Linux Kernel  3.7.1
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
sysctrl.c
Go to the documentation of this file.
1 /*
2  * This program is free software; you can redistribute it and/or modify it
3  * under the terms of the GNU General Public License version 2 as published
4  * by the Free Software Foundation.
5  *
6  * Copyright (C) 2011-2012 John Crispin <[email protected]>
7  */
8 
9 #include <linux/ioport.h>
10 #include <linux/export.h>
11 #include <linux/clkdev.h>
12 #include <linux/of.h>
13 #include <linux/of_platform.h>
14 #include <linux/of_address.h>
15 
16 #include <lantiq_soc.h>
17 
18 #include "../clk.h"
19 #include "../prom.h"
20 
21 /* clock control register */
22 #define CGU_IFCCR 0x0018
23 #define CGU_IFCCR_VR9 0x0024
24 /* system clock register */
25 #define CGU_SYS 0x0010
26 /* pci control register */
27 #define CGU_PCICR 0x0034
28 #define CGU_PCICR_VR9 0x0038
29 /* ephy configuration register */
30 #define CGU_EPHY 0x10
31 /* power control register */
32 #define PMU_PWDCR 0x1C
33 /* power status register */
34 #define PMU_PWDSR 0x20
35 /* power control register */
36 #define PMU_PWDCR1 0x24
37 /* power status register */
38 #define PMU_PWDSR1 0x28
39 /* power control register */
40 #define PWDCR(x) ((x) ? (PMU_PWDCR1) : (PMU_PWDCR))
41 /* power status register */
42 #define PWDSR(x) ((x) ? (PMU_PWDSR1) : (PMU_PWDSR))
43 
44 /* clock gates that we can en/disable */
45 #define PMU_USB0_P BIT(0)
46 #define PMU_PCI BIT(4)
47 #define PMU_DMA BIT(5)
48 #define PMU_USB0 BIT(6)
49 #define PMU_ASC0 BIT(7)
50 #define PMU_EPHY BIT(7) /* ase */
51 #define PMU_SPI BIT(8)
52 #define PMU_DFE BIT(9)
53 #define PMU_EBU BIT(10)
54 #define PMU_STP BIT(11)
55 #define PMU_GPT BIT(12)
56 #define PMU_AHBS BIT(13) /* vr9 */
57 #define PMU_FPI BIT(14)
58 #define PMU_AHBM BIT(15)
59 #define PMU_ASC1 BIT(17)
60 #define PMU_PPE_QSB BIT(18)
61 #define PMU_PPE_SLL01 BIT(19)
62 #define PMU_PPE_TC BIT(21)
63 #define PMU_PPE_EMA BIT(22)
64 #define PMU_PPE_DPLUM BIT(23)
65 #define PMU_PPE_DPLUS BIT(24)
66 #define PMU_USB1_P BIT(26)
67 #define PMU_USB1 BIT(27)
68 #define PMU_SWITCH BIT(28)
69 #define PMU_PPE_TOP BIT(29)
70 #define PMU_GPHY BIT(30)
71 #define PMU_PCIE_CLK BIT(31)
72 
73 #define PMU1_PCIE_PHY BIT(0)
74 #define PMU1_PCIE_CTL BIT(1)
75 #define PMU1_PCIE_PDI BIT(4)
76 #define PMU1_PCIE_MSI BIT(5)
77 
78 #define pmu_w32(x, y) ltq_w32((x), pmu_membase + (y))
79 #define pmu_r32(x) ltq_r32(pmu_membase + (x))
80 
81 static void __iomem *pmu_membase;
84 
85 static u32 ifccr = CGU_IFCCR;
86 static u32 pcicr = CGU_PCICR;
87 
88 /* legacy function kept alive to ease clkdev transition */
89 void ltq_pmu_enable(unsigned int module)
90 {
91  int err = 1000000;
92 
93  pmu_w32(pmu_r32(PMU_PWDCR) & ~module, PMU_PWDCR);
94  do {} while (--err && (pmu_r32(PMU_PWDSR) & module));
95 
96  if (!err)
97  panic("activating PMU module failed!");
98 }
100 
101 /* legacy function kept alive to ease clkdev transition */
102 void ltq_pmu_disable(unsigned int module)
103 {
104  pmu_w32(pmu_r32(PMU_PWDCR) | module, PMU_PWDCR);
105 }
107 
108 /* enable a hw clock */
109 static int cgu_enable(struct clk *clk)
110 {
111  ltq_cgu_w32(ltq_cgu_r32(ifccr) | clk->bits, ifccr);
112  return 0;
113 }
114 
115 /* disable a hw clock */
116 static void cgu_disable(struct clk *clk)
117 {
118  ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~clk->bits, ifccr);
119 }
120 
121 /* enable a clock gate */
122 static int pmu_enable(struct clk *clk)
123 {
124  int retry = 1000000;
125 
126  pmu_w32(pmu_r32(PWDCR(clk->module)) & ~clk->bits,
127  PWDCR(clk->module));
128  do {} while (--retry && (pmu_r32(PWDSR(clk->module)) & clk->bits));
129 
130  if (!retry)
131  panic("activating PMU module failed!\n");
132 
133  return 0;
134 }
135 
136 /* disable a clock gate */
137 static void pmu_disable(struct clk *clk)
138 {
139  pmu_w32(pmu_r32(PWDCR(clk->module)) | clk->bits,
140  PWDCR(clk->module));
141 }
142 
143 /* the pci enable helper */
144 static int pci_enable(struct clk *clk)
145 {
146  unsigned int val = ltq_cgu_r32(ifccr);
147  /* set bus clock speed */
148  if (of_machine_is_compatible("lantiq,ar9") ||
149  of_machine_is_compatible("lantiq,vr9")) {
150  val &= ~0x1f00000;
151  if (clk->rate == CLOCK_33M)
152  val |= 0xe00000;
153  else
154  val |= 0x700000; /* 62.5M */
155  } else {
156  val &= ~0xf00000;
157  if (clk->rate == CLOCK_33M)
158  val |= 0x800000;
159  else
160  val |= 0x400000; /* 62.5M */
161  }
162  ltq_cgu_w32(val, ifccr);
163  pmu_enable(clk);
164  return 0;
165 }
166 
167 /* enable the external clock as a source */
168 static int pci_ext_enable(struct clk *clk)
169 {
170  ltq_cgu_w32(ltq_cgu_r32(ifccr) & ~(1 << 16), ifccr);
171  ltq_cgu_w32((1 << 30), pcicr);
172  return 0;
173 }
174 
175 /* disable the external clock as a source */
176 static void pci_ext_disable(struct clk *clk)
177 {
178  ltq_cgu_w32(ltq_cgu_r32(ifccr) | (1 << 16), ifccr);
179  ltq_cgu_w32((1 << 31) | (1 << 30), pcicr);
180 }
181 
182 /* enable a clockout source */
183 static int clkout_enable(struct clk *clk)
184 {
185  int i;
186 
187  /* get the correct rate */
188  for (i = 0; i < 4; i++) {
189  if (clk->rates[i] == clk->rate) {
190  int shift = 14 - (2 * clk->module);
191  int enable = 7 - clk->module;
192  unsigned int val = ltq_cgu_r32(ifccr);
193 
194  val &= ~(3 << shift);
195  val |= i << shift;
196  val |= enable;
197  ltq_cgu_w32(val, ifccr);
198  return 0;
199  }
200  }
201  return -1;
202 }
203 
204 /* manage the clock gates via PMU */
205 static void clkdev_add_pmu(const char *dev, const char *con,
206  unsigned int module, unsigned int bits)
207 {
208  struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
209 
210  clk->cl.dev_id = dev;
211  clk->cl.con_id = con;
212  clk->cl.clk = clk;
213  clk->enable = pmu_enable;
214  clk->disable = pmu_disable;
215  clk->module = module;
216  clk->bits = bits;
217  clkdev_add(&clk->cl);
218 }
219 
220 /* manage the clock generator */
221 static void clkdev_add_cgu(const char *dev, const char *con,
222  unsigned int bits)
223 {
224  struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
225 
226  clk->cl.dev_id = dev;
227  clk->cl.con_id = con;
228  clk->cl.clk = clk;
229  clk->enable = cgu_enable;
230  clk->disable = cgu_disable;
231  clk->bits = bits;
232  clkdev_add(&clk->cl);
233 }
234 
235 /* pci needs its own enable function as the setup is a bit more complex */
236 static unsigned long valid_pci_rates[] = {CLOCK_33M, CLOCK_62_5M, 0};
237 
238 static void clkdev_add_pci(void)
239 {
240  struct clk *clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
241  struct clk *clk_ext = kzalloc(sizeof(struct clk), GFP_KERNEL);
242 
243  /* main pci clock */
244  clk->cl.dev_id = "17000000.pci";
245  clk->cl.con_id = NULL;
246  clk->cl.clk = clk;
247  clk->rate = CLOCK_33M;
248  clk->rates = valid_pci_rates;
249  clk->enable = pci_enable;
250  clk->disable = pmu_disable;
251  clk->module = 0;
252  clk->bits = PMU_PCI;
253  clkdev_add(&clk->cl);
254 
255  /* use internal/external bus clock */
256  clk_ext->cl.dev_id = "17000000.pci";
257  clk_ext->cl.con_id = "external";
258  clk_ext->cl.clk = clk_ext;
259  clk_ext->enable = pci_ext_enable;
260  clk_ext->disable = pci_ext_disable;
261  clkdev_add(&clk_ext->cl);
262 }
263 
264 /* xway socs can generate clocks on gpio pins */
265 static unsigned long valid_clkout_rates[4][5] = {
270 };
271 
272 static void clkdev_add_clkout(void)
273 {
274  int i;
275 
276  for (i = 0; i < 4; i++) {
277  struct clk *clk;
278  char *name;
279 
280  name = kzalloc(sizeof("clkout0"), GFP_KERNEL);
281  sprintf(name, "clkout%d", i);
282 
283  clk = kzalloc(sizeof(struct clk), GFP_KERNEL);
284  clk->cl.dev_id = "1f103000.cgu";
285  clk->cl.con_id = name;
286  clk->cl.clk = clk;
287  clk->rate = 0;
288  clk->rates = valid_clkout_rates[i];
289  clk->enable = clkout_enable;
290  clk->module = i;
291  clkdev_add(&clk->cl);
292  }
293 }
294 
295 /* bring up all register ranges that we need for basic system control */
297 {
298  struct resource res_pmu, res_cgu, res_ebu;
299  struct device_node *np_pmu =
300  of_find_compatible_node(NULL, NULL, "lantiq,pmu-xway");
301  struct device_node *np_cgu =
302  of_find_compatible_node(NULL, NULL, "lantiq,cgu-xway");
303  struct device_node *np_ebu =
304  of_find_compatible_node(NULL, NULL, "lantiq,ebu-xway");
305 
306  /* check if all the core register ranges are available */
307  if (!np_pmu || !np_cgu || !np_ebu)
308  panic("Failed to load core nodess from devicetree");
309 
310  if (of_address_to_resource(np_pmu, 0, &res_pmu) ||
311  of_address_to_resource(np_cgu, 0, &res_cgu) ||
312  of_address_to_resource(np_ebu, 0, &res_ebu))
313  panic("Failed to get core resources");
314 
315  if ((request_mem_region(res_pmu.start, resource_size(&res_pmu),
316  res_pmu.name) < 0) ||
317  (request_mem_region(res_cgu.start, resource_size(&res_cgu),
318  res_cgu.name) < 0) ||
319  (request_mem_region(res_ebu.start, resource_size(&res_ebu),
320  res_ebu.name) < 0))
321  pr_err("Failed to request core reources");
322 
323  pmu_membase = ioremap_nocache(res_pmu.start, resource_size(&res_pmu));
325  resource_size(&res_cgu));
327  resource_size(&res_ebu));
328  if (!pmu_membase || !ltq_cgu_membase || !ltq_ebu_membase)
329  panic("Failed to remap core resources");
330 
331  /* make sure to unprotect the memory region where flash is located */
332  ltq_ebu_w32(ltq_ebu_r32(LTQ_EBU_BUSCON0) & ~EBU_WRDIS, LTQ_EBU_BUSCON0);
333 
334  /* add our generic xway clocks */
335  clkdev_add_pmu("10000000.fpi", NULL, 0, PMU_FPI);
336  clkdev_add_pmu("1e100400.serial", NULL, 0, PMU_ASC0);
337  clkdev_add_pmu("1e100a00.gptu", NULL, 0, PMU_GPT);
338  clkdev_add_pmu("1e100bb0.stp", NULL, 0, PMU_STP);
339  clkdev_add_pmu("1e104100.dma", NULL, 0, PMU_DMA);
340  clkdev_add_pmu("1e100800.spi", NULL, 0, PMU_SPI);
341  clkdev_add_pmu("1e105300.ebu", NULL, 0, PMU_EBU);
342  clkdev_add_clkout();
343 
344  /* add the soc dependent clocks */
345  if (of_machine_is_compatible("lantiq,vr9")) {
346  ifccr = CGU_IFCCR_VR9;
347  pcicr = CGU_PCICR_VR9;
348  } else {
349  clkdev_add_pmu("1e180000.etop", NULL, 0, PMU_PPE);
350  }
351 
352  if (!of_machine_is_compatible("lantiq,ase")) {
353  clkdev_add_pmu("1e100c00.serial", NULL, 0, PMU_ASC1);
354  clkdev_add_pci();
355  }
356 
357  if (of_machine_is_compatible("lantiq,ase")) {
358  if (ltq_cgu_r32(CGU_SYS) & (1 << 5))
360  else
362  clkdev_add_cgu("1e180000.etop", "ephycgu", CGU_EPHY),
363  clkdev_add_pmu("1e180000.etop", "ephy", 0, PMU_EPHY);
364  } else if (of_machine_is_compatible("lantiq,vr9")) {
366  ltq_vr9_fpi_hz());
367  clkdev_add_pmu("1d900000.pcie", "phy", 1, PMU1_PCIE_PHY);
368  clkdev_add_pmu("1d900000.pcie", "bus", 0, PMU_PCIE_CLK);
369  clkdev_add_pmu("1d900000.pcie", "msi", 1, PMU1_PCIE_MSI);
370  clkdev_add_pmu("1d900000.pcie", "pdi", 1, PMU1_PCIE_PDI);
371  clkdev_add_pmu("1d900000.pcie", "ctl", 1, PMU1_PCIE_CTL);
372  clkdev_add_pmu("1d900000.pcie", "ahb", 0, PMU_AHBM | PMU_AHBS);
373  } else if (of_machine_is_compatible("lantiq,ar9")) {
375  ltq_ar9_fpi_hz());
376  clkdev_add_pmu("1e180000.etop", "switch", 0, PMU_SWITCH);
377  } else {
380  }
381 }