LLVM API Documentation
00001 //===- InlineFunction.cpp - Code to perform function inlining -------------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file implements inlining of a function into a call site, resolving 00011 // parameters and the return value as appropriate. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "llvm/Transforms/Utils/Cloning.h" 00016 #include "llvm/ADT/SmallSet.h" 00017 #include "llvm/ADT/SmallVector.h" 00018 #include "llvm/ADT/SetVector.h" 00019 #include "llvm/ADT/StringExtras.h" 00020 #include "llvm/Analysis/AliasAnalysis.h" 00021 #include "llvm/Analysis/AssumptionTracker.h" 00022 #include "llvm/Analysis/CallGraph.h" 00023 #include "llvm/Analysis/CaptureTracking.h" 00024 #include "llvm/Analysis/InstructionSimplify.h" 00025 #include "llvm/Analysis/ValueTracking.h" 00026 #include "llvm/IR/Attributes.h" 00027 #include "llvm/IR/CallSite.h" 00028 #include "llvm/IR/CFG.h" 00029 #include "llvm/IR/Constants.h" 00030 #include "llvm/IR/DataLayout.h" 00031 #include "llvm/IR/DebugInfo.h" 00032 #include "llvm/IR/DerivedTypes.h" 00033 #include "llvm/IR/Dominators.h" 00034 #include "llvm/IR/IRBuilder.h" 00035 #include "llvm/IR/Instructions.h" 00036 #include "llvm/IR/IntrinsicInst.h" 00037 #include "llvm/IR/Intrinsics.h" 00038 #include "llvm/IR/MDBuilder.h" 00039 #include "llvm/IR/Module.h" 00040 #include "llvm/Transforms/Utils/Local.h" 00041 #include "llvm/Support/CommandLine.h" 00042 #include <algorithm> 00043 using namespace llvm; 00044 00045 static cl::opt<bool> 00046 EnableNoAliasConversion("enable-noalias-to-md-conversion", cl::init(true), 00047 cl::Hidden, 00048 cl::desc("Convert noalias attributes to metadata during inlining.")); 00049 00050 bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI, 00051 bool InsertLifetime) { 00052 return InlineFunction(CallSite(CI), IFI, InsertLifetime); 00053 } 00054 bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI, 00055 bool InsertLifetime) { 00056 return InlineFunction(CallSite(II), IFI, InsertLifetime); 00057 } 00058 00059 namespace { 00060 /// A class for recording information about inlining through an invoke. 00061 class InvokeInliningInfo { 00062 BasicBlock *OuterResumeDest; ///< Destination of the invoke's unwind. 00063 BasicBlock *InnerResumeDest; ///< Destination for the callee's resume. 00064 LandingPadInst *CallerLPad; ///< LandingPadInst associated with the invoke. 00065 PHINode *InnerEHValuesPHI; ///< PHI for EH values from landingpad insts. 00066 SmallVector<Value*, 8> UnwindDestPHIValues; 00067 00068 public: 00069 InvokeInliningInfo(InvokeInst *II) 00070 : OuterResumeDest(II->getUnwindDest()), InnerResumeDest(nullptr), 00071 CallerLPad(nullptr), InnerEHValuesPHI(nullptr) { 00072 // If there are PHI nodes in the unwind destination block, we need to keep 00073 // track of which values came into them from the invoke before removing 00074 // the edge from this block. 00075 llvm::BasicBlock *InvokeBB = II->getParent(); 00076 BasicBlock::iterator I = OuterResumeDest->begin(); 00077 for (; isa<PHINode>(I); ++I) { 00078 // Save the value to use for this edge. 00079 PHINode *PHI = cast<PHINode>(I); 00080 UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB)); 00081 } 00082 00083 CallerLPad = cast<LandingPadInst>(I); 00084 } 00085 00086 /// getOuterResumeDest - The outer unwind destination is the target of 00087 /// unwind edges introduced for calls within the inlined function. 00088 BasicBlock *getOuterResumeDest() const { 00089 return OuterResumeDest; 00090 } 00091 00092 BasicBlock *getInnerResumeDest(); 00093 00094 LandingPadInst *getLandingPadInst() const { return CallerLPad; } 00095 00096 /// forwardResume - Forward the 'resume' instruction to the caller's landing 00097 /// pad block. When the landing pad block has only one predecessor, this is 00098 /// a simple branch. When there is more than one predecessor, we need to 00099 /// split the landing pad block after the landingpad instruction and jump 00100 /// to there. 00101 void forwardResume(ResumeInst *RI, 00102 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads); 00103 00104 /// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind 00105 /// destination block for the given basic block, using the values for the 00106 /// original invoke's source block. 00107 void addIncomingPHIValuesFor(BasicBlock *BB) const { 00108 addIncomingPHIValuesForInto(BB, OuterResumeDest); 00109 } 00110 00111 void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const { 00112 BasicBlock::iterator I = dest->begin(); 00113 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 00114 PHINode *phi = cast<PHINode>(I); 00115 phi->addIncoming(UnwindDestPHIValues[i], src); 00116 } 00117 } 00118 }; 00119 } 00120 00121 /// getInnerResumeDest - Get or create a target for the branch from ResumeInsts. 00122 BasicBlock *InvokeInliningInfo::getInnerResumeDest() { 00123 if (InnerResumeDest) return InnerResumeDest; 00124 00125 // Split the landing pad. 00126 BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint; 00127 InnerResumeDest = 00128 OuterResumeDest->splitBasicBlock(SplitPoint, 00129 OuterResumeDest->getName() + ".body"); 00130 00131 // The number of incoming edges we expect to the inner landing pad. 00132 const unsigned PHICapacity = 2; 00133 00134 // Create corresponding new PHIs for all the PHIs in the outer landing pad. 00135 BasicBlock::iterator InsertPoint = InnerResumeDest->begin(); 00136 BasicBlock::iterator I = OuterResumeDest->begin(); 00137 for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) { 00138 PHINode *OuterPHI = cast<PHINode>(I); 00139 PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity, 00140 OuterPHI->getName() + ".lpad-body", 00141 InsertPoint); 00142 OuterPHI->replaceAllUsesWith(InnerPHI); 00143 InnerPHI->addIncoming(OuterPHI, OuterResumeDest); 00144 } 00145 00146 // Create a PHI for the exception values. 00147 InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity, 00148 "eh.lpad-body", InsertPoint); 00149 CallerLPad->replaceAllUsesWith(InnerEHValuesPHI); 00150 InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest); 00151 00152 // All done. 00153 return InnerResumeDest; 00154 } 00155 00156 /// forwardResume - Forward the 'resume' instruction to the caller's landing pad 00157 /// block. When the landing pad block has only one predecessor, this is a simple 00158 /// branch. When there is more than one predecessor, we need to split the 00159 /// landing pad block after the landingpad instruction and jump to there. 00160 void InvokeInliningInfo::forwardResume(ResumeInst *RI, 00161 SmallPtrSetImpl<LandingPadInst*> &InlinedLPads) { 00162 BasicBlock *Dest = getInnerResumeDest(); 00163 BasicBlock *Src = RI->getParent(); 00164 00165 BranchInst::Create(Dest, Src); 00166 00167 // Update the PHIs in the destination. They were inserted in an order which 00168 // makes this work. 00169 addIncomingPHIValuesForInto(Src, Dest); 00170 00171 InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src); 00172 RI->eraseFromParent(); 00173 } 00174 00175 /// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into 00176 /// an invoke, we have to turn all of the calls that can throw into 00177 /// invokes. This function analyze BB to see if there are any calls, and if so, 00178 /// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI 00179 /// nodes in that block with the values specified in InvokeDestPHIValues. 00180 static void HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB, 00181 InvokeInliningInfo &Invoke) { 00182 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) { 00183 Instruction *I = BBI++; 00184 00185 // We only need to check for function calls: inlined invoke 00186 // instructions require no special handling. 00187 CallInst *CI = dyn_cast<CallInst>(I); 00188 00189 // If this call cannot unwind, don't convert it to an invoke. 00190 // Inline asm calls cannot throw. 00191 if (!CI || CI->doesNotThrow() || isa<InlineAsm>(CI->getCalledValue())) 00192 continue; 00193 00194 // Convert this function call into an invoke instruction. First, split the 00195 // basic block. 00196 BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc"); 00197 00198 // Delete the unconditional branch inserted by splitBasicBlock 00199 BB->getInstList().pop_back(); 00200 00201 // Create the new invoke instruction. 00202 ImmutableCallSite CS(CI); 00203 SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end()); 00204 InvokeInst *II = InvokeInst::Create(CI->getCalledValue(), Split, 00205 Invoke.getOuterResumeDest(), 00206 InvokeArgs, CI->getName(), BB); 00207 II->setDebugLoc(CI->getDebugLoc()); 00208 II->setCallingConv(CI->getCallingConv()); 00209 II->setAttributes(CI->getAttributes()); 00210 00211 // Make sure that anything using the call now uses the invoke! This also 00212 // updates the CallGraph if present, because it uses a WeakVH. 00213 CI->replaceAllUsesWith(II); 00214 00215 // Delete the original call 00216 Split->getInstList().pop_front(); 00217 00218 // Update any PHI nodes in the exceptional block to indicate that there is 00219 // now a new entry in them. 00220 Invoke.addIncomingPHIValuesFor(BB); 00221 return; 00222 } 00223 } 00224 00225 /// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls 00226 /// in the body of the inlined function into invokes. 00227 /// 00228 /// II is the invoke instruction being inlined. FirstNewBlock is the first 00229 /// block of the inlined code (the last block is the end of the function), 00230 /// and InlineCodeInfo is information about the code that got inlined. 00231 static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock, 00232 ClonedCodeInfo &InlinedCodeInfo) { 00233 BasicBlock *InvokeDest = II->getUnwindDest(); 00234 00235 Function *Caller = FirstNewBlock->getParent(); 00236 00237 // The inlined code is currently at the end of the function, scan from the 00238 // start of the inlined code to its end, checking for stuff we need to 00239 // rewrite. 00240 InvokeInliningInfo Invoke(II); 00241 00242 // Get all of the inlined landing pad instructions. 00243 SmallPtrSet<LandingPadInst*, 16> InlinedLPads; 00244 for (Function::iterator I = FirstNewBlock, E = Caller->end(); I != E; ++I) 00245 if (InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) 00246 InlinedLPads.insert(II->getLandingPadInst()); 00247 00248 // Append the clauses from the outer landing pad instruction into the inlined 00249 // landing pad instructions. 00250 LandingPadInst *OuterLPad = Invoke.getLandingPadInst(); 00251 for (LandingPadInst *InlinedLPad : InlinedLPads) { 00252 unsigned OuterNum = OuterLPad->getNumClauses(); 00253 InlinedLPad->reserveClauses(OuterNum); 00254 for (unsigned OuterIdx = 0; OuterIdx != OuterNum; ++OuterIdx) 00255 InlinedLPad->addClause(OuterLPad->getClause(OuterIdx)); 00256 if (OuterLPad->isCleanup()) 00257 InlinedLPad->setCleanup(true); 00258 } 00259 00260 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){ 00261 if (InlinedCodeInfo.ContainsCalls) 00262 HandleCallsInBlockInlinedThroughInvoke(BB, Invoke); 00263 00264 // Forward any resumes that are remaining here. 00265 if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) 00266 Invoke.forwardResume(RI, InlinedLPads); 00267 } 00268 00269 // Now that everything is happy, we have one final detail. The PHI nodes in 00270 // the exception destination block still have entries due to the original 00271 // invoke instruction. Eliminate these entries (which might even delete the 00272 // PHI node) now. 00273 InvokeDest->removePredecessor(II->getParent()); 00274 } 00275 00276 /// CloneAliasScopeMetadata - When inlining a function that contains noalias 00277 /// scope metadata, this metadata needs to be cloned so that the inlined blocks 00278 /// have different "unqiue scopes" at every call site. Were this not done, then 00279 /// aliasing scopes from a function inlined into a caller multiple times could 00280 /// not be differentiated (and this would lead to miscompiles because the 00281 /// non-aliasing property communicated by the metadata could have 00282 /// call-site-specific control dependencies). 00283 static void CloneAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap) { 00284 const Function *CalledFunc = CS.getCalledFunction(); 00285 SetVector<const MDNode *> MD; 00286 00287 // Note: We could only clone the metadata if it is already used in the 00288 // caller. I'm omitting that check here because it might confuse 00289 // inter-procedural alias analysis passes. We can revisit this if it becomes 00290 // an efficiency or overhead problem. 00291 00292 for (Function::const_iterator I = CalledFunc->begin(), IE = CalledFunc->end(); 00293 I != IE; ++I) 00294 for (BasicBlock::const_iterator J = I->begin(), JE = I->end(); J != JE; ++J) { 00295 if (const MDNode *M = J->getMetadata(LLVMContext::MD_alias_scope)) 00296 MD.insert(M); 00297 if (const MDNode *M = J->getMetadata(LLVMContext::MD_noalias)) 00298 MD.insert(M); 00299 } 00300 00301 if (MD.empty()) 00302 return; 00303 00304 // Walk the existing metadata, adding the complete (perhaps cyclic) chain to 00305 // the set. 00306 SmallVector<const Value *, 16> Queue(MD.begin(), MD.end()); 00307 while (!Queue.empty()) { 00308 const MDNode *M = cast<MDNode>(Queue.pop_back_val()); 00309 for (unsigned i = 0, ie = M->getNumOperands(); i != ie; ++i) 00310 if (const MDNode *M1 = dyn_cast<MDNode>(M->getOperand(i))) 00311 if (MD.insert(M1)) 00312 Queue.push_back(M1); 00313 } 00314 00315 // Now we have a complete set of all metadata in the chains used to specify 00316 // the noalias scopes and the lists of those scopes. 00317 SmallVector<MDNode *, 16> DummyNodes; 00318 DenseMap<const MDNode *, TrackingVH<MDNode> > MDMap; 00319 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 00320 I != IE; ++I) { 00321 MDNode *Dummy = MDNode::getTemporary(CalledFunc->getContext(), None); 00322 DummyNodes.push_back(Dummy); 00323 MDMap[*I] = Dummy; 00324 } 00325 00326 // Create new metadata nodes to replace the dummy nodes, replacing old 00327 // metadata references with either a dummy node or an already-created new 00328 // node. 00329 for (SetVector<const MDNode *>::iterator I = MD.begin(), IE = MD.end(); 00330 I != IE; ++I) { 00331 SmallVector<Value *, 4> NewOps; 00332 for (unsigned i = 0, ie = (*I)->getNumOperands(); i != ie; ++i) { 00333 const Value *V = (*I)->getOperand(i); 00334 if (const MDNode *M = dyn_cast<MDNode>(V)) 00335 NewOps.push_back(MDMap[M]); 00336 else 00337 NewOps.push_back(const_cast<Value *>(V)); 00338 } 00339 00340 MDNode *NewM = MDNode::get(CalledFunc->getContext(), NewOps), 00341 *TempM = MDMap[*I]; 00342 00343 TempM->replaceAllUsesWith(NewM); 00344 } 00345 00346 // Now replace the metadata in the new inlined instructions with the 00347 // repacements from the map. 00348 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 00349 VMI != VMIE; ++VMI) { 00350 if (!VMI->second) 00351 continue; 00352 00353 Instruction *NI = dyn_cast<Instruction>(VMI->second); 00354 if (!NI) 00355 continue; 00356 00357 if (MDNode *M = NI->getMetadata(LLVMContext::MD_alias_scope)) { 00358 MDNode *NewMD = MDMap[M]; 00359 // If the call site also had alias scope metadata (a list of scopes to 00360 // which instructions inside it might belong), propagate those scopes to 00361 // the inlined instructions. 00362 if (MDNode *CSM = 00363 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 00364 NewMD = MDNode::concatenate(NewMD, CSM); 00365 NI->setMetadata(LLVMContext::MD_alias_scope, NewMD); 00366 } else if (NI->mayReadOrWriteMemory()) { 00367 if (MDNode *M = 00368 CS.getInstruction()->getMetadata(LLVMContext::MD_alias_scope)) 00369 NI->setMetadata(LLVMContext::MD_alias_scope, M); 00370 } 00371 00372 if (MDNode *M = NI->getMetadata(LLVMContext::MD_noalias)) { 00373 MDNode *NewMD = MDMap[M]; 00374 // If the call site also had noalias metadata (a list of scopes with 00375 // which instructions inside it don't alias), propagate those scopes to 00376 // the inlined instructions. 00377 if (MDNode *CSM = 00378 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 00379 NewMD = MDNode::concatenate(NewMD, CSM); 00380 NI->setMetadata(LLVMContext::MD_noalias, NewMD); 00381 } else if (NI->mayReadOrWriteMemory()) { 00382 if (MDNode *M = 00383 CS.getInstruction()->getMetadata(LLVMContext::MD_noalias)) 00384 NI->setMetadata(LLVMContext::MD_noalias, M); 00385 } 00386 } 00387 00388 // Now that everything has been replaced, delete the dummy nodes. 00389 for (unsigned i = 0, ie = DummyNodes.size(); i != ie; ++i) 00390 MDNode::deleteTemporary(DummyNodes[i]); 00391 } 00392 00393 /// AddAliasScopeMetadata - If the inlined function has noalias arguments, then 00394 /// add new alias scopes for each noalias argument, tag the mapped noalias 00395 /// parameters with noalias metadata specifying the new scope, and tag all 00396 /// non-derived loads, stores and memory intrinsics with the new alias scopes. 00397 static void AddAliasScopeMetadata(CallSite CS, ValueToValueMapTy &VMap, 00398 const DataLayout *DL, AliasAnalysis *AA) { 00399 if (!EnableNoAliasConversion) 00400 return; 00401 00402 const Function *CalledFunc = CS.getCalledFunction(); 00403 SmallVector<const Argument *, 4> NoAliasArgs; 00404 00405 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 00406 E = CalledFunc->arg_end(); I != E; ++I) { 00407 if (I->hasNoAliasAttr() && !I->hasNUses(0)) 00408 NoAliasArgs.push_back(I); 00409 } 00410 00411 if (NoAliasArgs.empty()) 00412 return; 00413 00414 // To do a good job, if a noalias variable is captured, we need to know if 00415 // the capture point dominates the particular use we're considering. 00416 DominatorTree DT; 00417 DT.recalculate(const_cast<Function&>(*CalledFunc)); 00418 00419 // noalias indicates that pointer values based on the argument do not alias 00420 // pointer values which are not based on it. So we add a new "scope" for each 00421 // noalias function argument. Accesses using pointers based on that argument 00422 // become part of that alias scope, accesses using pointers not based on that 00423 // argument are tagged as noalias with that scope. 00424 00425 DenseMap<const Argument *, MDNode *> NewScopes; 00426 MDBuilder MDB(CalledFunc->getContext()); 00427 00428 // Create a new scope domain for this function. 00429 MDNode *NewDomain = 00430 MDB.createAnonymousAliasScopeDomain(CalledFunc->getName()); 00431 for (unsigned i = 0, e = NoAliasArgs.size(); i != e; ++i) { 00432 const Argument *A = NoAliasArgs[i]; 00433 00434 std::string Name = CalledFunc->getName(); 00435 if (A->hasName()) { 00436 Name += ": %"; 00437 Name += A->getName(); 00438 } else { 00439 Name += ": argument "; 00440 Name += utostr(i); 00441 } 00442 00443 // Note: We always create a new anonymous root here. This is true regardless 00444 // of the linkage of the callee because the aliasing "scope" is not just a 00445 // property of the callee, but also all control dependencies in the caller. 00446 MDNode *NewScope = MDB.createAnonymousAliasScope(NewDomain, Name); 00447 NewScopes.insert(std::make_pair(A, NewScope)); 00448 } 00449 00450 // Iterate over all new instructions in the map; for all memory-access 00451 // instructions, add the alias scope metadata. 00452 for (ValueToValueMapTy::iterator VMI = VMap.begin(), VMIE = VMap.end(); 00453 VMI != VMIE; ++VMI) { 00454 if (const Instruction *I = dyn_cast<Instruction>(VMI->first)) { 00455 if (!VMI->second) 00456 continue; 00457 00458 Instruction *NI = dyn_cast<Instruction>(VMI->second); 00459 if (!NI) 00460 continue; 00461 00462 bool IsArgMemOnlyCall = false, IsFuncCall = false; 00463 SmallVector<const Value *, 2> PtrArgs; 00464 00465 if (const LoadInst *LI = dyn_cast<LoadInst>(I)) 00466 PtrArgs.push_back(LI->getPointerOperand()); 00467 else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) 00468 PtrArgs.push_back(SI->getPointerOperand()); 00469 else if (const VAArgInst *VAAI = dyn_cast<VAArgInst>(I)) 00470 PtrArgs.push_back(VAAI->getPointerOperand()); 00471 else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(I)) 00472 PtrArgs.push_back(CXI->getPointerOperand()); 00473 else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) 00474 PtrArgs.push_back(RMWI->getPointerOperand()); 00475 else if (ImmutableCallSite ICS = ImmutableCallSite(I)) { 00476 // If we know that the call does not access memory, then we'll still 00477 // know that about the inlined clone of this call site, and we don't 00478 // need to add metadata. 00479 if (ICS.doesNotAccessMemory()) 00480 continue; 00481 00482 IsFuncCall = true; 00483 if (AA) { 00484 AliasAnalysis::ModRefBehavior MRB = AA->getModRefBehavior(ICS); 00485 if (MRB == AliasAnalysis::OnlyAccessesArgumentPointees || 00486 MRB == AliasAnalysis::OnlyReadsArgumentPointees) 00487 IsArgMemOnlyCall = true; 00488 } 00489 00490 for (ImmutableCallSite::arg_iterator AI = ICS.arg_begin(), 00491 AE = ICS.arg_end(); AI != AE; ++AI) { 00492 // We need to check the underlying objects of all arguments, not just 00493 // the pointer arguments, because we might be passing pointers as 00494 // integers, etc. 00495 // However, if we know that the call only accesses pointer arguments, 00496 // then we only need to check the pointer arguments. 00497 if (IsArgMemOnlyCall && !(*AI)->getType()->isPointerTy()) 00498 continue; 00499 00500 PtrArgs.push_back(*AI); 00501 } 00502 } 00503 00504 // If we found no pointers, then this instruction is not suitable for 00505 // pairing with an instruction to receive aliasing metadata. 00506 // However, if this is a call, this we might just alias with none of the 00507 // noalias arguments. 00508 if (PtrArgs.empty() && !IsFuncCall) 00509 continue; 00510 00511 // It is possible that there is only one underlying object, but you 00512 // need to go through several PHIs to see it, and thus could be 00513 // repeated in the Objects list. 00514 SmallPtrSet<const Value *, 4> ObjSet; 00515 SmallVector<Value *, 4> Scopes, NoAliases; 00516 00517 SmallSetVector<const Argument *, 4> NAPtrArgs; 00518 for (unsigned i = 0, ie = PtrArgs.size(); i != ie; ++i) { 00519 SmallVector<Value *, 4> Objects; 00520 GetUnderlyingObjects(const_cast<Value*>(PtrArgs[i]), 00521 Objects, DL, /* MaxLookup = */ 0); 00522 00523 for (Value *O : Objects) 00524 ObjSet.insert(O); 00525 } 00526 00527 // Figure out if we're derived from anything that is not a noalias 00528 // argument. 00529 bool CanDeriveViaCapture = false, UsesAliasingPtr = false; 00530 for (const Value *V : ObjSet) { 00531 // Is this value a constant that cannot be derived from any pointer 00532 // value (we need to exclude constant expressions, for example, that 00533 // are formed from arithmetic on global symbols). 00534 bool IsNonPtrConst = isa<ConstantInt>(V) || isa<ConstantFP>(V) || 00535 isa<ConstantPointerNull>(V) || 00536 isa<ConstantDataVector>(V) || isa<UndefValue>(V); 00537 if (IsNonPtrConst) 00538 continue; 00539 00540 // If this is anything other than a noalias argument, then we cannot 00541 // completely describe the aliasing properties using alias.scope 00542 // metadata (and, thus, won't add any). 00543 if (const Argument *A = dyn_cast<Argument>(V)) { 00544 if (!A->hasNoAliasAttr()) 00545 UsesAliasingPtr = true; 00546 } else { 00547 UsesAliasingPtr = true; 00548 } 00549 00550 // If this is not some identified function-local object (which cannot 00551 // directly alias a noalias argument), or some other argument (which, 00552 // by definition, also cannot alias a noalias argument), then we could 00553 // alias a noalias argument that has been captured). 00554 if (!isa<Argument>(V) && 00555 !isIdentifiedFunctionLocal(const_cast<Value*>(V))) 00556 CanDeriveViaCapture = true; 00557 } 00558 00559 // A function call can always get captured noalias pointers (via other 00560 // parameters, globals, etc.). 00561 if (IsFuncCall && !IsArgMemOnlyCall) 00562 CanDeriveViaCapture = true; 00563 00564 // First, we want to figure out all of the sets with which we definitely 00565 // don't alias. Iterate over all noalias set, and add those for which: 00566 // 1. The noalias argument is not in the set of objects from which we 00567 // definitely derive. 00568 // 2. The noalias argument has not yet been captured. 00569 // An arbitrary function that might load pointers could see captured 00570 // noalias arguments via other noalias arguments or globals, and so we 00571 // must always check for prior capture. 00572 for (const Argument *A : NoAliasArgs) { 00573 if (!ObjSet.count(A) && (!CanDeriveViaCapture || 00574 // It might be tempting to skip the 00575 // PointerMayBeCapturedBefore check if 00576 // A->hasNoCaptureAttr() is true, but this is 00577 // incorrect because nocapture only guarantees 00578 // that no copies outlive the function, not 00579 // that the value cannot be locally captured. 00580 !PointerMayBeCapturedBefore(A, 00581 /* ReturnCaptures */ false, 00582 /* StoreCaptures */ false, I, &DT))) 00583 NoAliases.push_back(NewScopes[A]); 00584 } 00585 00586 if (!NoAliases.empty()) 00587 NI->setMetadata(LLVMContext::MD_noalias, MDNode::concatenate( 00588 NI->getMetadata(LLVMContext::MD_noalias), 00589 MDNode::get(CalledFunc->getContext(), NoAliases))); 00590 00591 // Next, we want to figure out all of the sets to which we might belong. 00592 // We might belong to a set if the noalias argument is in the set of 00593 // underlying objects. If there is some non-noalias argument in our list 00594 // of underlying objects, then we cannot add a scope because the fact 00595 // that some access does not alias with any set of our noalias arguments 00596 // cannot itself guarantee that it does not alias with this access 00597 // (because there is some pointer of unknown origin involved and the 00598 // other access might also depend on this pointer). We also cannot add 00599 // scopes to arbitrary functions unless we know they don't access any 00600 // non-parameter pointer-values. 00601 bool CanAddScopes = !UsesAliasingPtr; 00602 if (CanAddScopes && IsFuncCall) 00603 CanAddScopes = IsArgMemOnlyCall; 00604 00605 if (CanAddScopes) 00606 for (const Argument *A : NoAliasArgs) { 00607 if (ObjSet.count(A)) 00608 Scopes.push_back(NewScopes[A]); 00609 } 00610 00611 if (!Scopes.empty()) 00612 NI->setMetadata(LLVMContext::MD_alias_scope, MDNode::concatenate( 00613 NI->getMetadata(LLVMContext::MD_alias_scope), 00614 MDNode::get(CalledFunc->getContext(), Scopes))); 00615 } 00616 } 00617 } 00618 00619 /// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee 00620 /// into the caller, update the specified callgraph to reflect the changes we 00621 /// made. Note that it's possible that not all code was copied over, so only 00622 /// some edges of the callgraph may remain. 00623 static void UpdateCallGraphAfterInlining(CallSite CS, 00624 Function::iterator FirstNewBlock, 00625 ValueToValueMapTy &VMap, 00626 InlineFunctionInfo &IFI) { 00627 CallGraph &CG = *IFI.CG; 00628 const Function *Caller = CS.getInstruction()->getParent()->getParent(); 00629 const Function *Callee = CS.getCalledFunction(); 00630 CallGraphNode *CalleeNode = CG[Callee]; 00631 CallGraphNode *CallerNode = CG[Caller]; 00632 00633 // Since we inlined some uninlined call sites in the callee into the caller, 00634 // add edges from the caller to all of the callees of the callee. 00635 CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end(); 00636 00637 // Consider the case where CalleeNode == CallerNode. 00638 CallGraphNode::CalledFunctionsVector CallCache; 00639 if (CalleeNode == CallerNode) { 00640 CallCache.assign(I, E); 00641 I = CallCache.begin(); 00642 E = CallCache.end(); 00643 } 00644 00645 for (; I != E; ++I) { 00646 const Value *OrigCall = I->first; 00647 00648 ValueToValueMapTy::iterator VMI = VMap.find(OrigCall); 00649 // Only copy the edge if the call was inlined! 00650 if (VMI == VMap.end() || VMI->second == nullptr) 00651 continue; 00652 00653 // If the call was inlined, but then constant folded, there is no edge to 00654 // add. Check for this case. 00655 Instruction *NewCall = dyn_cast<Instruction>(VMI->second); 00656 if (!NewCall) continue; 00657 00658 // Remember that this call site got inlined for the client of 00659 // InlineFunction. 00660 IFI.InlinedCalls.push_back(NewCall); 00661 00662 // It's possible that inlining the callsite will cause it to go from an 00663 // indirect to a direct call by resolving a function pointer. If this 00664 // happens, set the callee of the new call site to a more precise 00665 // destination. This can also happen if the call graph node of the caller 00666 // was just unnecessarily imprecise. 00667 if (!I->second->getFunction()) 00668 if (Function *F = CallSite(NewCall).getCalledFunction()) { 00669 // Indirect call site resolved to direct call. 00670 CallerNode->addCalledFunction(CallSite(NewCall), CG[F]); 00671 00672 continue; 00673 } 00674 00675 CallerNode->addCalledFunction(CallSite(NewCall), I->second); 00676 } 00677 00678 // Update the call graph by deleting the edge from Callee to Caller. We must 00679 // do this after the loop above in case Caller and Callee are the same. 00680 CallerNode->removeCallEdgeFor(CS); 00681 } 00682 00683 static void HandleByValArgumentInit(Value *Dst, Value *Src, Module *M, 00684 BasicBlock *InsertBlock, 00685 InlineFunctionInfo &IFI) { 00686 Type *AggTy = cast<PointerType>(Src->getType())->getElementType(); 00687 IRBuilder<> Builder(InsertBlock->begin()); 00688 00689 Value *Size; 00690 if (IFI.DL == nullptr) 00691 Size = ConstantExpr::getSizeOf(AggTy); 00692 else 00693 Size = Builder.getInt64(IFI.DL->getTypeStoreSize(AggTy)); 00694 00695 // Always generate a memcpy of alignment 1 here because we don't know 00696 // the alignment of the src pointer. Other optimizations can infer 00697 // better alignment. 00698 Builder.CreateMemCpy(Dst, Src, Size, /*Align=*/1); 00699 } 00700 00701 /// HandleByValArgument - When inlining a call site that has a byval argument, 00702 /// we have to make the implicit memcpy explicit by adding it. 00703 static Value *HandleByValArgument(Value *Arg, Instruction *TheCall, 00704 const Function *CalledFunc, 00705 InlineFunctionInfo &IFI, 00706 unsigned ByValAlignment) { 00707 PointerType *ArgTy = cast<PointerType>(Arg->getType()); 00708 Type *AggTy = ArgTy->getElementType(); 00709 00710 // If the called function is readonly, then it could not mutate the caller's 00711 // copy of the byval'd memory. In this case, it is safe to elide the copy and 00712 // temporary. 00713 if (CalledFunc->onlyReadsMemory()) { 00714 // If the byval argument has a specified alignment that is greater than the 00715 // passed in pointer, then we either have to round up the input pointer or 00716 // give up on this transformation. 00717 if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment. 00718 return Arg; 00719 00720 // If the pointer is already known to be sufficiently aligned, or if we can 00721 // round it up to a larger alignment, then we don't need a temporary. 00722 if (getOrEnforceKnownAlignment(Arg, ByValAlignment, 00723 IFI.DL, IFI.AT, TheCall) >= ByValAlignment) 00724 return Arg; 00725 00726 // Otherwise, we have to make a memcpy to get a safe alignment. This is bad 00727 // for code quality, but rarely happens and is required for correctness. 00728 } 00729 00730 // Create the alloca. If we have DataLayout, use nice alignment. 00731 unsigned Align = 1; 00732 if (IFI.DL) 00733 Align = IFI.DL->getPrefTypeAlignment(AggTy); 00734 00735 // If the byval had an alignment specified, we *must* use at least that 00736 // alignment, as it is required by the byval argument (and uses of the 00737 // pointer inside the callee). 00738 Align = std::max(Align, ByValAlignment); 00739 00740 Function *Caller = TheCall->getParent()->getParent(); 00741 00742 Value *NewAlloca = new AllocaInst(AggTy, nullptr, Align, Arg->getName(), 00743 &*Caller->begin()->begin()); 00744 IFI.StaticAllocas.push_back(cast<AllocaInst>(NewAlloca)); 00745 00746 // Uses of the argument in the function should use our new alloca 00747 // instead. 00748 return NewAlloca; 00749 } 00750 00751 // isUsedByLifetimeMarker - Check whether this Value is used by a lifetime 00752 // intrinsic. 00753 static bool isUsedByLifetimeMarker(Value *V) { 00754 for (User *U : V->users()) { 00755 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) { 00756 switch (II->getIntrinsicID()) { 00757 default: break; 00758 case Intrinsic::lifetime_start: 00759 case Intrinsic::lifetime_end: 00760 return true; 00761 } 00762 } 00763 } 00764 return false; 00765 } 00766 00767 // hasLifetimeMarkers - Check whether the given alloca already has 00768 // lifetime.start or lifetime.end intrinsics. 00769 static bool hasLifetimeMarkers(AllocaInst *AI) { 00770 Type *Ty = AI->getType(); 00771 Type *Int8PtrTy = Type::getInt8PtrTy(Ty->getContext(), 00772 Ty->getPointerAddressSpace()); 00773 if (Ty == Int8PtrTy) 00774 return isUsedByLifetimeMarker(AI); 00775 00776 // Do a scan to find all the casts to i8*. 00777 for (User *U : AI->users()) { 00778 if (U->getType() != Int8PtrTy) continue; 00779 if (U->stripPointerCasts() != AI) continue; 00780 if (isUsedByLifetimeMarker(U)) 00781 return true; 00782 } 00783 return false; 00784 } 00785 00786 /// updateInlinedAtInfo - Helper function used by fixupLineNumbers to 00787 /// recursively update InlinedAtEntry of a DebugLoc. 00788 static DebugLoc updateInlinedAtInfo(const DebugLoc &DL, 00789 const DebugLoc &InlinedAtDL, 00790 LLVMContext &Ctx) { 00791 if (MDNode *IA = DL.getInlinedAt(Ctx)) { 00792 DebugLoc NewInlinedAtDL 00793 = updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx); 00794 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 00795 NewInlinedAtDL.getAsMDNode(Ctx)); 00796 } 00797 00798 return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx), 00799 InlinedAtDL.getAsMDNode(Ctx)); 00800 } 00801 00802 /// fixupLineNumbers - Update inlined instructions' line numbers to 00803 /// to encode location where these instructions are inlined. 00804 static void fixupLineNumbers(Function *Fn, Function::iterator FI, 00805 Instruction *TheCall) { 00806 DebugLoc TheCallDL = TheCall->getDebugLoc(); 00807 if (TheCallDL.isUnknown()) 00808 return; 00809 00810 for (; FI != Fn->end(); ++FI) { 00811 for (BasicBlock::iterator BI = FI->begin(), BE = FI->end(); 00812 BI != BE; ++BI) { 00813 DebugLoc DL = BI->getDebugLoc(); 00814 if (DL.isUnknown()) { 00815 // If the inlined instruction has no line number, make it look as if it 00816 // originates from the call location. This is important for 00817 // ((__always_inline__, __nodebug__)) functions which must use caller 00818 // location for all instructions in their function body. 00819 BI->setDebugLoc(TheCallDL); 00820 } else { 00821 BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext())); 00822 if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) { 00823 LLVMContext &Ctx = BI->getContext(); 00824 MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx); 00825 DVI->setOperand(2, createInlinedVariable(DVI->getVariable(), 00826 InlinedAt, Ctx)); 00827 } 00828 } 00829 } 00830 } 00831 } 00832 00833 /// InlineFunction - This function inlines the called function into the basic 00834 /// block of the caller. This returns false if it is not possible to inline 00835 /// this call. The program is still in a well defined state if this occurs 00836 /// though. 00837 /// 00838 /// Note that this only does one level of inlining. For example, if the 00839 /// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now 00840 /// exists in the instruction stream. Similarly this will inline a recursive 00841 /// function by one level. 00842 bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI, 00843 bool InsertLifetime) { 00844 Instruction *TheCall = CS.getInstruction(); 00845 assert(TheCall->getParent() && TheCall->getParent()->getParent() && 00846 "Instruction not in function!"); 00847 00848 // If IFI has any state in it, zap it before we fill it in. 00849 IFI.reset(); 00850 00851 const Function *CalledFunc = CS.getCalledFunction(); 00852 if (!CalledFunc || // Can't inline external function or indirect 00853 CalledFunc->isDeclaration() || // call, or call to a vararg function! 00854 CalledFunc->getFunctionType()->isVarArg()) return false; 00855 00856 // If the call to the callee cannot throw, set the 'nounwind' flag on any 00857 // calls that we inline. 00858 bool MarkNoUnwind = CS.doesNotThrow(); 00859 00860 BasicBlock *OrigBB = TheCall->getParent(); 00861 Function *Caller = OrigBB->getParent(); 00862 00863 // GC poses two hazards to inlining, which only occur when the callee has GC: 00864 // 1. If the caller has no GC, then the callee's GC must be propagated to the 00865 // caller. 00866 // 2. If the caller has a differing GC, it is invalid to inline. 00867 if (CalledFunc->hasGC()) { 00868 if (!Caller->hasGC()) 00869 Caller->setGC(CalledFunc->getGC()); 00870 else if (CalledFunc->getGC() != Caller->getGC()) 00871 return false; 00872 } 00873 00874 // Get the personality function from the callee if it contains a landing pad. 00875 Value *CalleePersonality = nullptr; 00876 for (Function::const_iterator I = CalledFunc->begin(), E = CalledFunc->end(); 00877 I != E; ++I) 00878 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 00879 const BasicBlock *BB = II->getUnwindDest(); 00880 const LandingPadInst *LP = BB->getLandingPadInst(); 00881 CalleePersonality = LP->getPersonalityFn(); 00882 break; 00883 } 00884 00885 // Find the personality function used by the landing pads of the caller. If it 00886 // exists, then check to see that it matches the personality function used in 00887 // the callee. 00888 if (CalleePersonality) { 00889 for (Function::const_iterator I = Caller->begin(), E = Caller->end(); 00890 I != E; ++I) 00891 if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) { 00892 const BasicBlock *BB = II->getUnwindDest(); 00893 const LandingPadInst *LP = BB->getLandingPadInst(); 00894 00895 // If the personality functions match, then we can perform the 00896 // inlining. Otherwise, we can't inline. 00897 // TODO: This isn't 100% true. Some personality functions are proper 00898 // supersets of others and can be used in place of the other. 00899 if (LP->getPersonalityFn() != CalleePersonality) 00900 return false; 00901 00902 break; 00903 } 00904 } 00905 00906 // Get an iterator to the last basic block in the function, which will have 00907 // the new function inlined after it. 00908 Function::iterator LastBlock = &Caller->back(); 00909 00910 // Make sure to capture all of the return instructions from the cloned 00911 // function. 00912 SmallVector<ReturnInst*, 8> Returns; 00913 ClonedCodeInfo InlinedFunctionInfo; 00914 Function::iterator FirstNewBlock; 00915 00916 { // Scope to destroy VMap after cloning. 00917 ValueToValueMapTy VMap; 00918 // Keep a list of pair (dst, src) to emit byval initializations. 00919 SmallVector<std::pair<Value*, Value*>, 4> ByValInit; 00920 00921 assert(CalledFunc->arg_size() == CS.arg_size() && 00922 "No varargs calls can be inlined!"); 00923 00924 // Calculate the vector of arguments to pass into the function cloner, which 00925 // matches up the formal to the actual argument values. 00926 CallSite::arg_iterator AI = CS.arg_begin(); 00927 unsigned ArgNo = 0; 00928 for (Function::const_arg_iterator I = CalledFunc->arg_begin(), 00929 E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) { 00930 Value *ActualArg = *AI; 00931 00932 // When byval arguments actually inlined, we need to make the copy implied 00933 // by them explicit. However, we don't do this if the callee is readonly 00934 // or readnone, because the copy would be unneeded: the callee doesn't 00935 // modify the struct. 00936 if (CS.isByValArgument(ArgNo)) { 00937 ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI, 00938 CalledFunc->getParamAlignment(ArgNo+1)); 00939 if (ActualArg != *AI) 00940 ByValInit.push_back(std::make_pair(ActualArg, (Value*) *AI)); 00941 } 00942 00943 VMap[I] = ActualArg; 00944 } 00945 00946 // We want the inliner to prune the code as it copies. We would LOVE to 00947 // have no dead or constant instructions leftover after inlining occurs 00948 // (which can happen, e.g., because an argument was constant), but we'll be 00949 // happy with whatever the cloner can do. 00950 CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, 00951 /*ModuleLevelChanges=*/false, Returns, ".i", 00952 &InlinedFunctionInfo, IFI.DL, TheCall); 00953 00954 // Remember the first block that is newly cloned over. 00955 FirstNewBlock = LastBlock; ++FirstNewBlock; 00956 00957 // Inject byval arguments initialization. 00958 for (std::pair<Value*, Value*> &Init : ByValInit) 00959 HandleByValArgumentInit(Init.first, Init.second, Caller->getParent(), 00960 FirstNewBlock, IFI); 00961 00962 // Update the callgraph if requested. 00963 if (IFI.CG) 00964 UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI); 00965 00966 // Update inlined instructions' line number information. 00967 fixupLineNumbers(Caller, FirstNewBlock, TheCall); 00968 00969 // Clone existing noalias metadata if necessary. 00970 CloneAliasScopeMetadata(CS, VMap); 00971 00972 // Add noalias metadata if necessary. 00973 AddAliasScopeMetadata(CS, VMap, IFI.DL, IFI.AA); 00974 00975 // FIXME: We could register any cloned assumptions instead of clearing the 00976 // whole function's cache. 00977 if (IFI.AT) 00978 IFI.AT->forgetCachedAssumptions(Caller); 00979 } 00980 00981 // If there are any alloca instructions in the block that used to be the entry 00982 // block for the callee, move them to the entry block of the caller. First 00983 // calculate which instruction they should be inserted before. We insert the 00984 // instructions at the end of the current alloca list. 00985 { 00986 BasicBlock::iterator InsertPoint = Caller->begin()->begin(); 00987 for (BasicBlock::iterator I = FirstNewBlock->begin(), 00988 E = FirstNewBlock->end(); I != E; ) { 00989 AllocaInst *AI = dyn_cast<AllocaInst>(I++); 00990 if (!AI) continue; 00991 00992 // If the alloca is now dead, remove it. This often occurs due to code 00993 // specialization. 00994 if (AI->use_empty()) { 00995 AI->eraseFromParent(); 00996 continue; 00997 } 00998 00999 if (!isa<Constant>(AI->getArraySize())) 01000 continue; 01001 01002 // Keep track of the static allocas that we inline into the caller. 01003 IFI.StaticAllocas.push_back(AI); 01004 01005 // Scan for the block of allocas that we can move over, and move them 01006 // all at once. 01007 while (isa<AllocaInst>(I) && 01008 isa<Constant>(cast<AllocaInst>(I)->getArraySize())) { 01009 IFI.StaticAllocas.push_back(cast<AllocaInst>(I)); 01010 ++I; 01011 } 01012 01013 // Transfer all of the allocas over in a block. Using splice means 01014 // that the instructions aren't removed from the symbol table, then 01015 // reinserted. 01016 Caller->getEntryBlock().getInstList().splice(InsertPoint, 01017 FirstNewBlock->getInstList(), 01018 AI, I); 01019 } 01020 } 01021 01022 bool InlinedMustTailCalls = false; 01023 if (InlinedFunctionInfo.ContainsCalls) { 01024 CallInst::TailCallKind CallSiteTailKind = CallInst::TCK_None; 01025 if (CallInst *CI = dyn_cast<CallInst>(TheCall)) 01026 CallSiteTailKind = CI->getTailCallKind(); 01027 01028 for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; 01029 ++BB) { 01030 for (Instruction &I : *BB) { 01031 CallInst *CI = dyn_cast<CallInst>(&I); 01032 if (!CI) 01033 continue; 01034 01035 // We need to reduce the strength of any inlined tail calls. For 01036 // musttail, we have to avoid introducing potential unbounded stack 01037 // growth. For example, if functions 'f' and 'g' are mutually recursive 01038 // with musttail, we can inline 'g' into 'f' so long as we preserve 01039 // musttail on the cloned call to 'f'. If either the inlined call site 01040 // or the cloned call site is *not* musttail, the program already has 01041 // one frame of stack growth, so it's safe to remove musttail. Here is 01042 // a table of example transformations: 01043 // 01044 // f -> musttail g -> musttail f ==> f -> musttail f 01045 // f -> musttail g -> tail f ==> f -> tail f 01046 // f -> g -> musttail f ==> f -> f 01047 // f -> g -> tail f ==> f -> f 01048 CallInst::TailCallKind ChildTCK = CI->getTailCallKind(); 01049 ChildTCK = std::min(CallSiteTailKind, ChildTCK); 01050 CI->setTailCallKind(ChildTCK); 01051 InlinedMustTailCalls |= CI->isMustTailCall(); 01052 01053 // Calls inlined through a 'nounwind' call site should be marked 01054 // 'nounwind'. 01055 if (MarkNoUnwind) 01056 CI->setDoesNotThrow(); 01057 } 01058 } 01059 } 01060 01061 // Leave lifetime markers for the static alloca's, scoping them to the 01062 // function we just inlined. 01063 if (InsertLifetime && !IFI.StaticAllocas.empty()) { 01064 IRBuilder<> builder(FirstNewBlock->begin()); 01065 for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) { 01066 AllocaInst *AI = IFI.StaticAllocas[ai]; 01067 01068 // If the alloca is already scoped to something smaller than the whole 01069 // function then there's no need to add redundant, less accurate markers. 01070 if (hasLifetimeMarkers(AI)) 01071 continue; 01072 01073 // Try to determine the size of the allocation. 01074 ConstantInt *AllocaSize = nullptr; 01075 if (ConstantInt *AIArraySize = 01076 dyn_cast<ConstantInt>(AI->getArraySize())) { 01077 if (IFI.DL) { 01078 Type *AllocaType = AI->getAllocatedType(); 01079 uint64_t AllocaTypeSize = IFI.DL->getTypeAllocSize(AllocaType); 01080 uint64_t AllocaArraySize = AIArraySize->getLimitedValue(); 01081 assert(AllocaArraySize > 0 && "array size of AllocaInst is zero"); 01082 // Check that array size doesn't saturate uint64_t and doesn't 01083 // overflow when it's multiplied by type size. 01084 if (AllocaArraySize != ~0ULL && 01085 UINT64_MAX / AllocaArraySize >= AllocaTypeSize) { 01086 AllocaSize = ConstantInt::get(Type::getInt64Ty(AI->getContext()), 01087 AllocaArraySize * AllocaTypeSize); 01088 } 01089 } 01090 } 01091 01092 builder.CreateLifetimeStart(AI, AllocaSize); 01093 for (ReturnInst *RI : Returns) { 01094 // Don't insert llvm.lifetime.end calls between a musttail call and a 01095 // return. The return kills all local allocas. 01096 if (InlinedMustTailCalls && 01097 RI->getParent()->getTerminatingMustTailCall()) 01098 continue; 01099 IRBuilder<>(RI).CreateLifetimeEnd(AI, AllocaSize); 01100 } 01101 } 01102 } 01103 01104 // If the inlined code contained dynamic alloca instructions, wrap the inlined 01105 // code with llvm.stacksave/llvm.stackrestore intrinsics. 01106 if (InlinedFunctionInfo.ContainsDynamicAllocas) { 01107 Module *M = Caller->getParent(); 01108 // Get the two intrinsics we care about. 01109 Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave); 01110 Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore); 01111 01112 // Insert the llvm.stacksave. 01113 CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin()) 01114 .CreateCall(StackSave, "savedstack"); 01115 01116 // Insert a call to llvm.stackrestore before any return instructions in the 01117 // inlined function. 01118 for (ReturnInst *RI : Returns) { 01119 // Don't insert llvm.stackrestore calls between a musttail call and a 01120 // return. The return will restore the stack pointer. 01121 if (InlinedMustTailCalls && RI->getParent()->getTerminatingMustTailCall()) 01122 continue; 01123 IRBuilder<>(RI).CreateCall(StackRestore, SavedPtr); 01124 } 01125 } 01126 01127 // If we are inlining for an invoke instruction, we must make sure to rewrite 01128 // any call instructions into invoke instructions. 01129 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) 01130 HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo); 01131 01132 // Handle any inlined musttail call sites. In order for a new call site to be 01133 // musttail, the source of the clone and the inlined call site must have been 01134 // musttail. Therefore it's safe to return without merging control into the 01135 // phi below. 01136 if (InlinedMustTailCalls) { 01137 // Check if we need to bitcast the result of any musttail calls. 01138 Type *NewRetTy = Caller->getReturnType(); 01139 bool NeedBitCast = !TheCall->use_empty() && TheCall->getType() != NewRetTy; 01140 01141 // Handle the returns preceded by musttail calls separately. 01142 SmallVector<ReturnInst *, 8> NormalReturns; 01143 for (ReturnInst *RI : Returns) { 01144 CallInst *ReturnedMustTail = 01145 RI->getParent()->getTerminatingMustTailCall(); 01146 if (!ReturnedMustTail) { 01147 NormalReturns.push_back(RI); 01148 continue; 01149 } 01150 if (!NeedBitCast) 01151 continue; 01152 01153 // Delete the old return and any preceding bitcast. 01154 BasicBlock *CurBB = RI->getParent(); 01155 auto *OldCast = dyn_cast_or_null<BitCastInst>(RI->getReturnValue()); 01156 RI->eraseFromParent(); 01157 if (OldCast) 01158 OldCast->eraseFromParent(); 01159 01160 // Insert a new bitcast and return with the right type. 01161 IRBuilder<> Builder(CurBB); 01162 Builder.CreateRet(Builder.CreateBitCast(ReturnedMustTail, NewRetTy)); 01163 } 01164 01165 // Leave behind the normal returns so we can merge control flow. 01166 std::swap(Returns, NormalReturns); 01167 } 01168 01169 // If we cloned in _exactly one_ basic block, and if that block ends in a 01170 // return instruction, we splice the body of the inlined callee directly into 01171 // the calling basic block. 01172 if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) { 01173 // Move all of the instructions right before the call. 01174 OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(), 01175 FirstNewBlock->begin(), FirstNewBlock->end()); 01176 // Remove the cloned basic block. 01177 Caller->getBasicBlockList().pop_back(); 01178 01179 // If the call site was an invoke instruction, add a branch to the normal 01180 // destination. 01181 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 01182 BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall); 01183 NewBr->setDebugLoc(Returns[0]->getDebugLoc()); 01184 } 01185 01186 // If the return instruction returned a value, replace uses of the call with 01187 // uses of the returned value. 01188 if (!TheCall->use_empty()) { 01189 ReturnInst *R = Returns[0]; 01190 if (TheCall == R->getReturnValue()) 01191 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 01192 else 01193 TheCall->replaceAllUsesWith(R->getReturnValue()); 01194 } 01195 // Since we are now done with the Call/Invoke, we can delete it. 01196 TheCall->eraseFromParent(); 01197 01198 // Since we are now done with the return instruction, delete it also. 01199 Returns[0]->eraseFromParent(); 01200 01201 // We are now done with the inlining. 01202 return true; 01203 } 01204 01205 // Otherwise, we have the normal case, of more than one block to inline or 01206 // multiple return sites. 01207 01208 // We want to clone the entire callee function into the hole between the 01209 // "starter" and "ender" blocks. How we accomplish this depends on whether 01210 // this is an invoke instruction or a call instruction. 01211 BasicBlock *AfterCallBB; 01212 BranchInst *CreatedBranchToNormalDest = nullptr; 01213 if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) { 01214 01215 // Add an unconditional branch to make this look like the CallInst case... 01216 CreatedBranchToNormalDest = BranchInst::Create(II->getNormalDest(), TheCall); 01217 01218 // Split the basic block. This guarantees that no PHI nodes will have to be 01219 // updated due to new incoming edges, and make the invoke case more 01220 // symmetric to the call case. 01221 AfterCallBB = OrigBB->splitBasicBlock(CreatedBranchToNormalDest, 01222 CalledFunc->getName()+".exit"); 01223 01224 } else { // It's a call 01225 // If this is a call instruction, we need to split the basic block that 01226 // the call lives in. 01227 // 01228 AfterCallBB = OrigBB->splitBasicBlock(TheCall, 01229 CalledFunc->getName()+".exit"); 01230 } 01231 01232 // Change the branch that used to go to AfterCallBB to branch to the first 01233 // basic block of the inlined function. 01234 // 01235 TerminatorInst *Br = OrigBB->getTerminator(); 01236 assert(Br && Br->getOpcode() == Instruction::Br && 01237 "splitBasicBlock broken!"); 01238 Br->setOperand(0, FirstNewBlock); 01239 01240 01241 // Now that the function is correct, make it a little bit nicer. In 01242 // particular, move the basic blocks inserted from the end of the function 01243 // into the space made by splitting the source basic block. 01244 Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(), 01245 FirstNewBlock, Caller->end()); 01246 01247 // Handle all of the return instructions that we just cloned in, and eliminate 01248 // any users of the original call/invoke instruction. 01249 Type *RTy = CalledFunc->getReturnType(); 01250 01251 PHINode *PHI = nullptr; 01252 if (Returns.size() > 1) { 01253 // The PHI node should go at the front of the new basic block to merge all 01254 // possible incoming values. 01255 if (!TheCall->use_empty()) { 01256 PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(), 01257 AfterCallBB->begin()); 01258 // Anything that used the result of the function call should now use the 01259 // PHI node as their operand. 01260 TheCall->replaceAllUsesWith(PHI); 01261 } 01262 01263 // Loop over all of the return instructions adding entries to the PHI node 01264 // as appropriate. 01265 if (PHI) { 01266 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 01267 ReturnInst *RI = Returns[i]; 01268 assert(RI->getReturnValue()->getType() == PHI->getType() && 01269 "Ret value not consistent in function!"); 01270 PHI->addIncoming(RI->getReturnValue(), RI->getParent()); 01271 } 01272 } 01273 01274 01275 // Add a branch to the merge points and remove return instructions. 01276 DebugLoc Loc; 01277 for (unsigned i = 0, e = Returns.size(); i != e; ++i) { 01278 ReturnInst *RI = Returns[i]; 01279 BranchInst* BI = BranchInst::Create(AfterCallBB, RI); 01280 Loc = RI->getDebugLoc(); 01281 BI->setDebugLoc(Loc); 01282 RI->eraseFromParent(); 01283 } 01284 // We need to set the debug location to *somewhere* inside the 01285 // inlined function. The line number may be nonsensical, but the 01286 // instruction will at least be associated with the right 01287 // function. 01288 if (CreatedBranchToNormalDest) 01289 CreatedBranchToNormalDest->setDebugLoc(Loc); 01290 } else if (!Returns.empty()) { 01291 // Otherwise, if there is exactly one return value, just replace anything 01292 // using the return value of the call with the computed value. 01293 if (!TheCall->use_empty()) { 01294 if (TheCall == Returns[0]->getReturnValue()) 01295 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 01296 else 01297 TheCall->replaceAllUsesWith(Returns[0]->getReturnValue()); 01298 } 01299 01300 // Update PHI nodes that use the ReturnBB to use the AfterCallBB. 01301 BasicBlock *ReturnBB = Returns[0]->getParent(); 01302 ReturnBB->replaceAllUsesWith(AfterCallBB); 01303 01304 // Splice the code from the return block into the block that it will return 01305 // to, which contains the code that was after the call. 01306 AfterCallBB->getInstList().splice(AfterCallBB->begin(), 01307 ReturnBB->getInstList()); 01308 01309 if (CreatedBranchToNormalDest) 01310 CreatedBranchToNormalDest->setDebugLoc(Returns[0]->getDebugLoc()); 01311 01312 // Delete the return instruction now and empty ReturnBB now. 01313 Returns[0]->eraseFromParent(); 01314 ReturnBB->eraseFromParent(); 01315 } else if (!TheCall->use_empty()) { 01316 // No returns, but something is using the return value of the call. Just 01317 // nuke the result. 01318 TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType())); 01319 } 01320 01321 // Since we are now done with the Call/Invoke, we can delete it. 01322 TheCall->eraseFromParent(); 01323 01324 // If we inlined any musttail calls and the original return is now 01325 // unreachable, delete it. It can only contain a bitcast and ret. 01326 if (InlinedMustTailCalls && pred_begin(AfterCallBB) == pred_end(AfterCallBB)) 01327 AfterCallBB->eraseFromParent(); 01328 01329 // We should always be able to fold the entry block of the function into the 01330 // single predecessor of the block... 01331 assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!"); 01332 BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0); 01333 01334 // Splice the code entry block into calling block, right before the 01335 // unconditional branch. 01336 CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes 01337 OrigBB->getInstList().splice(Br, CalleeEntry->getInstList()); 01338 01339 // Remove the unconditional branch. 01340 OrigBB->getInstList().erase(Br); 01341 01342 // Now we can remove the CalleeEntry block, which is now empty. 01343 Caller->getBasicBlockList().erase(CalleeEntry); 01344 01345 // If we inserted a phi node, check to see if it has a single value (e.g. all 01346 // the entries are the same or undef). If so, remove the PHI so it doesn't 01347 // block other optimizations. 01348 if (PHI) { 01349 if (Value *V = SimplifyInstruction(PHI, IFI.DL, nullptr, nullptr, IFI.AT)) { 01350 PHI->replaceAllUsesWith(V); 01351 PHI->eraseFromParent(); 01352 } 01353 } 01354 01355 return true; 01356 }