unknown' handlers useless
237  * as only the first one is ever run (unless it can actually determine
238  * if it caused the NMI)
239  */
240  handled = nmi_handle(NMI_UNKNOWN, regs, false);
241  if (handled) {
242  __this_cpu_add(nmi_stats.unknown, handled);
243  return;
244  }
245 
247 
248  pr_emerg("Uhhuh. NMI received for unknown reason %02x on CPU %d.\n",
249  reason, smp_processor_id());
250 
251  pr_emerg("Do you have a strange power saving mode enabled?\n");
253  panic("NMI: Not continuing");
254 
255  pr_emerg("Dazed and confused, but trying to continue\n");
256 }
257 
258 static DEFINE_PER_CPU(bool, swallow_nmi);
259 static DEFINE_PER_CPU(unsigned long, last_nmi_rip);
260 
261 static __kprobes void default_do_nmi(struct pt_regs *regs)
262 {
263  unsigned char reason = 0;
264  int handled;
265  bool b2b = false;
266 
267  /*
268  * CPU-specific NMI must be processed before non-CPU-specific
269  * NMI, otherwise we may lose it, because the CPU-specific
270  * NMI can not be detected/processed on other CPUs.
271  */
272 
273  /*
274  * Back-to-back NMIs are interesting because they can either
275  * be two NMI or more than two NMIs (any thing over two is dropped
276  * due to NMI being edge-triggered). If this is the second half
277  * of the back-to-back NMI, assume we dropped things and process
278  * more handlers. Otherwise reset the 'swallow' NMI behaviour
279  */
280  if (regs->ip == __this_cpu_read(last_nmi_rip))
281  b2b = true;
282  else
283  __this_cpu_write(swallow_nmi, false);
284 
285  __this_cpu_write(last_nmi_rip, regs->ip);
286 
287  handled = nmi_handle(NMI_LOCAL, regs, b2b);
288  __this_cpu_add(nmi_stats.normal, handled);
289  if (handled) {
290  /*
291  * There are cases when a NMI handler handles multiple
292  * events in the current NMI. One of these events may
293  * be queued for in the next NMI. Because the event is
294  * already handled, the next NMI will result in an unknown
295  * NMI. Instead lets flag this for a potential NMI to
296  * swallow.
297  */
298  if (handled > 1)
299  __this_cpu_write(swallow_nmi, true);
300  return;
301  }
302 
303  /* Non-CPU-specific NMI: NMI sources can be processed on any CPU */
304  raw_spin_lock(&nmi_reason_lock);
305  reason = x86_platform.get_nmi_reason();
306 
307  if (reason & NMI_REASON_MASK) {
308  if (reason & NMI_REASON_SERR)
309  pci_serr_error(reason, regs);
310  else if (reason & NMI_REASON_IOCHK)
311  io_check_error(reason, regs);
312 #ifdef CONFIG_X86_32
313  /*
314  * Reassert NMI in case it became active
315  * meanwhile as it's edge-triggered:
316  */
317  reassert_nmi();
318 #endif
320  raw_spin_unlock(&nmi_reason_lock);
321  return;
322  }
323  raw_spin_unlock(&nmi_reason_lock);
324 
325  /*
326  * Only one NMI can be latched at a time. To handle
327  * this we may process multiple nmi handlers at once to
328  * cover the case where an NMI is dropped. The downside
329  * to this approach is we may process an NMI prematurely,
330  * while its real NMI is sitting latched. This will cause
331  * an unknown NMI on the next run of the NMI processing.
332  *
333  * We tried to flag that condition above, by setting the
334  * swallow_nmi flag when we process more than one event.
335  * This condition is also only present on the second half
336  * of a back-to-back NMI, so we flag that condition too.
337  *
338  * If both are true, we assume we already processed this
339  * NMI previously and we swallow it. Otherwise we reset
340  * the logic.
341  *
342  * There are scenarios where we may accidentally swallow
343  * a 'real' unknown NMI. For example, while processing
344  * a perf NMI another perf NMI comes in along with a
345  * 'real' unknown NMI. These two NMIs get combined into
346  * one (as descibed above). When the next NMI gets
347  * processed, it will be flagged by perf as handled, but
348  * noone will know that there was a 'real' unknown NMI sent
349  * also. As a result it gets swallowed. Or if the first
350  * perf NMI returns two events handled then the second
351  * NMI will get eaten by the logic below, again losing a
352  * 'real' unknown NMI. But this is the best we can do
353  * for now.
354  */
355  if (b2b && __this_cpu_read(swallow_nmi))
357  else
358  unknown_nmi_error(reason, regs);
359 }
360 
361 /*
362  * NMIs can hit breakpoints which will cause it to lose its
363  * NMI context with the CPU when the breakpoint does an iret.
364  */
365 #ifdef CONFIG_X86_32
366 /*
367  * For i386, NMIs use the same stack as the kernel, and we can
368  * add a workaround to the iret problem in C (preventing nested
369  * NMIs if an NMI takes a trap). Simply have 3 states the NMI
370  * can be in:
371  *
372  * 1) not running
373  * 2) executing
374  * 3) latched
375  *
376  * When no NMI is in progress, it is in the "not running" state.
377  * When an NMI comes in, it goes into the "executing" state.
378  * Normally, if another NMI is triggered, it does not interrupt
379  * the running NMI and the HW will simply latch it so that when
380  * the first NMI finishes, it will restart the second NMI.
381  * (Note, the latch is binary, thus multiple NMIs triggering,
382  * when one is running, are ignored. Only one NMI is restarted.)
383  *
384  * If an NMI hits a breakpoint that executes an iret, another
385  * NMI can preempt it. We do not want to allow this new NMI
386  * to run, but we want to execute it when the first one finishes.
387  * We set the state to "latched", and the exit of the first NMI will
388  * perform a dec_return, if the result is zero (NOT_RUNNING), then
389  * it will simply exit the NMI handler. If not, the dec_return
390  * would have set the state to NMI_EXECUTING (what we want it to
391  * be when we are running). In this case, we simply jump back
392  * to rerun the NMI handler again, and restart the 'latched' NMI.
393  *
394  * No trap (breakpoint or page fault) should be hit before nmi_restart,
395  * thus there is no race between the first check of state for NOT_RUNNING
396  * and setting it to NMI_EXECUTING. The HW will prevent nested NMIs
397  * at this point.
398  *
399  * In case the NMI takes a page fault, we need to save off the CR2
400  * because the NMI could have preempted another page fault and corrupt
401  * the CR2 that is about to be read. As nested NMIs must be restarted
402  * and they can not take breakpoints or page faults, the update of the
403  * CR2 must be done before converting the nmi state back to NOT_RUNNING.
404  * Otherwise, there would be a race of another nested NMI coming in
405  * after setting state to NOT_RUNNING but before updating the nmi_cr2.
406  */
407 enum nmi_states {
408  NMI_NOT_RUNNING = 0,
409  NMI_EXECUTING,
410  NMI_LATCHED,
411 };
412 static DEFINE_PER_CPU(enum nmi_states, nmi_state);
413 static DEFINE_PER_CPU(unsigned long, nmi_cr2);
414 
415 #define nmi_nesting_preprocess(regs) \
416  do { \
417  if (this_cpu_read(nmi_state) != NMI_NOT_RUNNING) { \
418  this_cpu_write(nmi_state, NMI_LATCHED); \
419  return; \
420  } \
421  this_cpu_write(nmi_state, NMI_EXECUTING); \
422  this_cpu_write(nmi_cr2, read_cr2()); \
423  } while (0); \
424  nmi_restart:
425 
426 #define nmi_nesting_postprocess() \
427  do { \
428  if (unlikely(this_cpu_read(nmi_cr2) != read_cr2())) \
429  write_cr2(this_cpu_read(nmi_cr2)); \
430  if (this_cpu_dec_return(nmi_state)) \
431  goto nmi_restart; \
432  } while (0)
433 #else /* x86_64 */
434 /*
435  * In x86_64 things are a bit more difficult. This has the same problem
436  * where an NMI hitting a breakpoint that calls iret will remove the
437  * NMI context, allowing a nested NMI to enter. What makes this more
438  * difficult is that both NMIs and breakpoints have their own stack.
439  * When a new NMI or breakpoint is executed, the stack is set to a fixed
440  * point. If an NMI is nested, it will have its stack set at that same
441  * fixed address that the first NMI had, and will start corrupting the
442  * stack. This is handled in entry_64.S, but the same problem exists with
443  * the breakpoint stack.
444  *
445  * If a breakpoint is being processed, and the debug stack is being used,
446  * if an NMI comes in and also hits a breakpoint, the stack pointer
447  * will be set to the same fixed address as the breakpoint that was
448  * interrupted, causing that stack to be corrupted. To handle this case,
449  * check if the stack that was interrupted is the debug stack, and if
450  * so, change the IDT so that new breakpoints will use the current stack
451  * and not switch to the fixed address. On return of the NMI, switch back
452  * to the original IDT.
453  */
454 static DEFINE_PER_CPU(int, update_debug_stack);
455 
456 static inline void nmi_nesting_preprocess(struct pt_regs *regs)
457 {
458  /*
459  * If we interrupted a breakpoint, it is possible that
460  * the nmi handler will have breakpoints too. We need to
461  * change the IDT such that breakpoints that happen here
462  * continue to use the NMI stack.
463  */
464  if (unlikely(is_debug_stack(regs->sp))) {
465  debug_stack_set_zero();
466  this_cpu_write(update_debug_stack, 1);
467  }
468 }
469 
470 static inline void nmi_nesting_postprocess(void)
471 {
472  if (unlikely(this_cpu_read(update_debug_stack))) {
473  debug_stack_reset();
474  this_cpu_write(update_debug_stack, 0);
475  }
476 }
477 #endif
478 
480 do_nmi(struct pt_regs *regs, long error_code)
481 {
482  nmi_nesting_preprocess(regs);
483 
484  nmi_enter();
485 
486  inc_irq_stat(__nmi_count);
487 
488  if (!ignore_nmis)
489  default_do_nmi(regs);
490 
491  nmi_exit();
492 
493  /* On i386, may loop back to preprocess */
494  nmi_nesting_postprocess();
495 }
496 
497 void stop_nmi(void)
498 {
499  ignore_nmis++;
500 }
501 
502 void restart_nmi(void)
503 {
504  ignore_nmis--;
505 }
506 
507 /* reset the back-to-back NMI logic */
508 void local_touch_nmi(void)
509 {
510  __this_cpu_write(last_nmi_rip, 0);
511 }