LLVM API Documentation

ARMSubtarget.cpp
Go to the documentation of this file.
00001 //===-- ARMSubtarget.cpp - ARM Subtarget Information ----------------------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file implements the ARM specific subclass of TargetSubtargetInfo.
00011 //
00012 //===----------------------------------------------------------------------===//
00013 
00014 #include "ARMSubtarget.h"
00015 #include "ARMFrameLowering.h"
00016 #include "ARMISelLowering.h"
00017 #include "ARMInstrInfo.h"
00018 #include "ARMSelectionDAGInfo.h"
00019 #include "ARMSubtarget.h"
00020 #include "ARMMachineFunctionInfo.h"
00021 #include "Thumb1FrameLowering.h"
00022 #include "Thumb1InstrInfo.h"
00023 #include "Thumb2InstrInfo.h"
00024 #include "llvm/IR/Attributes.h"
00025 #include "llvm/IR/Function.h"
00026 #include "llvm/IR/GlobalValue.h"
00027 #include "llvm/Support/CommandLine.h"
00028 #include "llvm/Target/TargetInstrInfo.h"
00029 #include "llvm/Target/TargetOptions.h"
00030 #include "llvm/Target/TargetRegisterInfo.h"
00031 #include "llvm/CodeGen/MachineRegisterInfo.h"
00032 
00033 using namespace llvm;
00034 
00035 #define DEBUG_TYPE "arm-subtarget"
00036 
00037 #define GET_SUBTARGETINFO_TARGET_DESC
00038 #define GET_SUBTARGETINFO_CTOR
00039 #include "ARMGenSubtargetInfo.inc"
00040 
00041 static cl::opt<bool>
00042 ReserveR9("arm-reserve-r9", cl::Hidden,
00043           cl::desc("Reserve R9, making it unavailable as GPR"));
00044 
00045 static cl::opt<bool>
00046 ArmUseMOVT("arm-use-movt", cl::init(true), cl::Hidden);
00047 
00048 static cl::opt<bool>
00049 UseFusedMulOps("arm-use-mulops",
00050                cl::init(true), cl::Hidden);
00051 
00052 namespace {
00053 enum AlignMode {
00054   DefaultAlign,
00055   StrictAlign,
00056   NoStrictAlign
00057 };
00058 }
00059 
00060 static cl::opt<AlignMode>
00061 Align(cl::desc("Load/store alignment support"),
00062       cl::Hidden, cl::init(DefaultAlign),
00063       cl::values(
00064           clEnumValN(DefaultAlign,  "arm-default-align",
00065                      "Generate unaligned accesses only on hardware/OS "
00066                      "combinations that are known to support them"),
00067           clEnumValN(StrictAlign,   "arm-strict-align",
00068                      "Disallow all unaligned memory accesses"),
00069           clEnumValN(NoStrictAlign, "arm-no-strict-align",
00070                      "Allow unaligned memory accesses"),
00071           clEnumValEnd));
00072 
00073 enum ITMode {
00074   DefaultIT,
00075   RestrictedIT,
00076   NoRestrictedIT
00077 };
00078 
00079 static cl::opt<ITMode>
00080 IT(cl::desc("IT block support"), cl::Hidden, cl::init(DefaultIT),
00081    cl::ZeroOrMore,
00082    cl::values(clEnumValN(DefaultIT, "arm-default-it",
00083                          "Generate IT block based on arch"),
00084               clEnumValN(RestrictedIT, "arm-restrict-it",
00085                          "Disallow deprecated IT based on ARMv8"),
00086               clEnumValN(NoRestrictedIT, "arm-no-restrict-it",
00087                          "Allow IT blocks based on ARMv7"),
00088               clEnumValEnd));
00089 
00090 static std::string computeDataLayout(ARMSubtarget &ST) {
00091   std::string Ret = "";
00092 
00093   if (ST.isLittle())
00094     // Little endian.
00095     Ret += "e";
00096   else
00097     // Big endian.
00098     Ret += "E";
00099 
00100   Ret += DataLayout::getManglingComponent(ST.getTargetTriple());
00101 
00102   // Pointers are 32 bits and aligned to 32 bits.
00103   Ret += "-p:32:32";
00104 
00105   // On thumb, i16,i18 and i1 have natural aligment requirements, but we try to
00106   // align to 32.
00107   if (ST.isThumb())
00108     Ret += "-i1:8:32-i8:8:32-i16:16:32";
00109 
00110   // ABIs other than APCS have 64 bit integers with natural alignment.
00111   if (!ST.isAPCS_ABI())
00112     Ret += "-i64:64";
00113 
00114   // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
00115   // bits, others to 64 bits. We always try to align to 64 bits.
00116   if (ST.isAPCS_ABI())
00117     Ret += "-f64:32:64";
00118 
00119   // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
00120   // to 64. We always ty to give them natural alignment.
00121   if (ST.isAPCS_ABI())
00122     Ret += "-v64:32:64-v128:32:128";
00123   else
00124     Ret += "-v128:64:128";
00125 
00126   // On thumb and APCS, only try to align aggregates to 32 bits (the default is
00127   // 64 bits).
00128   if (ST.isThumb() || ST.isAPCS_ABI())
00129     Ret += "-a:0:32";
00130 
00131   // Integer registers are 32 bits.
00132   Ret += "-n32";
00133 
00134   // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
00135   // aligned everywhere else.
00136   if (ST.isTargetNaCl())
00137     Ret += "-S128";
00138   else if (ST.isAAPCS_ABI())
00139     Ret += "-S64";
00140   else
00141     Ret += "-S32";
00142 
00143   return Ret;
00144 }
00145 
00146 /// initializeSubtargetDependencies - Initializes using a CPU and feature string
00147 /// so that we can use initializer lists for subtarget initialization.
00148 ARMSubtarget &ARMSubtarget::initializeSubtargetDependencies(StringRef CPU,
00149                                                             StringRef FS) {
00150   initializeEnvironment();
00151   initSubtargetFeatures(CPU, FS);
00152   return *this;
00153 }
00154 
00155 ARMSubtarget::ARMSubtarget(const std::string &TT, const std::string &CPU,
00156                            const std::string &FS, TargetMachine &TM,
00157                            bool IsLittle, const TargetOptions &Options)
00158     : ARMGenSubtargetInfo(TT, CPU, FS), ARMProcFamily(Others),
00159       ARMProcClass(None), stackAlignment(4), CPUString(CPU), IsLittle(IsLittle),
00160       TargetTriple(TT), Options(Options), TargetABI(ARM_ABI_UNKNOWN),
00161       DL(computeDataLayout(initializeSubtargetDependencies(CPU, FS))),
00162       TSInfo(DL),
00163       InstrInfo(isThumb1Only()
00164                     ? (ARMBaseInstrInfo *)new Thumb1InstrInfo(*this)
00165                     : !isThumb()
00166                           ? (ARMBaseInstrInfo *)new ARMInstrInfo(*this)
00167                           : (ARMBaseInstrInfo *)new Thumb2InstrInfo(*this)),
00168       TLInfo(TM),
00169       FrameLowering(!isThumb1Only()
00170                         ? new ARMFrameLowering(*this)
00171                         : (ARMFrameLowering *)new Thumb1FrameLowering(*this)) {}
00172 
00173 void ARMSubtarget::initializeEnvironment() {
00174   HasV4TOps = false;
00175   HasV5TOps = false;
00176   HasV5TEOps = false;
00177   HasV6Ops = false;
00178   HasV6MOps = false;
00179   HasV6T2Ops = false;
00180   HasV7Ops = false;
00181   HasV8Ops = false;
00182   HasVFPv2 = false;
00183   HasVFPv3 = false;
00184   HasVFPv4 = false;
00185   HasFPARMv8 = false;
00186   HasNEON = false;
00187   UseNEONForSinglePrecisionFP = false;
00188   UseMulOps = UseFusedMulOps;
00189   SlowFPVMLx = false;
00190   HasVMLxForwarding = false;
00191   SlowFPBrcc = false;
00192   InThumbMode = false;
00193   HasThumb2 = false;
00194   NoARM = false;
00195   IsR9Reserved = ReserveR9;
00196   UseMovt = false;
00197   SupportsTailCall = false;
00198   HasFP16 = false;
00199   HasD16 = false;
00200   HasHardwareDivide = false;
00201   HasHardwareDivideInARM = false;
00202   HasT2ExtractPack = false;
00203   HasDataBarrier = false;
00204   Pref32BitThumb = false;
00205   AvoidCPSRPartialUpdate = false;
00206   AvoidMOVsShifterOperand = false;
00207   HasRAS = false;
00208   HasMPExtension = false;
00209   HasVirtualization = false;
00210   FPOnlySP = false;
00211   HasPerfMon = false;
00212   HasTrustZone = false;
00213   HasCrypto = false;
00214   HasCRC = false;
00215   HasZeroCycleZeroing = false;
00216   AllowsUnalignedMem = false;
00217   Thumb2DSP = false;
00218   UseNaClTrap = false;
00219   UnsafeFPMath = false;
00220 }
00221 
00222 void ARMSubtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
00223   if (CPUString.empty()) {
00224     if (isTargetIOS() && TargetTriple.getArchName().endswith("v7s"))
00225       // Default to the Swift CPU when targeting armv7s/thumbv7s.
00226       CPUString = "swift";
00227     else
00228       CPUString = "generic";
00229   }
00230 
00231   // Insert the architecture feature derived from the target triple into the
00232   // feature string. This is important for setting features that are implied
00233   // based on the architecture version.
00234   std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple.getTriple(),
00235                                               CPUString);
00236   if (!FS.empty()) {
00237     if (!ArchFS.empty())
00238       ArchFS = ArchFS + "," + FS.str();
00239     else
00240       ArchFS = FS;
00241   }
00242   ParseSubtargetFeatures(CPUString, ArchFS);
00243 
00244   // FIXME: This used enable V6T2 support implicitly for Thumb2 mode.
00245   // Assert this for now to make the change obvious.
00246   assert(hasV6T2Ops() || !hasThumb2());
00247 
00248   // Keep a pointer to static instruction cost data for the specified CPU.
00249   SchedModel = getSchedModelForCPU(CPUString);
00250 
00251   // Initialize scheduling itinerary for the specified CPU.
00252   InstrItins = getInstrItineraryForCPU(CPUString);
00253 
00254   if (TargetABI == ARM_ABI_UNKNOWN) {
00255     switch (TargetTriple.getEnvironment()) {
00256     case Triple::Android:
00257     case Triple::EABI:
00258     case Triple::EABIHF:
00259     case Triple::GNUEABI:
00260     case Triple::GNUEABIHF:
00261       TargetABI = ARM_ABI_AAPCS;
00262       break;
00263     default:
00264       if ((isTargetIOS() && isMClass()) ||
00265           (TargetTriple.isOSBinFormatMachO() &&
00266            TargetTriple.getOS() == Triple::UnknownOS))
00267         TargetABI = ARM_ABI_AAPCS;
00268       else
00269         TargetABI = ARM_ABI_APCS;
00270       break;
00271     }
00272   }
00273 
00274   // FIXME: this is invalid for WindowsCE
00275   if (isTargetWindows()) {
00276     TargetABI = ARM_ABI_AAPCS;
00277     NoARM = true;
00278   }
00279 
00280   if (isAAPCS_ABI())
00281     stackAlignment = 8;
00282   if (isTargetNaCl())
00283     stackAlignment = 16;
00284 
00285   UseMovt = hasV6T2Ops() && ArmUseMOVT;
00286 
00287   if (isTargetMachO()) {
00288     IsR9Reserved = ReserveR9 || !HasV6Ops;
00289     SupportsTailCall = !isTargetIOS() || !getTargetTriple().isOSVersionLT(5, 0);
00290   } else {
00291     IsR9Reserved = ReserveR9;
00292     SupportsTailCall = !isThumb1Only();
00293   }
00294 
00295   switch (Align) {
00296     case DefaultAlign:
00297       // Assume pre-ARMv6 doesn't support unaligned accesses.
00298       //
00299       // ARMv6 may or may not support unaligned accesses depending on the
00300       // SCTLR.U bit, which is architecture-specific. We assume ARMv6
00301       // Darwin and NetBSD targets support unaligned accesses, and others don't.
00302       //
00303       // ARMv7 always has SCTLR.U set to 1, but it has a new SCTLR.A bit
00304       // which raises an alignment fault on unaligned accesses. Linux
00305       // defaults this bit to 0 and handles it as a system-wide (not
00306       // per-process) setting. It is therefore safe to assume that ARMv7+
00307       // Linux targets support unaligned accesses. The same goes for NaCl.
00308       //
00309       // The above behavior is consistent with GCC.
00310       AllowsUnalignedMem =
00311           (hasV7Ops() && (isTargetLinux() || isTargetNaCl() ||
00312                           isTargetNetBSD())) ||
00313           (hasV6Ops() && (isTargetMachO() || isTargetNetBSD()));
00314       // The one exception is cortex-m0, which despite being v6, does not
00315       // support unaligned accesses. Rather than make the above boolean
00316       // expression even more obtuse, just override the value here.
00317       if (isThumb1Only() && isMClass())
00318         AllowsUnalignedMem = false;
00319       break;
00320     case StrictAlign:
00321       AllowsUnalignedMem = false;
00322       break;
00323     case NoStrictAlign:
00324       AllowsUnalignedMem = true;
00325       break;
00326   }
00327 
00328   switch (IT) {
00329   case DefaultIT:
00330     RestrictIT = hasV8Ops() ? true : false;
00331     break;
00332   case RestrictedIT:
00333     RestrictIT = true;
00334     break;
00335   case NoRestrictedIT:
00336     RestrictIT = false;
00337     break;
00338   }
00339 
00340   // NEON f32 ops are non-IEEE 754 compliant. Darwin is ok with it by default.
00341   uint64_t Bits = getFeatureBits();
00342   if ((Bits & ARM::ProcA5 || Bits & ARM::ProcA8) && // Where this matters
00343       (Options.UnsafeFPMath || isTargetDarwin()))
00344     UseNEONForSinglePrecisionFP = true;
00345 }
00346 
00347 /// GVIsIndirectSymbol - true if the GV will be accessed via an indirect symbol.
00348 bool
00349 ARMSubtarget::GVIsIndirectSymbol(const GlobalValue *GV,
00350                                  Reloc::Model RelocM) const {
00351   if (RelocM == Reloc::Static)
00352     return false;
00353 
00354   // Materializable GVs (in JIT lazy compilation mode) do not require an extra
00355   // load from stub.
00356   bool isDecl = GV->hasAvailableExternallyLinkage();
00357   if (GV->isDeclaration() && !GV->isMaterializable())
00358     isDecl = true;
00359 
00360   if (!isTargetMachO()) {
00361     // Extra load is needed for all externally visible.
00362     if (GV->hasLocalLinkage() || GV->hasHiddenVisibility())
00363       return false;
00364     return true;
00365   } else {
00366     if (RelocM == Reloc::PIC_) {
00367       // If this is a strong reference to a definition, it is definitely not
00368       // through a stub.
00369       if (!isDecl && !GV->isWeakForLinker())
00370         return false;
00371 
00372       // Unless we have a symbol with hidden visibility, we have to go through a
00373       // normal $non_lazy_ptr stub because this symbol might be resolved late.
00374       if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
00375         return true;
00376 
00377       // If symbol visibility is hidden, we have a stub for common symbol
00378       // references and external declarations.
00379       if (isDecl || GV->hasCommonLinkage())
00380         // Hidden $non_lazy_ptr reference.
00381         return true;
00382 
00383       return false;
00384     } else {
00385       // If this is a strong reference to a definition, it is definitely not
00386       // through a stub.
00387       if (!isDecl && !GV->isWeakForLinker())
00388         return false;
00389 
00390       // Unless we have a symbol with hidden visibility, we have to go through a
00391       // normal $non_lazy_ptr stub because this symbol might be resolved late.
00392       if (!GV->hasHiddenVisibility())  // Non-hidden $non_lazy_ptr reference.
00393         return true;
00394     }
00395   }
00396 
00397   return false;
00398 }
00399 
00400 unsigned ARMSubtarget::getMispredictionPenalty() const {
00401   return SchedModel.MispredictPenalty;
00402 }
00403 
00404 bool ARMSubtarget::hasSinCos() const {
00405   return getTargetTriple().getOS() == Triple::IOS &&
00406     !getTargetTriple().isOSVersionLT(7, 0);
00407 }
00408 
00409 // This overrides the PostRAScheduler bit in the SchedModel for any CPU.
00410 bool ARMSubtarget::enablePostMachineScheduler() const {
00411   return (!isThumb() || hasThumb2());
00412 }
00413 
00414 bool ARMSubtarget::enableAtomicExpand() const {
00415   return hasAnyDataBarrier() && !isThumb1Only();
00416 }
00417 
00418 bool ARMSubtarget::useMovt(const MachineFunction &MF) const {
00419   // NOTE Windows on ARM needs to use mov.w/mov.t pairs to materialise 32-bit
00420   // immediates as it is inherently position independent, and may be out of
00421   // range otherwise.
00422   return UseMovt && (isTargetWindows() ||
00423                      !MF.getFunction()->getAttributes().hasAttribute(
00424                          AttributeSet::FunctionIndex, Attribute::MinSize));
00425 }