LLVM API Documentation

Instructions.h
Go to the documentation of this file.
00001 //===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file exposes the class definitions of all of the subclasses of the
00011 // Instruction class.  This is meant to be an easy way to get access to all
00012 // instruction subclasses.
00013 //
00014 //===----------------------------------------------------------------------===//
00015 
00016 #ifndef LLVM_IR_INSTRUCTIONS_H
00017 #define LLVM_IR_INSTRUCTIONS_H
00018 
00019 #include "llvm/ADT/ArrayRef.h"
00020 #include "llvm/ADT/iterator_range.h"
00021 #include "llvm/ADT/SmallVector.h"
00022 #include "llvm/IR/Attributes.h"
00023 #include "llvm/IR/CallingConv.h"
00024 #include "llvm/IR/DerivedTypes.h"
00025 #include "llvm/IR/InstrTypes.h"
00026 #include "llvm/Support/ErrorHandling.h"
00027 #include <iterator>
00028 
00029 namespace llvm {
00030 
00031 class APInt;
00032 class ConstantInt;
00033 class ConstantRange;
00034 class DataLayout;
00035 class LLVMContext;
00036 
00037 enum AtomicOrdering {
00038   NotAtomic = 0,
00039   Unordered = 1,
00040   Monotonic = 2,
00041   // Consume = 3,  // Not specified yet.
00042   Acquire = 4,
00043   Release = 5,
00044   AcquireRelease = 6,
00045   SequentiallyConsistent = 7
00046 };
00047 
00048 enum SynchronizationScope {
00049   SingleThread = 0,
00050   CrossThread = 1
00051 };
00052 
00053 /// Returns true if the ordering is at least as strong as acquire
00054 /// (i.e. acquire, acq_rel or seq_cst)
00055 inline bool isAtLeastAcquire(AtomicOrdering Ord) {
00056    return (Ord == Acquire ||
00057     Ord == AcquireRelease ||
00058     Ord == SequentiallyConsistent);
00059 }
00060 
00061 /// Returns true if the ordering is at least as strong as release
00062 /// (i.e. release, acq_rel or seq_cst)
00063 inline bool isAtLeastRelease(AtomicOrdering Ord) {
00064 return (Ord == Release ||
00065     Ord == AcquireRelease ||
00066     Ord == SequentiallyConsistent);
00067 }
00068 
00069 //===----------------------------------------------------------------------===//
00070 //                                AllocaInst Class
00071 //===----------------------------------------------------------------------===//
00072 
00073 /// AllocaInst - an instruction to allocate memory on the stack
00074 ///
00075 class AllocaInst : public UnaryInstruction {
00076 protected:
00077   AllocaInst *clone_impl() const override;
00078 public:
00079   explicit AllocaInst(Type *Ty, Value *ArraySize = nullptr,
00080                       const Twine &Name = "",
00081                       Instruction *InsertBefore = nullptr);
00082   AllocaInst(Type *Ty, Value *ArraySize,
00083              const Twine &Name, BasicBlock *InsertAtEnd);
00084 
00085   AllocaInst(Type *Ty, const Twine &Name, Instruction *InsertBefore = nullptr);
00086   AllocaInst(Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd);
00087 
00088   AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
00089              const Twine &Name = "", Instruction *InsertBefore = nullptr);
00090   AllocaInst(Type *Ty, Value *ArraySize, unsigned Align,
00091              const Twine &Name, BasicBlock *InsertAtEnd);
00092 
00093   // Out of line virtual method, so the vtable, etc. has a home.
00094   virtual ~AllocaInst();
00095 
00096   /// isArrayAllocation - Return true if there is an allocation size parameter
00097   /// to the allocation instruction that is not 1.
00098   ///
00099   bool isArrayAllocation() const;
00100 
00101   /// getArraySize - Get the number of elements allocated. For a simple
00102   /// allocation of a single element, this will return a constant 1 value.
00103   ///
00104   const Value *getArraySize() const { return getOperand(0); }
00105   Value *getArraySize() { return getOperand(0); }
00106 
00107   /// getType - Overload to return most specific pointer type
00108   ///
00109   PointerType *getType() const {
00110     return cast<PointerType>(Instruction::getType());
00111   }
00112 
00113   /// getAllocatedType - Return the type that is being allocated by the
00114   /// instruction.
00115   ///
00116   Type *getAllocatedType() const;
00117 
00118   /// getAlignment - Return the alignment of the memory that is being allocated
00119   /// by the instruction.
00120   ///
00121   unsigned getAlignment() const {
00122     return (1u << (getSubclassDataFromInstruction() & 31)) >> 1;
00123   }
00124   void setAlignment(unsigned Align);
00125 
00126   /// isStaticAlloca - Return true if this alloca is in the entry block of the
00127   /// function and is a constant size.  If so, the code generator will fold it
00128   /// into the prolog/epilog code, so it is basically free.
00129   bool isStaticAlloca() const;
00130 
00131   /// \brief Return true if this alloca is used as an inalloca argument to a
00132   /// call.  Such allocas are never considered static even if they are in the
00133   /// entry block.
00134   bool isUsedWithInAlloca() const {
00135     return getSubclassDataFromInstruction() & 32;
00136   }
00137 
00138   /// \brief Specify whether this alloca is used to represent the arguments to
00139   /// a call.
00140   void setUsedWithInAlloca(bool V) {
00141     setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
00142                                (V ? 32 : 0));
00143   }
00144 
00145   // Methods for support type inquiry through isa, cast, and dyn_cast:
00146   static inline bool classof(const Instruction *I) {
00147     return (I->getOpcode() == Instruction::Alloca);
00148   }
00149   static inline bool classof(const Value *V) {
00150     return isa<Instruction>(V) && classof(cast<Instruction>(V));
00151   }
00152 private:
00153   // Shadow Instruction::setInstructionSubclassData with a private forwarding
00154   // method so that subclasses cannot accidentally use it.
00155   void setInstructionSubclassData(unsigned short D) {
00156     Instruction::setInstructionSubclassData(D);
00157   }
00158 };
00159 
00160 
00161 //===----------------------------------------------------------------------===//
00162 //                                LoadInst Class
00163 //===----------------------------------------------------------------------===//
00164 
00165 /// LoadInst - an instruction for reading from memory.  This uses the
00166 /// SubclassData field in Value to store whether or not the load is volatile.
00167 ///
00168 class LoadInst : public UnaryInstruction {
00169   void AssertOK();
00170 protected:
00171   LoadInst *clone_impl() const override;
00172 public:
00173   LoadInst(Value *Ptr, const Twine &NameStr, Instruction *InsertBefore);
00174   LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
00175   LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile = false,
00176            Instruction *InsertBefore = nullptr);
00177   LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
00178            BasicBlock *InsertAtEnd);
00179   LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
00180            unsigned Align, Instruction *InsertBefore = nullptr);
00181   LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
00182            unsigned Align, BasicBlock *InsertAtEnd);
00183   LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
00184            unsigned Align, AtomicOrdering Order,
00185            SynchronizationScope SynchScope = CrossThread,
00186            Instruction *InsertBefore = nullptr);
00187   LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
00188            unsigned Align, AtomicOrdering Order,
00189            SynchronizationScope SynchScope,
00190            BasicBlock *InsertAtEnd);
00191 
00192   LoadInst(Value *Ptr, const char *NameStr, Instruction *InsertBefore);
00193   LoadInst(Value *Ptr, const char *NameStr, BasicBlock *InsertAtEnd);
00194   explicit LoadInst(Value *Ptr, const char *NameStr = nullptr,
00195                     bool isVolatile = false,
00196                     Instruction *InsertBefore = nullptr);
00197   LoadInst(Value *Ptr, const char *NameStr, bool isVolatile,
00198            BasicBlock *InsertAtEnd);
00199 
00200   /// isVolatile - Return true if this is a load from a volatile memory
00201   /// location.
00202   ///
00203   bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
00204 
00205   /// setVolatile - Specify whether this is a volatile load or not.
00206   ///
00207   void setVolatile(bool V) {
00208     setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
00209                                (V ? 1 : 0));
00210   }
00211 
00212   /// getAlignment - Return the alignment of the access that is being performed
00213   ///
00214   unsigned getAlignment() const {
00215     return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
00216   }
00217 
00218   void setAlignment(unsigned Align);
00219 
00220   /// Returns the ordering effect of this fence.
00221   AtomicOrdering getOrdering() const {
00222     return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
00223   }
00224 
00225   /// Set the ordering constraint on this load. May not be Release or
00226   /// AcquireRelease.
00227   void setOrdering(AtomicOrdering Ordering) {
00228     setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
00229                                (Ordering << 7));
00230   }
00231 
00232   SynchronizationScope getSynchScope() const {
00233     return SynchronizationScope((getSubclassDataFromInstruction() >> 6) & 1);
00234   }
00235 
00236   /// Specify whether this load is ordered with respect to all
00237   /// concurrently executing threads, or only with respect to signal handlers
00238   /// executing in the same thread.
00239   void setSynchScope(SynchronizationScope xthread) {
00240     setInstructionSubclassData((getSubclassDataFromInstruction() & ~(1 << 6)) |
00241                                (xthread << 6));
00242   }
00243 
00244   void setAtomic(AtomicOrdering Ordering,
00245                  SynchronizationScope SynchScope = CrossThread) {
00246     setOrdering(Ordering);
00247     setSynchScope(SynchScope);
00248   }
00249 
00250   bool isSimple() const { return !isAtomic() && !isVolatile(); }
00251   bool isUnordered() const {
00252     return getOrdering() <= Unordered && !isVolatile();
00253   }
00254 
00255   Value *getPointerOperand() { return getOperand(0); }
00256   const Value *getPointerOperand() const { return getOperand(0); }
00257   static unsigned getPointerOperandIndex() { return 0U; }
00258 
00259   /// \brief Returns the address space of the pointer operand.
00260   unsigned getPointerAddressSpace() const {
00261     return getPointerOperand()->getType()->getPointerAddressSpace();
00262   }
00263 
00264 
00265   // Methods for support type inquiry through isa, cast, and dyn_cast:
00266   static inline bool classof(const Instruction *I) {
00267     return I->getOpcode() == Instruction::Load;
00268   }
00269   static inline bool classof(const Value *V) {
00270     return isa<Instruction>(V) && classof(cast<Instruction>(V));
00271   }
00272 private:
00273   // Shadow Instruction::setInstructionSubclassData with a private forwarding
00274   // method so that subclasses cannot accidentally use it.
00275   void setInstructionSubclassData(unsigned short D) {
00276     Instruction::setInstructionSubclassData(D);
00277   }
00278 };
00279 
00280 
00281 //===----------------------------------------------------------------------===//
00282 //                                StoreInst Class
00283 //===----------------------------------------------------------------------===//
00284 
00285 /// StoreInst - an instruction for storing to memory
00286 ///
00287 class StoreInst : public Instruction {
00288   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
00289   void AssertOK();
00290 protected:
00291   StoreInst *clone_impl() const override;
00292 public:
00293   // allocate space for exactly two operands
00294   void *operator new(size_t s) {
00295     return User::operator new(s, 2);
00296   }
00297   StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
00298   StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
00299   StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
00300             Instruction *InsertBefore = nullptr);
00301   StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
00302   StoreInst(Value *Val, Value *Ptr, bool isVolatile,
00303             unsigned Align, Instruction *InsertBefore = nullptr);
00304   StoreInst(Value *Val, Value *Ptr, bool isVolatile,
00305             unsigned Align, BasicBlock *InsertAtEnd);
00306   StoreInst(Value *Val, Value *Ptr, bool isVolatile,
00307             unsigned Align, AtomicOrdering Order,
00308             SynchronizationScope SynchScope = CrossThread,
00309             Instruction *InsertBefore = nullptr);
00310   StoreInst(Value *Val, Value *Ptr, bool isVolatile,
00311             unsigned Align, AtomicOrdering Order,
00312             SynchronizationScope SynchScope,
00313             BasicBlock *InsertAtEnd);
00314 
00315 
00316   /// isVolatile - Return true if this is a store to a volatile memory
00317   /// location.
00318   ///
00319   bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
00320 
00321   /// setVolatile - Specify whether this is a volatile store or not.
00322   ///
00323   void setVolatile(bool V) {
00324     setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
00325                                (V ? 1 : 0));
00326   }
00327 
00328   /// Transparently provide more efficient getOperand methods.
00329   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
00330 
00331   /// getAlignment - Return the alignment of the access that is being performed
00332   ///
00333   unsigned getAlignment() const {
00334     return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
00335   }
00336 
00337   void setAlignment(unsigned Align);
00338 
00339   /// Returns the ordering effect of this store.
00340   AtomicOrdering getOrdering() const {
00341     return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
00342   }
00343 
00344   /// Set the ordering constraint on this store.  May not be Acquire or
00345   /// AcquireRelease.
00346   void setOrdering(AtomicOrdering Ordering) {
00347     setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
00348                                (Ordering << 7));
00349   }
00350 
00351   SynchronizationScope getSynchScope() const {
00352     return SynchronizationScope((getSubclassDataFromInstruction() >> 6) & 1);
00353   }
00354 
00355   /// Specify whether this store instruction is ordered with respect to all
00356   /// concurrently executing threads, or only with respect to signal handlers
00357   /// executing in the same thread.
00358   void setSynchScope(SynchronizationScope xthread) {
00359     setInstructionSubclassData((getSubclassDataFromInstruction() & ~(1 << 6)) |
00360                                (xthread << 6));
00361   }
00362 
00363   void setAtomic(AtomicOrdering Ordering,
00364                  SynchronizationScope SynchScope = CrossThread) {
00365     setOrdering(Ordering);
00366     setSynchScope(SynchScope);
00367   }
00368 
00369   bool isSimple() const { return !isAtomic() && !isVolatile(); }
00370   bool isUnordered() const {
00371     return getOrdering() <= Unordered && !isVolatile();
00372   }
00373 
00374   Value *getValueOperand() { return getOperand(0); }
00375   const Value *getValueOperand() const { return getOperand(0); }
00376 
00377   Value *getPointerOperand() { return getOperand(1); }
00378   const Value *getPointerOperand() const { return getOperand(1); }
00379   static unsigned getPointerOperandIndex() { return 1U; }
00380 
00381   /// \brief Returns the address space of the pointer operand.
00382   unsigned getPointerAddressSpace() const {
00383     return getPointerOperand()->getType()->getPointerAddressSpace();
00384   }
00385 
00386   // Methods for support type inquiry through isa, cast, and dyn_cast:
00387   static inline bool classof(const Instruction *I) {
00388     return I->getOpcode() == Instruction::Store;
00389   }
00390   static inline bool classof(const Value *V) {
00391     return isa<Instruction>(V) && classof(cast<Instruction>(V));
00392   }
00393 private:
00394   // Shadow Instruction::setInstructionSubclassData with a private forwarding
00395   // method so that subclasses cannot accidentally use it.
00396   void setInstructionSubclassData(unsigned short D) {
00397     Instruction::setInstructionSubclassData(D);
00398   }
00399 };
00400 
00401 template <>
00402 struct OperandTraits<StoreInst> : public FixedNumOperandTraits<StoreInst, 2> {
00403 };
00404 
00405 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
00406 
00407 //===----------------------------------------------------------------------===//
00408 //                                FenceInst Class
00409 //===----------------------------------------------------------------------===//
00410 
00411 /// FenceInst - an instruction for ordering other memory operations
00412 ///
00413 class FenceInst : public Instruction {
00414   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
00415   void Init(AtomicOrdering Ordering, SynchronizationScope SynchScope);
00416 protected:
00417   FenceInst *clone_impl() const override;
00418 public:
00419   // allocate space for exactly zero operands
00420   void *operator new(size_t s) {
00421     return User::operator new(s, 0);
00422   }
00423 
00424   // Ordering may only be Acquire, Release, AcquireRelease, or
00425   // SequentiallyConsistent.
00426   FenceInst(LLVMContext &C, AtomicOrdering Ordering,
00427             SynchronizationScope SynchScope = CrossThread,
00428             Instruction *InsertBefore = nullptr);
00429   FenceInst(LLVMContext &C, AtomicOrdering Ordering,
00430             SynchronizationScope SynchScope,
00431             BasicBlock *InsertAtEnd);
00432 
00433   /// Returns the ordering effect of this fence.
00434   AtomicOrdering getOrdering() const {
00435     return AtomicOrdering(getSubclassDataFromInstruction() >> 1);
00436   }
00437 
00438   /// Set the ordering constraint on this fence.  May only be Acquire, Release,
00439   /// AcquireRelease, or SequentiallyConsistent.
00440   void setOrdering(AtomicOrdering Ordering) {
00441     setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
00442                                (Ordering << 1));
00443   }
00444 
00445   SynchronizationScope getSynchScope() const {
00446     return SynchronizationScope(getSubclassDataFromInstruction() & 1);
00447   }
00448 
00449   /// Specify whether this fence orders other operations with respect to all
00450   /// concurrently executing threads, or only with respect to signal handlers
00451   /// executing in the same thread.
00452   void setSynchScope(SynchronizationScope xthread) {
00453     setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
00454                                xthread);
00455   }
00456 
00457   // Methods for support type inquiry through isa, cast, and dyn_cast:
00458   static inline bool classof(const Instruction *I) {
00459     return I->getOpcode() == Instruction::Fence;
00460   }
00461   static inline bool classof(const Value *V) {
00462     return isa<Instruction>(V) && classof(cast<Instruction>(V));
00463   }
00464 private:
00465   // Shadow Instruction::setInstructionSubclassData with a private forwarding
00466   // method so that subclasses cannot accidentally use it.
00467   void setInstructionSubclassData(unsigned short D) {
00468     Instruction::setInstructionSubclassData(D);
00469   }
00470 };
00471 
00472 //===----------------------------------------------------------------------===//
00473 //                                AtomicCmpXchgInst Class
00474 //===----------------------------------------------------------------------===//
00475 
00476 /// AtomicCmpXchgInst - an instruction that atomically checks whether a
00477 /// specified value is in a memory location, and, if it is, stores a new value
00478 /// there.  Returns the value that was loaded.
00479 ///
00480 class AtomicCmpXchgInst : public Instruction {
00481   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
00482   void Init(Value *Ptr, Value *Cmp, Value *NewVal,
00483             AtomicOrdering SuccessOrdering, AtomicOrdering FailureOrdering,
00484             SynchronizationScope SynchScope);
00485 protected:
00486   AtomicCmpXchgInst *clone_impl() const override;
00487 public:
00488   // allocate space for exactly three operands
00489   void *operator new(size_t s) {
00490     return User::operator new(s, 3);
00491   }
00492   AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
00493                     AtomicOrdering SuccessOrdering,
00494                     AtomicOrdering FailureOrdering,
00495                     SynchronizationScope SynchScope,
00496                     Instruction *InsertBefore = nullptr);
00497   AtomicCmpXchgInst(Value *Ptr, Value *Cmp, Value *NewVal,
00498                     AtomicOrdering SuccessOrdering,
00499                     AtomicOrdering FailureOrdering,
00500                     SynchronizationScope SynchScope,
00501                     BasicBlock *InsertAtEnd);
00502 
00503   /// isVolatile - Return true if this is a cmpxchg from a volatile memory
00504   /// location.
00505   ///
00506   bool isVolatile() const {
00507     return getSubclassDataFromInstruction() & 1;
00508   }
00509 
00510   /// setVolatile - Specify whether this is a volatile cmpxchg.
00511   ///
00512   void setVolatile(bool V) {
00513      setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
00514                                 (unsigned)V);
00515   }
00516 
00517   /// Return true if this cmpxchg may spuriously fail.
00518   bool isWeak() const {
00519     return getSubclassDataFromInstruction() & 0x100;
00520   }
00521 
00522   void setWeak(bool IsWeak) {
00523     setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
00524                                (IsWeak << 8));
00525   }
00526 
00527   /// Transparently provide more efficient getOperand methods.
00528   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
00529 
00530   /// Set the ordering constraint on this cmpxchg.
00531   void setSuccessOrdering(AtomicOrdering Ordering) {
00532     assert(Ordering != NotAtomic &&
00533            "CmpXchg instructions can only be atomic.");
00534     setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
00535                                (Ordering << 2));
00536   }
00537 
00538   void setFailureOrdering(AtomicOrdering Ordering) {
00539     assert(Ordering != NotAtomic &&
00540            "CmpXchg instructions can only be atomic.");
00541     setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
00542                                (Ordering << 5));
00543   }
00544 
00545   /// Specify whether this cmpxchg is atomic and orders other operations with
00546   /// respect to all concurrently executing threads, or only with respect to
00547   /// signal handlers executing in the same thread.
00548   void setSynchScope(SynchronizationScope SynchScope) {
00549     setInstructionSubclassData((getSubclassDataFromInstruction() & ~2) |
00550                                (SynchScope << 1));
00551   }
00552 
00553   /// Returns the ordering constraint on this cmpxchg.
00554   AtomicOrdering getSuccessOrdering() const {
00555     return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
00556   }
00557 
00558   /// Returns the ordering constraint on this cmpxchg.
00559   AtomicOrdering getFailureOrdering() const {
00560     return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
00561   }
00562 
00563   /// Returns whether this cmpxchg is atomic between threads or only within a
00564   /// single thread.
00565   SynchronizationScope getSynchScope() const {
00566     return SynchronizationScope((getSubclassDataFromInstruction() & 2) >> 1);
00567   }
00568 
00569   Value *getPointerOperand() { return getOperand(0); }
00570   const Value *getPointerOperand() const { return getOperand(0); }
00571   static unsigned getPointerOperandIndex() { return 0U; }
00572 
00573   Value *getCompareOperand() { return getOperand(1); }
00574   const Value *getCompareOperand() const { return getOperand(1); }
00575 
00576   Value *getNewValOperand() { return getOperand(2); }
00577   const Value *getNewValOperand() const { return getOperand(2); }
00578 
00579   /// \brief Returns the address space of the pointer operand.
00580   unsigned getPointerAddressSpace() const {
00581     return getPointerOperand()->getType()->getPointerAddressSpace();
00582   }
00583 
00584   /// \brief Returns the strongest permitted ordering on failure, given the
00585   /// desired ordering on success.
00586   ///
00587   /// If the comparison in a cmpxchg operation fails, there is no atomic store
00588   /// so release semantics cannot be provided. So this function drops explicit
00589   /// Release requests from the AtomicOrdering. A SequentiallyConsistent
00590   /// operation would remain SequentiallyConsistent.
00591   static AtomicOrdering
00592   getStrongestFailureOrdering(AtomicOrdering SuccessOrdering) {
00593     switch (SuccessOrdering) {
00594     default: llvm_unreachable("invalid cmpxchg success ordering");
00595     case Release:
00596     case Monotonic:
00597       return Monotonic;
00598     case AcquireRelease:
00599     case Acquire:
00600       return Acquire;
00601     case SequentiallyConsistent:
00602       return SequentiallyConsistent;
00603     }
00604   }
00605 
00606   // Methods for support type inquiry through isa, cast, and dyn_cast:
00607   static inline bool classof(const Instruction *I) {
00608     return I->getOpcode() == Instruction::AtomicCmpXchg;
00609   }
00610   static inline bool classof(const Value *V) {
00611     return isa<Instruction>(V) && classof(cast<Instruction>(V));
00612   }
00613 private:
00614   // Shadow Instruction::setInstructionSubclassData with a private forwarding
00615   // method so that subclasses cannot accidentally use it.
00616   void setInstructionSubclassData(unsigned short D) {
00617     Instruction::setInstructionSubclassData(D);
00618   }
00619 };
00620 
00621 template <>
00622 struct OperandTraits<AtomicCmpXchgInst> :
00623     public FixedNumOperandTraits<AtomicCmpXchgInst, 3> {
00624 };
00625 
00626 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst, Value)
00627 
00628 //===----------------------------------------------------------------------===//
00629 //                                AtomicRMWInst Class
00630 //===----------------------------------------------------------------------===//
00631 
00632 /// AtomicRMWInst - an instruction that atomically reads a memory location,
00633 /// combines it with another value, and then stores the result back.  Returns
00634 /// the old value.
00635 ///
00636 class AtomicRMWInst : public Instruction {
00637   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
00638 protected:
00639   AtomicRMWInst *clone_impl() const override;
00640 public:
00641   /// This enumeration lists the possible modifications atomicrmw can make.  In
00642   /// the descriptions, 'p' is the pointer to the instruction's memory location,
00643   /// 'old' is the initial value of *p, and 'v' is the other value passed to the
00644   /// instruction.  These instructions always return 'old'.
00645   enum BinOp {
00646     /// *p = v
00647     Xchg,
00648     /// *p = old + v
00649     Add,
00650     /// *p = old - v
00651     Sub,
00652     /// *p = old & v
00653     And,
00654     /// *p = ~old & v
00655     Nand,
00656     /// *p = old | v
00657     Or,
00658     /// *p = old ^ v
00659     Xor,
00660     /// *p = old >signed v ? old : v
00661     Max,
00662     /// *p = old <signed v ? old : v
00663     Min,
00664     /// *p = old >unsigned v ? old : v
00665     UMax,
00666     /// *p = old <unsigned v ? old : v
00667     UMin,
00668 
00669     FIRST_BINOP = Xchg,
00670     LAST_BINOP = UMin,
00671     BAD_BINOP
00672   };
00673 
00674   // allocate space for exactly two operands
00675   void *operator new(size_t s) {
00676     return User::operator new(s, 2);
00677   }
00678   AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
00679                 AtomicOrdering Ordering, SynchronizationScope SynchScope,
00680                 Instruction *InsertBefore = nullptr);
00681   AtomicRMWInst(BinOp Operation, Value *Ptr, Value *Val,
00682                 AtomicOrdering Ordering, SynchronizationScope SynchScope,
00683                 BasicBlock *InsertAtEnd);
00684 
00685   BinOp getOperation() const {
00686     return static_cast<BinOp>(getSubclassDataFromInstruction() >> 5);
00687   }
00688 
00689   void setOperation(BinOp Operation) {
00690     unsigned short SubclassData = getSubclassDataFromInstruction();
00691     setInstructionSubclassData((SubclassData & 31) |
00692                                (Operation << 5));
00693   }
00694 
00695   /// isVolatile - Return true if this is a RMW on a volatile memory location.
00696   ///
00697   bool isVolatile() const {
00698     return getSubclassDataFromInstruction() & 1;
00699   }
00700 
00701   /// setVolatile - Specify whether this is a volatile RMW or not.
00702   ///
00703   void setVolatile(bool V) {
00704      setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
00705                                 (unsigned)V);
00706   }
00707 
00708   /// Transparently provide more efficient getOperand methods.
00709   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
00710 
00711   /// Set the ordering constraint on this RMW.
00712   void setOrdering(AtomicOrdering Ordering) {
00713     assert(Ordering != NotAtomic &&
00714            "atomicrmw instructions can only be atomic.");
00715     setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
00716                                (Ordering << 2));
00717   }
00718 
00719   /// Specify whether this RMW orders other operations with respect to all
00720   /// concurrently executing threads, or only with respect to signal handlers
00721   /// executing in the same thread.
00722   void setSynchScope(SynchronizationScope SynchScope) {
00723     setInstructionSubclassData((getSubclassDataFromInstruction() & ~2) |
00724                                (SynchScope << 1));
00725   }
00726 
00727   /// Returns the ordering constraint on this RMW.
00728   AtomicOrdering getOrdering() const {
00729     return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
00730   }
00731 
00732   /// Returns whether this RMW is atomic between threads or only within a
00733   /// single thread.
00734   SynchronizationScope getSynchScope() const {
00735     return SynchronizationScope((getSubclassDataFromInstruction() & 2) >> 1);
00736   }
00737 
00738   Value *getPointerOperand() { return getOperand(0); }
00739   const Value *getPointerOperand() const { return getOperand(0); }
00740   static unsigned getPointerOperandIndex() { return 0U; }
00741 
00742   Value *getValOperand() { return getOperand(1); }
00743   const Value *getValOperand() const { return getOperand(1); }
00744 
00745   /// \brief Returns the address space of the pointer operand.
00746   unsigned getPointerAddressSpace() const {
00747     return getPointerOperand()->getType()->getPointerAddressSpace();
00748   }
00749 
00750   // Methods for support type inquiry through isa, cast, and dyn_cast:
00751   static inline bool classof(const Instruction *I) {
00752     return I->getOpcode() == Instruction::AtomicRMW;
00753   }
00754   static inline bool classof(const Value *V) {
00755     return isa<Instruction>(V) && classof(cast<Instruction>(V));
00756   }
00757 private:
00758   void Init(BinOp Operation, Value *Ptr, Value *Val,
00759             AtomicOrdering Ordering, SynchronizationScope SynchScope);
00760   // Shadow Instruction::setInstructionSubclassData with a private forwarding
00761   // method so that subclasses cannot accidentally use it.
00762   void setInstructionSubclassData(unsigned short D) {
00763     Instruction::setInstructionSubclassData(D);
00764   }
00765 };
00766 
00767 template <>
00768 struct OperandTraits<AtomicRMWInst>
00769     : public FixedNumOperandTraits<AtomicRMWInst,2> {
00770 };
00771 
00772 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst, Value)
00773 
00774 //===----------------------------------------------------------------------===//
00775 //                             GetElementPtrInst Class
00776 //===----------------------------------------------------------------------===//
00777 
00778 // checkGEPType - Simple wrapper function to give a better assertion failure
00779 // message on bad indexes for a gep instruction.
00780 //
00781 inline Type *checkGEPType(Type *Ty) {
00782   assert(Ty && "Invalid GetElementPtrInst indices for type!");
00783   return Ty;
00784 }
00785 
00786 /// GetElementPtrInst - an instruction for type-safe pointer arithmetic to
00787 /// access elements of arrays and structs
00788 ///
00789 class GetElementPtrInst : public Instruction {
00790   GetElementPtrInst(const GetElementPtrInst &GEPI);
00791   void init(Value *Ptr, ArrayRef<Value *> IdxList, const Twine &NameStr);
00792 
00793   /// Constructors - Create a getelementptr instruction with a base pointer an
00794   /// list of indices. The first ctor can optionally insert before an existing
00795   /// instruction, the second appends the new instruction to the specified
00796   /// BasicBlock.
00797   inline GetElementPtrInst(Value *Ptr, ArrayRef<Value *> IdxList,
00798                            unsigned Values, const Twine &NameStr,
00799                            Instruction *InsertBefore);
00800   inline GetElementPtrInst(Value *Ptr, ArrayRef<Value *> IdxList,
00801                            unsigned Values, const Twine &NameStr,
00802                            BasicBlock *InsertAtEnd);
00803 protected:
00804   GetElementPtrInst *clone_impl() const override;
00805 public:
00806   static GetElementPtrInst *Create(Value *Ptr, ArrayRef<Value *> IdxList,
00807                                    const Twine &NameStr = "",
00808                                    Instruction *InsertBefore = nullptr) {
00809     unsigned Values = 1 + unsigned(IdxList.size());
00810     return new(Values)
00811       GetElementPtrInst(Ptr, IdxList, Values, NameStr, InsertBefore);
00812   }
00813   static GetElementPtrInst *Create(Value *Ptr, ArrayRef<Value *> IdxList,
00814                                    const Twine &NameStr,
00815                                    BasicBlock *InsertAtEnd) {
00816     unsigned Values = 1 + unsigned(IdxList.size());
00817     return new(Values)
00818       GetElementPtrInst(Ptr, IdxList, Values, NameStr, InsertAtEnd);
00819   }
00820 
00821   /// Create an "inbounds" getelementptr. See the documentation for the
00822   /// "inbounds" flag in LangRef.html for details.
00823   static GetElementPtrInst *CreateInBounds(Value *Ptr,
00824                                            ArrayRef<Value *> IdxList,
00825                                            const Twine &NameStr = "",
00826                                            Instruction *InsertBefore = nullptr){
00827     GetElementPtrInst *GEP = Create(Ptr, IdxList, NameStr, InsertBefore);
00828     GEP->setIsInBounds(true);
00829     return GEP;
00830   }
00831   static GetElementPtrInst *CreateInBounds(Value *Ptr,
00832                                            ArrayRef<Value *> IdxList,
00833                                            const Twine &NameStr,
00834                                            BasicBlock *InsertAtEnd) {
00835     GetElementPtrInst *GEP = Create(Ptr, IdxList, NameStr, InsertAtEnd);
00836     GEP->setIsInBounds(true);
00837     return GEP;
00838   }
00839 
00840   /// Transparently provide more efficient getOperand methods.
00841   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
00842 
00843   // getType - Overload to return most specific sequential type.
00844   SequentialType *getType() const {
00845     return cast<SequentialType>(Instruction::getType());
00846   }
00847 
00848   /// \brief Returns the address space of this instruction's pointer type.
00849   unsigned getAddressSpace() const {
00850     // Note that this is always the same as the pointer operand's address space
00851     // and that is cheaper to compute, so cheat here.
00852     return getPointerAddressSpace();
00853   }
00854 
00855   /// getIndexedType - Returns the type of the element that would be loaded with
00856   /// a load instruction with the specified parameters.
00857   ///
00858   /// Null is returned if the indices are invalid for the specified
00859   /// pointer type.
00860   ///
00861   static Type *getIndexedType(Type *Ptr, ArrayRef<Value *> IdxList);
00862   static Type *getIndexedType(Type *Ptr, ArrayRef<Constant *> IdxList);
00863   static Type *getIndexedType(Type *Ptr, ArrayRef<uint64_t> IdxList);
00864 
00865   inline op_iterator       idx_begin()       { return op_begin()+1; }
00866   inline const_op_iterator idx_begin() const { return op_begin()+1; }
00867   inline op_iterator       idx_end()         { return op_end(); }
00868   inline const_op_iterator idx_end()   const { return op_end(); }
00869 
00870   Value *getPointerOperand() {
00871     return getOperand(0);
00872   }
00873   const Value *getPointerOperand() const {
00874     return getOperand(0);
00875   }
00876   static unsigned getPointerOperandIndex() {
00877     return 0U;    // get index for modifying correct operand.
00878   }
00879 
00880   /// getPointerOperandType - Method to return the pointer operand as a
00881   /// PointerType.
00882   Type *getPointerOperandType() const {
00883     return getPointerOperand()->getType();
00884   }
00885 
00886   /// \brief Returns the address space of the pointer operand.
00887   unsigned getPointerAddressSpace() const {
00888     return getPointerOperandType()->getPointerAddressSpace();
00889   }
00890 
00891   /// GetGEPReturnType - Returns the pointer type returned by the GEP
00892   /// instruction, which may be a vector of pointers.
00893   static Type *getGEPReturnType(Value *Ptr, ArrayRef<Value *> IdxList) {
00894     Type *PtrTy = PointerType::get(checkGEPType(
00895                                    getIndexedType(Ptr->getType(), IdxList)),
00896                                    Ptr->getType()->getPointerAddressSpace());
00897     // Vector GEP
00898     if (Ptr->getType()->isVectorTy()) {
00899       unsigned NumElem = cast<VectorType>(Ptr->getType())->getNumElements();
00900       return VectorType::get(PtrTy, NumElem);
00901     }
00902 
00903     // Scalar GEP
00904     return PtrTy;
00905   }
00906 
00907   unsigned getNumIndices() const {  // Note: always non-negative
00908     return getNumOperands() - 1;
00909   }
00910 
00911   bool hasIndices() const {
00912     return getNumOperands() > 1;
00913   }
00914 
00915   /// hasAllZeroIndices - Return true if all of the indices of this GEP are
00916   /// zeros.  If so, the result pointer and the first operand have the same
00917   /// value, just potentially different types.
00918   bool hasAllZeroIndices() const;
00919 
00920   /// hasAllConstantIndices - Return true if all of the indices of this GEP are
00921   /// constant integers.  If so, the result pointer and the first operand have
00922   /// a constant offset between them.
00923   bool hasAllConstantIndices() const;
00924 
00925   /// setIsInBounds - Set or clear the inbounds flag on this GEP instruction.
00926   /// See LangRef.html for the meaning of inbounds on a getelementptr.
00927   void setIsInBounds(bool b = true);
00928 
00929   /// isInBounds - Determine whether the GEP has the inbounds flag.
00930   bool isInBounds() const;
00931 
00932   /// \brief Accumulate the constant address offset of this GEP if possible.
00933   ///
00934   /// This routine accepts an APInt into which it will accumulate the constant
00935   /// offset of this GEP if the GEP is in fact constant. If the GEP is not
00936   /// all-constant, it returns false and the value of the offset APInt is
00937   /// undefined (it is *not* preserved!). The APInt passed into this routine
00938   /// must be at least as wide as the IntPtr type for the address space of
00939   /// the base GEP pointer.
00940   bool accumulateConstantOffset(const DataLayout &DL, APInt &Offset) const;
00941 
00942   // Methods for support type inquiry through isa, cast, and dyn_cast:
00943   static inline bool classof(const Instruction *I) {
00944     return (I->getOpcode() == Instruction::GetElementPtr);
00945   }
00946   static inline bool classof(const Value *V) {
00947     return isa<Instruction>(V) && classof(cast<Instruction>(V));
00948   }
00949 };
00950 
00951 template <>
00952 struct OperandTraits<GetElementPtrInst> :
00953   public VariadicOperandTraits<GetElementPtrInst, 1> {
00954 };
00955 
00956 GetElementPtrInst::GetElementPtrInst(Value *Ptr,
00957                                      ArrayRef<Value *> IdxList,
00958                                      unsigned Values,
00959                                      const Twine &NameStr,
00960                                      Instruction *InsertBefore)
00961   : Instruction(getGEPReturnType(Ptr, IdxList),
00962                 GetElementPtr,
00963                 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
00964                 Values, InsertBefore) {
00965   init(Ptr, IdxList, NameStr);
00966 }
00967 GetElementPtrInst::GetElementPtrInst(Value *Ptr,
00968                                      ArrayRef<Value *> IdxList,
00969                                      unsigned Values,
00970                                      const Twine &NameStr,
00971                                      BasicBlock *InsertAtEnd)
00972   : Instruction(getGEPReturnType(Ptr, IdxList),
00973                 GetElementPtr,
00974                 OperandTraits<GetElementPtrInst>::op_end(this) - Values,
00975                 Values, InsertAtEnd) {
00976   init(Ptr, IdxList, NameStr);
00977 }
00978 
00979 
00980 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
00981 
00982 
00983 //===----------------------------------------------------------------------===//
00984 //                               ICmpInst Class
00985 //===----------------------------------------------------------------------===//
00986 
00987 /// This instruction compares its operands according to the predicate given
00988 /// to the constructor. It only operates on integers or pointers. The operands
00989 /// must be identical types.
00990 /// \brief Represent an integer comparison operator.
00991 class ICmpInst: public CmpInst {
00992   void AssertOK() {
00993     assert(getPredicate() >= CmpInst::FIRST_ICMP_PREDICATE &&
00994            getPredicate() <= CmpInst::LAST_ICMP_PREDICATE &&
00995            "Invalid ICmp predicate value");
00996     assert(getOperand(0)->getType() == getOperand(1)->getType() &&
00997           "Both operands to ICmp instruction are not of the same type!");
00998     // Check that the operands are the right type
00999     assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
01000             getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
01001            "Invalid operand types for ICmp instruction");
01002   }
01003 
01004 protected:
01005   /// \brief Clone an identical ICmpInst
01006   ICmpInst *clone_impl() const override;
01007 public:
01008   /// \brief Constructor with insert-before-instruction semantics.
01009   ICmpInst(
01010     Instruction *InsertBefore,  ///< Where to insert
01011     Predicate pred,  ///< The predicate to use for the comparison
01012     Value *LHS,      ///< The left-hand-side of the expression
01013     Value *RHS,      ///< The right-hand-side of the expression
01014     const Twine &NameStr = ""  ///< Name of the instruction
01015   ) : CmpInst(makeCmpResultType(LHS->getType()),
01016               Instruction::ICmp, pred, LHS, RHS, NameStr,
01017               InsertBefore) {
01018 #ifndef NDEBUG
01019   AssertOK();
01020 #endif
01021   }
01022 
01023   /// \brief Constructor with insert-at-end semantics.
01024   ICmpInst(
01025     BasicBlock &InsertAtEnd, ///< Block to insert into.
01026     Predicate pred,  ///< The predicate to use for the comparison
01027     Value *LHS,      ///< The left-hand-side of the expression
01028     Value *RHS,      ///< The right-hand-side of the expression
01029     const Twine &NameStr = ""  ///< Name of the instruction
01030   ) : CmpInst(makeCmpResultType(LHS->getType()),
01031               Instruction::ICmp, pred, LHS, RHS, NameStr,
01032               &InsertAtEnd) {
01033 #ifndef NDEBUG
01034   AssertOK();
01035 #endif
01036   }
01037 
01038   /// \brief Constructor with no-insertion semantics
01039   ICmpInst(
01040     Predicate pred, ///< The predicate to use for the comparison
01041     Value *LHS,     ///< The left-hand-side of the expression
01042     Value *RHS,     ///< The right-hand-side of the expression
01043     const Twine &NameStr = "" ///< Name of the instruction
01044   ) : CmpInst(makeCmpResultType(LHS->getType()),
01045               Instruction::ICmp, pred, LHS, RHS, NameStr) {
01046 #ifndef NDEBUG
01047   AssertOK();
01048 #endif
01049   }
01050 
01051   /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
01052   /// @returns the predicate that would be the result if the operand were
01053   /// regarded as signed.
01054   /// \brief Return the signed version of the predicate
01055   Predicate getSignedPredicate() const {
01056     return getSignedPredicate(getPredicate());
01057   }
01058 
01059   /// This is a static version that you can use without an instruction.
01060   /// \brief Return the signed version of the predicate.
01061   static Predicate getSignedPredicate(Predicate pred);
01062 
01063   /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
01064   /// @returns the predicate that would be the result if the operand were
01065   /// regarded as unsigned.
01066   /// \brief Return the unsigned version of the predicate
01067   Predicate getUnsignedPredicate() const {
01068     return getUnsignedPredicate(getPredicate());
01069   }
01070 
01071   /// This is a static version that you can use without an instruction.
01072   /// \brief Return the unsigned version of the predicate.
01073   static Predicate getUnsignedPredicate(Predicate pred);
01074 
01075   /// isEquality - Return true if this predicate is either EQ or NE.  This also
01076   /// tests for commutativity.
01077   static bool isEquality(Predicate P) {
01078     return P == ICMP_EQ || P == ICMP_NE;
01079   }
01080 
01081   /// isEquality - Return true if this predicate is either EQ or NE.  This also
01082   /// tests for commutativity.
01083   bool isEquality() const {
01084     return isEquality(getPredicate());
01085   }
01086 
01087   /// @returns true if the predicate of this ICmpInst is commutative
01088   /// \brief Determine if this relation is commutative.
01089   bool isCommutative() const { return isEquality(); }
01090 
01091   /// isRelational - Return true if the predicate is relational (not EQ or NE).
01092   ///
01093   bool isRelational() const {
01094     return !isEquality();
01095   }
01096 
01097   /// isRelational - Return true if the predicate is relational (not EQ or NE).
01098   ///
01099   static bool isRelational(Predicate P) {
01100     return !isEquality(P);
01101   }
01102 
01103   /// Initialize a set of values that all satisfy the predicate with C.
01104   /// \brief Make a ConstantRange for a relation with a constant value.
01105   static ConstantRange makeConstantRange(Predicate pred, const APInt &C);
01106 
01107   /// Exchange the two operands to this instruction in such a way that it does
01108   /// not modify the semantics of the instruction. The predicate value may be
01109   /// changed to retain the same result if the predicate is order dependent
01110   /// (e.g. ult).
01111   /// \brief Swap operands and adjust predicate.
01112   void swapOperands() {
01113     setPredicate(getSwappedPredicate());
01114     Op<0>().swap(Op<1>());
01115   }
01116 
01117   // Methods for support type inquiry through isa, cast, and dyn_cast:
01118   static inline bool classof(const Instruction *I) {
01119     return I->getOpcode() == Instruction::ICmp;
01120   }
01121   static inline bool classof(const Value *V) {
01122     return isa<Instruction>(V) && classof(cast<Instruction>(V));
01123   }
01124 
01125 };
01126 
01127 //===----------------------------------------------------------------------===//
01128 //                               FCmpInst Class
01129 //===----------------------------------------------------------------------===//
01130 
01131 /// This instruction compares its operands according to the predicate given
01132 /// to the constructor. It only operates on floating point values or packed
01133 /// vectors of floating point values. The operands must be identical types.
01134 /// \brief Represents a floating point comparison operator.
01135 class FCmpInst: public CmpInst {
01136 protected:
01137   /// \brief Clone an identical FCmpInst
01138   FCmpInst *clone_impl() const override;
01139 public:
01140   /// \brief Constructor with insert-before-instruction semantics.
01141   FCmpInst(
01142     Instruction *InsertBefore, ///< Where to insert
01143     Predicate pred,  ///< The predicate to use for the comparison
01144     Value *LHS,      ///< The left-hand-side of the expression
01145     Value *RHS,      ///< The right-hand-side of the expression
01146     const Twine &NameStr = ""  ///< Name of the instruction
01147   ) : CmpInst(makeCmpResultType(LHS->getType()),
01148               Instruction::FCmp, pred, LHS, RHS, NameStr,
01149               InsertBefore) {
01150     assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
01151            "Invalid FCmp predicate value");
01152     assert(getOperand(0)->getType() == getOperand(1)->getType() &&
01153            "Both operands to FCmp instruction are not of the same type!");
01154     // Check that the operands are the right type
01155     assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
01156            "Invalid operand types for FCmp instruction");
01157   }
01158 
01159   /// \brief Constructor with insert-at-end semantics.
01160   FCmpInst(
01161     BasicBlock &InsertAtEnd, ///< Block to insert into.
01162     Predicate pred,  ///< The predicate to use for the comparison
01163     Value *LHS,      ///< The left-hand-side of the expression
01164     Value *RHS,      ///< The right-hand-side of the expression
01165     const Twine &NameStr = ""  ///< Name of the instruction
01166   ) : CmpInst(makeCmpResultType(LHS->getType()),
01167               Instruction::FCmp, pred, LHS, RHS, NameStr,
01168               &InsertAtEnd) {
01169     assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
01170            "Invalid FCmp predicate value");
01171     assert(getOperand(0)->getType() == getOperand(1)->getType() &&
01172            "Both operands to FCmp instruction are not of the same type!");
01173     // Check that the operands are the right type
01174     assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
01175            "Invalid operand types for FCmp instruction");
01176   }
01177 
01178   /// \brief Constructor with no-insertion semantics
01179   FCmpInst(
01180     Predicate pred, ///< The predicate to use for the comparison
01181     Value *LHS,     ///< The left-hand-side of the expression
01182     Value *RHS,     ///< The right-hand-side of the expression
01183     const Twine &NameStr = "" ///< Name of the instruction
01184   ) : CmpInst(makeCmpResultType(LHS->getType()),
01185               Instruction::FCmp, pred, LHS, RHS, NameStr) {
01186     assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
01187            "Invalid FCmp predicate value");
01188     assert(getOperand(0)->getType() == getOperand(1)->getType() &&
01189            "Both operands to FCmp instruction are not of the same type!");
01190     // Check that the operands are the right type
01191     assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
01192            "Invalid operand types for FCmp instruction");
01193   }
01194 
01195   /// @returns true if the predicate of this instruction is EQ or NE.
01196   /// \brief Determine if this is an equality predicate.
01197   bool isEquality() const {
01198     return getPredicate() == FCMP_OEQ || getPredicate() == FCMP_ONE ||
01199            getPredicate() == FCMP_UEQ || getPredicate() == FCMP_UNE;
01200   }
01201 
01202   /// @returns true if the predicate of this instruction is commutative.
01203   /// \brief Determine if this is a commutative predicate.
01204   bool isCommutative() const {
01205     return isEquality() ||
01206            getPredicate() == FCMP_FALSE ||
01207            getPredicate() == FCMP_TRUE ||
01208            getPredicate() == FCMP_ORD ||
01209            getPredicate() == FCMP_UNO;
01210   }
01211 
01212   /// @returns true if the predicate is relational (not EQ or NE).
01213   /// \brief Determine if this a relational predicate.
01214   bool isRelational() const { return !isEquality(); }
01215 
01216   /// Exchange the two operands to this instruction in such a way that it does
01217   /// not modify the semantics of the instruction. The predicate value may be
01218   /// changed to retain the same result if the predicate is order dependent
01219   /// (e.g. ult).
01220   /// \brief Swap operands and adjust predicate.
01221   void swapOperands() {
01222     setPredicate(getSwappedPredicate());
01223     Op<0>().swap(Op<1>());
01224   }
01225 
01226   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
01227   static inline bool classof(const Instruction *I) {
01228     return I->getOpcode() == Instruction::FCmp;
01229   }
01230   static inline bool classof(const Value *V) {
01231     return isa<Instruction>(V) && classof(cast<Instruction>(V));
01232   }
01233 };
01234 
01235 //===----------------------------------------------------------------------===//
01236 /// CallInst - This class represents a function call, abstracting a target
01237 /// machine's calling convention.  This class uses low bit of the SubClassData
01238 /// field to indicate whether or not this is a tail call.  The rest of the bits
01239 /// hold the calling convention of the call.
01240 ///
01241 class CallInst : public Instruction {
01242   AttributeSet AttributeList; ///< parameter attributes for call
01243   CallInst(const CallInst &CI);
01244   void init(Value *Func, ArrayRef<Value *> Args, const Twine &NameStr);
01245   void init(Value *Func, const Twine &NameStr);
01246 
01247   /// Construct a CallInst given a range of arguments.
01248   /// \brief Construct a CallInst from a range of arguments
01249   inline CallInst(Value *Func, ArrayRef<Value *> Args,
01250                   const Twine &NameStr, Instruction *InsertBefore);
01251 
01252   /// Construct a CallInst given a range of arguments.
01253   /// \brief Construct a CallInst from a range of arguments
01254   inline CallInst(Value *Func, ArrayRef<Value *> Args,
01255                   const Twine &NameStr, BasicBlock *InsertAtEnd);
01256 
01257   explicit CallInst(Value *F, const Twine &NameStr,
01258                     Instruction *InsertBefore);
01259   CallInst(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd);
01260 protected:
01261   CallInst *clone_impl() const override;
01262 public:
01263   static CallInst *Create(Value *Func,
01264                           ArrayRef<Value *> Args,
01265                           const Twine &NameStr = "",
01266                           Instruction *InsertBefore = nullptr) {
01267     return new(unsigned(Args.size() + 1))
01268       CallInst(Func, Args, NameStr, InsertBefore);
01269   }
01270   static CallInst *Create(Value *Func,
01271                           ArrayRef<Value *> Args,
01272                           const Twine &NameStr, BasicBlock *InsertAtEnd) {
01273     return new(unsigned(Args.size() + 1))
01274       CallInst(Func, Args, NameStr, InsertAtEnd);
01275   }
01276   static CallInst *Create(Value *F, const Twine &NameStr = "",
01277                           Instruction *InsertBefore = nullptr) {
01278     return new(1) CallInst(F, NameStr, InsertBefore);
01279   }
01280   static CallInst *Create(Value *F, const Twine &NameStr,
01281                           BasicBlock *InsertAtEnd) {
01282     return new(1) CallInst(F, NameStr, InsertAtEnd);
01283   }
01284   /// CreateMalloc - Generate the IR for a call to malloc:
01285   /// 1. Compute the malloc call's argument as the specified type's size,
01286   ///    possibly multiplied by the array size if the array size is not
01287   ///    constant 1.
01288   /// 2. Call malloc with that argument.
01289   /// 3. Bitcast the result of the malloc call to the specified type.
01290   static Instruction *CreateMalloc(Instruction *InsertBefore,
01291                                    Type *IntPtrTy, Type *AllocTy,
01292                                    Value *AllocSize, Value *ArraySize = nullptr,
01293                                    Function* MallocF = nullptr,
01294                                    const Twine &Name = "");
01295   static Instruction *CreateMalloc(BasicBlock *InsertAtEnd,
01296                                    Type *IntPtrTy, Type *AllocTy,
01297                                    Value *AllocSize, Value *ArraySize = nullptr,
01298                                    Function* MallocF = nullptr,
01299                                    const Twine &Name = "");
01300   /// CreateFree - Generate the IR for a call to the builtin free function.
01301   static Instruction* CreateFree(Value* Source, Instruction *InsertBefore);
01302   static Instruction* CreateFree(Value* Source, BasicBlock *InsertAtEnd);
01303 
01304   ~CallInst();
01305 
01306   // Note that 'musttail' implies 'tail'.
01307   enum TailCallKind { TCK_None = 0, TCK_Tail = 1, TCK_MustTail = 2 };
01308   TailCallKind getTailCallKind() const {
01309     return TailCallKind(getSubclassDataFromInstruction() & 3);
01310   }
01311   bool isTailCall() const {
01312     return (getSubclassDataFromInstruction() & 3) != TCK_None;
01313   }
01314   bool isMustTailCall() const {
01315     return (getSubclassDataFromInstruction() & 3) == TCK_MustTail;
01316   }
01317   void setTailCall(bool isTC = true) {
01318     setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
01319                                unsigned(isTC ? TCK_Tail : TCK_None));
01320   }
01321   void setTailCallKind(TailCallKind TCK) {
01322     setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
01323                                unsigned(TCK));
01324   }
01325 
01326   /// Provide fast operand accessors
01327   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
01328 
01329   /// getNumArgOperands - Return the number of call arguments.
01330   ///
01331   unsigned getNumArgOperands() const { return getNumOperands() - 1; }
01332 
01333   /// getArgOperand/setArgOperand - Return/set the i-th call argument.
01334   ///
01335   Value *getArgOperand(unsigned i) const { return getOperand(i); }
01336   void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
01337 
01338   /// arg_operands - iteration adapter for range-for loops.
01339   iterator_range<op_iterator> arg_operands() {
01340     // The last operand in the op list is the callee - it's not one of the args
01341     // so we don't want to iterate over it.
01342     return iterator_range<op_iterator>(op_begin(), op_end() - 1);
01343   }
01344 
01345   /// arg_operands - iteration adapter for range-for loops.
01346   iterator_range<const_op_iterator> arg_operands() const {
01347     return iterator_range<const_op_iterator>(op_begin(), op_end() - 1);
01348   }
01349 
01350   /// \brief Wrappers for getting the \c Use of a call argument.
01351   const Use &getArgOperandUse(unsigned i) const { return getOperandUse(i); }
01352   Use &getArgOperandUse(unsigned i) { return getOperandUse(i); }
01353 
01354   /// getCallingConv/setCallingConv - Get or set the calling convention of this
01355   /// function call.
01356   CallingConv::ID getCallingConv() const {
01357     return static_cast<CallingConv::ID>(getSubclassDataFromInstruction() >> 2);
01358   }
01359   void setCallingConv(CallingConv::ID CC) {
01360     setInstructionSubclassData((getSubclassDataFromInstruction() & 3) |
01361                                (static_cast<unsigned>(CC) << 2));
01362   }
01363 
01364   /// getAttributes - Return the parameter attributes for this call.
01365   ///
01366   const AttributeSet &getAttributes() const { return AttributeList; }
01367 
01368   /// setAttributes - Set the parameter attributes for this call.
01369   ///
01370   void setAttributes(const AttributeSet &Attrs) { AttributeList = Attrs; }
01371 
01372   /// addAttribute - adds the attribute to the list of attributes.
01373   void addAttribute(unsigned i, Attribute::AttrKind attr);
01374 
01375   /// removeAttribute - removes the attribute from the list of attributes.
01376   void removeAttribute(unsigned i, Attribute attr);
01377 
01378   /// \brief Determine whether this call has the given attribute.
01379   bool hasFnAttr(Attribute::AttrKind A) const {
01380     assert(A != Attribute::NoBuiltin &&
01381            "Use CallInst::isNoBuiltin() to check for Attribute::NoBuiltin");
01382     return hasFnAttrImpl(A);
01383   }
01384 
01385   /// \brief Determine whether the call or the callee has the given attributes.
01386   bool paramHasAttr(unsigned i, Attribute::AttrKind A) const;
01387 
01388   /// \brief Extract the alignment for a call or parameter (0=unknown).
01389   unsigned getParamAlignment(unsigned i) const {
01390     return AttributeList.getParamAlignment(i);
01391   }
01392 
01393   /// \brief Extract the number of dereferenceable bytes for a call or
01394   /// parameter (0=unknown).
01395   uint64_t getDereferenceableBytes(unsigned i) const {
01396     return AttributeList.getDereferenceableBytes(i);
01397   }
01398 
01399   /// \brief Return true if the call should not be treated as a call to a
01400   /// builtin.
01401   bool isNoBuiltin() const {
01402     return hasFnAttrImpl(Attribute::NoBuiltin) &&
01403       !hasFnAttrImpl(Attribute::Builtin);
01404   }
01405 
01406   /// \brief Return true if the call should not be inlined.
01407   bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
01408   void setIsNoInline() {
01409     addAttribute(AttributeSet::FunctionIndex, Attribute::NoInline);
01410   }
01411 
01412   /// \brief Return true if the call can return twice
01413   bool canReturnTwice() const {
01414     return hasFnAttr(Attribute::ReturnsTwice);
01415   }
01416   void setCanReturnTwice() {
01417     addAttribute(AttributeSet::FunctionIndex, Attribute::ReturnsTwice);
01418   }
01419 
01420   /// \brief Determine if the call does not access memory.
01421   bool doesNotAccessMemory() const {
01422     return hasFnAttr(Attribute::ReadNone);
01423   }
01424   void setDoesNotAccessMemory() {
01425     addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
01426   }
01427 
01428   /// \brief Determine if the call does not access or only reads memory.
01429   bool onlyReadsMemory() const {
01430     return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
01431   }
01432   void setOnlyReadsMemory() {
01433     addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly);
01434   }
01435 
01436   /// \brief Determine if the call cannot return.
01437   bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
01438   void setDoesNotReturn() {
01439     addAttribute(AttributeSet::FunctionIndex, Attribute::NoReturn);
01440   }
01441 
01442   /// \brief Determine if the call cannot unwind.
01443   bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
01444   void setDoesNotThrow() {
01445     addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
01446   }
01447 
01448   /// \brief Determine if the call cannot be duplicated.
01449   bool cannotDuplicate() const {return hasFnAttr(Attribute::NoDuplicate); }
01450   void setCannotDuplicate() {
01451     addAttribute(AttributeSet::FunctionIndex, Attribute::NoDuplicate);
01452   }
01453 
01454   /// \brief Determine if the call returns a structure through first
01455   /// pointer argument.
01456   bool hasStructRetAttr() const {
01457     // Be friendly and also check the callee.
01458     return paramHasAttr(1, Attribute::StructRet);
01459   }
01460 
01461   /// \brief Determine if any call argument is an aggregate passed by value.
01462   bool hasByValArgument() const {
01463     return AttributeList.hasAttrSomewhere(Attribute::ByVal);
01464   }
01465 
01466   /// getCalledFunction - Return the function called, or null if this is an
01467   /// indirect function invocation.
01468   ///
01469   Function *getCalledFunction() const {
01470     return dyn_cast<Function>(Op<-1>());
01471   }
01472 
01473   /// getCalledValue - Get a pointer to the function that is invoked by this
01474   /// instruction.
01475   const Value *getCalledValue() const { return Op<-1>(); }
01476         Value *getCalledValue()       { return Op<-1>(); }
01477 
01478   /// setCalledFunction - Set the function called.
01479   void setCalledFunction(Value* Fn) {
01480     Op<-1>() = Fn;
01481   }
01482 
01483   /// isInlineAsm - Check if this call is an inline asm statement.
01484   bool isInlineAsm() const {
01485     return isa<InlineAsm>(Op<-1>());
01486   }
01487 
01488   // Methods for support type inquiry through isa, cast, and dyn_cast:
01489   static inline bool classof(const Instruction *I) {
01490     return I->getOpcode() == Instruction::Call;
01491   }
01492   static inline bool classof(const Value *V) {
01493     return isa<Instruction>(V) && classof(cast<Instruction>(V));
01494   }
01495 private:
01496 
01497   bool hasFnAttrImpl(Attribute::AttrKind A) const;
01498 
01499   // Shadow Instruction::setInstructionSubclassData with a private forwarding
01500   // method so that subclasses cannot accidentally use it.
01501   void setInstructionSubclassData(unsigned short D) {
01502     Instruction::setInstructionSubclassData(D);
01503   }
01504 };
01505 
01506 template <>
01507 struct OperandTraits<CallInst> : public VariadicOperandTraits<CallInst, 1> {
01508 };
01509 
01510 CallInst::CallInst(Value *Func, ArrayRef<Value *> Args,
01511                    const Twine &NameStr, BasicBlock *InsertAtEnd)
01512   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
01513                                    ->getElementType())->getReturnType(),
01514                 Instruction::Call,
01515                 OperandTraits<CallInst>::op_end(this) - (Args.size() + 1),
01516                 unsigned(Args.size() + 1), InsertAtEnd) {
01517   init(Func, Args, NameStr);
01518 }
01519 
01520 CallInst::CallInst(Value *Func, ArrayRef<Value *> Args,
01521                    const Twine &NameStr, Instruction *InsertBefore)
01522   : Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
01523                                    ->getElementType())->getReturnType(),
01524                 Instruction::Call,
01525                 OperandTraits<CallInst>::op_end(this) - (Args.size() + 1),
01526                 unsigned(Args.size() + 1), InsertBefore) {
01527   init(Func, Args, NameStr);
01528 }
01529 
01530 
01531 // Note: if you get compile errors about private methods then
01532 //       please update your code to use the high-level operand
01533 //       interfaces. See line 943 above.
01534 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallInst, Value)
01535 
01536 //===----------------------------------------------------------------------===//
01537 //                               SelectInst Class
01538 //===----------------------------------------------------------------------===//
01539 
01540 /// SelectInst - This class represents the LLVM 'select' instruction.
01541 ///
01542 class SelectInst : public Instruction {
01543   void init(Value *C, Value *S1, Value *S2) {
01544     assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
01545     Op<0>() = C;
01546     Op<1>() = S1;
01547     Op<2>() = S2;
01548   }
01549 
01550   SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
01551              Instruction *InsertBefore)
01552     : Instruction(S1->getType(), Instruction::Select,
01553                   &Op<0>(), 3, InsertBefore) {
01554     init(C, S1, S2);
01555     setName(NameStr);
01556   }
01557   SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
01558              BasicBlock *InsertAtEnd)
01559     : Instruction(S1->getType(), Instruction::Select,
01560                   &Op<0>(), 3, InsertAtEnd) {
01561     init(C, S1, S2);
01562     setName(NameStr);
01563   }
01564 protected:
01565   SelectInst *clone_impl() const override;
01566 public:
01567   static SelectInst *Create(Value *C, Value *S1, Value *S2,
01568                             const Twine &NameStr = "",
01569                             Instruction *InsertBefore = nullptr) {
01570     return new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
01571   }
01572   static SelectInst *Create(Value *C, Value *S1, Value *S2,
01573                             const Twine &NameStr,
01574                             BasicBlock *InsertAtEnd) {
01575     return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
01576   }
01577 
01578   const Value *getCondition() const { return Op<0>(); }
01579   const Value *getTrueValue() const { return Op<1>(); }
01580   const Value *getFalseValue() const { return Op<2>(); }
01581   Value *getCondition() { return Op<0>(); }
01582   Value *getTrueValue() { return Op<1>(); }
01583   Value *getFalseValue() { return Op<2>(); }
01584 
01585   /// areInvalidOperands - Return a string if the specified operands are invalid
01586   /// for a select operation, otherwise return null.
01587   static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
01588 
01589   /// Transparently provide more efficient getOperand methods.
01590   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
01591 
01592   OtherOps getOpcode() const {
01593     return static_cast<OtherOps>(Instruction::getOpcode());
01594   }
01595 
01596   // Methods for support type inquiry through isa, cast, and dyn_cast:
01597   static inline bool classof(const Instruction *I) {
01598     return I->getOpcode() == Instruction::Select;
01599   }
01600   static inline bool classof(const Value *V) {
01601     return isa<Instruction>(V) && classof(cast<Instruction>(V));
01602   }
01603 };
01604 
01605 template <>
01606 struct OperandTraits<SelectInst> : public FixedNumOperandTraits<SelectInst, 3> {
01607 };
01608 
01609 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
01610 
01611 //===----------------------------------------------------------------------===//
01612 //                                VAArgInst Class
01613 //===----------------------------------------------------------------------===//
01614 
01615 /// VAArgInst - This class represents the va_arg llvm instruction, which returns
01616 /// an argument of the specified type given a va_list and increments that list
01617 ///
01618 class VAArgInst : public UnaryInstruction {
01619 protected:
01620   VAArgInst *clone_impl() const override;
01621 
01622 public:
01623   VAArgInst(Value *List, Type *Ty, const Twine &NameStr = "",
01624              Instruction *InsertBefore = nullptr)
01625     : UnaryInstruction(Ty, VAArg, List, InsertBefore) {
01626     setName(NameStr);
01627   }
01628   VAArgInst(Value *List, Type *Ty, const Twine &NameStr,
01629             BasicBlock *InsertAtEnd)
01630     : UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
01631     setName(NameStr);
01632   }
01633 
01634   Value *getPointerOperand() { return getOperand(0); }
01635   const Value *getPointerOperand() const { return getOperand(0); }
01636   static unsigned getPointerOperandIndex() { return 0U; }
01637 
01638   // Methods for support type inquiry through isa, cast, and dyn_cast:
01639   static inline bool classof(const Instruction *I) {
01640     return I->getOpcode() == VAArg;
01641   }
01642   static inline bool classof(const Value *V) {
01643     return isa<Instruction>(V) && classof(cast<Instruction>(V));
01644   }
01645 };
01646 
01647 //===----------------------------------------------------------------------===//
01648 //                                ExtractElementInst Class
01649 //===----------------------------------------------------------------------===//
01650 
01651 /// ExtractElementInst - This instruction extracts a single (scalar)
01652 /// element from a VectorType value
01653 ///
01654 class ExtractElementInst : public Instruction {
01655   ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
01656                      Instruction *InsertBefore = nullptr);
01657   ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
01658                      BasicBlock *InsertAtEnd);
01659 protected:
01660   ExtractElementInst *clone_impl() const override;
01661 
01662 public:
01663   static ExtractElementInst *Create(Value *Vec, Value *Idx,
01664                                    const Twine &NameStr = "",
01665                                    Instruction *InsertBefore = nullptr) {
01666     return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
01667   }
01668   static ExtractElementInst *Create(Value *Vec, Value *Idx,
01669                                    const Twine &NameStr,
01670                                    BasicBlock *InsertAtEnd) {
01671     return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
01672   }
01673 
01674   /// isValidOperands - Return true if an extractelement instruction can be
01675   /// formed with the specified operands.
01676   static bool isValidOperands(const Value *Vec, const Value *Idx);
01677 
01678   Value *getVectorOperand() { return Op<0>(); }
01679   Value *getIndexOperand() { return Op<1>(); }
01680   const Value *getVectorOperand() const { return Op<0>(); }
01681   const Value *getIndexOperand() const { return Op<1>(); }
01682 
01683   VectorType *getVectorOperandType() const {
01684     return cast<VectorType>(getVectorOperand()->getType());
01685   }
01686 
01687 
01688   /// Transparently provide more efficient getOperand methods.
01689   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
01690 
01691   // Methods for support type inquiry through isa, cast, and dyn_cast:
01692   static inline bool classof(const Instruction *I) {
01693     return I->getOpcode() == Instruction::ExtractElement;
01694   }
01695   static inline bool classof(const Value *V) {
01696     return isa<Instruction>(V) && classof(cast<Instruction>(V));
01697   }
01698 };
01699 
01700 template <>
01701 struct OperandTraits<ExtractElementInst> :
01702   public FixedNumOperandTraits<ExtractElementInst, 2> {
01703 };
01704 
01705 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
01706 
01707 //===----------------------------------------------------------------------===//
01708 //                                InsertElementInst Class
01709 //===----------------------------------------------------------------------===//
01710 
01711 /// InsertElementInst - This instruction inserts a single (scalar)
01712 /// element into a VectorType value
01713 ///
01714 class InsertElementInst : public Instruction {
01715   InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
01716                     const Twine &NameStr = "",
01717                     Instruction *InsertBefore = nullptr);
01718   InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
01719                     const Twine &NameStr, BasicBlock *InsertAtEnd);
01720 protected:
01721   InsertElementInst *clone_impl() const override;
01722 
01723 public:
01724   static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
01725                                    const Twine &NameStr = "",
01726                                    Instruction *InsertBefore = nullptr) {
01727     return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
01728   }
01729   static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
01730                                    const Twine &NameStr,
01731                                    BasicBlock *InsertAtEnd) {
01732     return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
01733   }
01734 
01735   /// isValidOperands - Return true if an insertelement instruction can be
01736   /// formed with the specified operands.
01737   static bool isValidOperands(const Value *Vec, const Value *NewElt,
01738                               const Value *Idx);
01739 
01740   /// getType - Overload to return most specific vector type.
01741   ///
01742   VectorType *getType() const {
01743     return cast<VectorType>(Instruction::getType());
01744   }
01745 
01746   /// Transparently provide more efficient getOperand methods.
01747   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
01748 
01749   // Methods for support type inquiry through isa, cast, and dyn_cast:
01750   static inline bool classof(const Instruction *I) {
01751     return I->getOpcode() == Instruction::InsertElement;
01752   }
01753   static inline bool classof(const Value *V) {
01754     return isa<Instruction>(V) && classof(cast<Instruction>(V));
01755   }
01756 };
01757 
01758 template <>
01759 struct OperandTraits<InsertElementInst> :
01760   public FixedNumOperandTraits<InsertElementInst, 3> {
01761 };
01762 
01763 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
01764 
01765 //===----------------------------------------------------------------------===//
01766 //                           ShuffleVectorInst Class
01767 //===----------------------------------------------------------------------===//
01768 
01769 /// ShuffleVectorInst - This instruction constructs a fixed permutation of two
01770 /// input vectors.
01771 ///
01772 class ShuffleVectorInst : public Instruction {
01773 protected:
01774   ShuffleVectorInst *clone_impl() const override;
01775 
01776 public:
01777   // allocate space for exactly three operands
01778   void *operator new(size_t s) {
01779     return User::operator new(s, 3);
01780   }
01781   ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
01782                     const Twine &NameStr = "",
01783                     Instruction *InsertBefor = nullptr);
01784   ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
01785                     const Twine &NameStr, BasicBlock *InsertAtEnd);
01786 
01787   /// isValidOperands - Return true if a shufflevector instruction can be
01788   /// formed with the specified operands.
01789   static bool isValidOperands(const Value *V1, const Value *V2,
01790                               const Value *Mask);
01791 
01792   /// getType - Overload to return most specific vector type.
01793   ///
01794   VectorType *getType() const {
01795     return cast<VectorType>(Instruction::getType());
01796   }
01797 
01798   /// Transparently provide more efficient getOperand methods.
01799   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
01800 
01801   Constant *getMask() const {
01802     return cast<Constant>(getOperand(2));
01803   }
01804 
01805   /// getMaskValue - Return the index from the shuffle mask for the specified
01806   /// output result.  This is either -1 if the element is undef or a number less
01807   /// than 2*numelements.
01808   static int getMaskValue(Constant *Mask, unsigned i);
01809 
01810   int getMaskValue(unsigned i) const {
01811     return getMaskValue(getMask(), i);
01812   }
01813 
01814   /// getShuffleMask - Return the full mask for this instruction, where each
01815   /// element is the element number and undef's are returned as -1.
01816   static void getShuffleMask(Constant *Mask, SmallVectorImpl<int> &Result);
01817 
01818   void getShuffleMask(SmallVectorImpl<int> &Result) const {
01819     return getShuffleMask(getMask(), Result);
01820   }
01821 
01822   SmallVector<int, 16> getShuffleMask() const {
01823     SmallVector<int, 16> Mask;
01824     getShuffleMask(Mask);
01825     return Mask;
01826   }
01827 
01828 
01829   // Methods for support type inquiry through isa, cast, and dyn_cast:
01830   static inline bool classof(const Instruction *I) {
01831     return I->getOpcode() == Instruction::ShuffleVector;
01832   }
01833   static inline bool classof(const Value *V) {
01834     return isa<Instruction>(V) && classof(cast<Instruction>(V));
01835   }
01836 };
01837 
01838 template <>
01839 struct OperandTraits<ShuffleVectorInst> :
01840   public FixedNumOperandTraits<ShuffleVectorInst, 3> {
01841 };
01842 
01843 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
01844 
01845 //===----------------------------------------------------------------------===//
01846 //                                ExtractValueInst Class
01847 //===----------------------------------------------------------------------===//
01848 
01849 /// ExtractValueInst - This instruction extracts a struct member or array
01850 /// element value from an aggregate value.
01851 ///
01852 class ExtractValueInst : public UnaryInstruction {
01853   SmallVector<unsigned, 4> Indices;
01854 
01855   ExtractValueInst(const ExtractValueInst &EVI);
01856   void init(ArrayRef<unsigned> Idxs, const Twine &NameStr);
01857 
01858   /// Constructors - Create a extractvalue instruction with a base aggregate
01859   /// value and a list of indices.  The first ctor can optionally insert before
01860   /// an existing instruction, the second appends the new instruction to the
01861   /// specified BasicBlock.
01862   inline ExtractValueInst(Value *Agg,
01863                           ArrayRef<unsigned> Idxs,
01864                           const Twine &NameStr,
01865                           Instruction *InsertBefore);
01866   inline ExtractValueInst(Value *Agg,
01867                           ArrayRef<unsigned> Idxs,
01868                           const Twine &NameStr, BasicBlock *InsertAtEnd);
01869 
01870   // allocate space for exactly one operand
01871   void *operator new(size_t s) {
01872     return User::operator new(s, 1);
01873   }
01874 protected:
01875   ExtractValueInst *clone_impl() const override;
01876 
01877 public:
01878   static ExtractValueInst *Create(Value *Agg,
01879                                   ArrayRef<unsigned> Idxs,
01880                                   const Twine &NameStr = "",
01881                                   Instruction *InsertBefore = nullptr) {
01882     return new
01883       ExtractValueInst(Agg, Idxs, NameStr, InsertBefore);
01884   }
01885   static ExtractValueInst *Create(Value *Agg,
01886                                   ArrayRef<unsigned> Idxs,
01887                                   const Twine &NameStr,
01888                                   BasicBlock *InsertAtEnd) {
01889     return new ExtractValueInst(Agg, Idxs, NameStr, InsertAtEnd);
01890   }
01891 
01892   /// getIndexedType - Returns the type of the element that would be extracted
01893   /// with an extractvalue instruction with the specified parameters.
01894   ///
01895   /// Null is returned if the indices are invalid for the specified type.
01896   static Type *getIndexedType(Type *Agg, ArrayRef<unsigned> Idxs);
01897 
01898   typedef const unsigned* idx_iterator;
01899   inline idx_iterator idx_begin() const { return Indices.begin(); }
01900   inline idx_iterator idx_end()   const { return Indices.end(); }
01901 
01902   Value *getAggregateOperand() {
01903     return getOperand(0);
01904   }
01905   const Value *getAggregateOperand() const {
01906     return getOperand(0);
01907   }
01908   static unsigned getAggregateOperandIndex() {
01909     return 0U;                      // get index for modifying correct operand
01910   }
01911 
01912   ArrayRef<unsigned> getIndices() const {
01913     return Indices;
01914   }
01915 
01916   unsigned getNumIndices() const {
01917     return (unsigned)Indices.size();
01918   }
01919 
01920   bool hasIndices() const {
01921     return true;
01922   }
01923 
01924   // Methods for support type inquiry through isa, cast, and dyn_cast:
01925   static inline bool classof(const Instruction *I) {
01926     return I->getOpcode() == Instruction::ExtractValue;
01927   }
01928   static inline bool classof(const Value *V) {
01929     return isa<Instruction>(V) && classof(cast<Instruction>(V));
01930   }
01931 };
01932 
01933 ExtractValueInst::ExtractValueInst(Value *Agg,
01934                                    ArrayRef<unsigned> Idxs,
01935                                    const Twine &NameStr,
01936                                    Instruction *InsertBefore)
01937   : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
01938                      ExtractValue, Agg, InsertBefore) {
01939   init(Idxs, NameStr);
01940 }
01941 ExtractValueInst::ExtractValueInst(Value *Agg,
01942                                    ArrayRef<unsigned> Idxs,
01943                                    const Twine &NameStr,
01944                                    BasicBlock *InsertAtEnd)
01945   : UnaryInstruction(checkGEPType(getIndexedType(Agg->getType(), Idxs)),
01946                      ExtractValue, Agg, InsertAtEnd) {
01947   init(Idxs, NameStr);
01948 }
01949 
01950 
01951 //===----------------------------------------------------------------------===//
01952 //                                InsertValueInst Class
01953 //===----------------------------------------------------------------------===//
01954 
01955 /// InsertValueInst - This instruction inserts a struct field of array element
01956 /// value into an aggregate value.
01957 ///
01958 class InsertValueInst : public Instruction {
01959   SmallVector<unsigned, 4> Indices;
01960 
01961   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
01962   InsertValueInst(const InsertValueInst &IVI);
01963   void init(Value *Agg, Value *Val, ArrayRef<unsigned> Idxs,
01964             const Twine &NameStr);
01965 
01966   /// Constructors - Create a insertvalue instruction with a base aggregate
01967   /// value, a value to insert, and a list of indices.  The first ctor can
01968   /// optionally insert before an existing instruction, the second appends
01969   /// the new instruction to the specified BasicBlock.
01970   inline InsertValueInst(Value *Agg, Value *Val,
01971                          ArrayRef<unsigned> Idxs,
01972                          const Twine &NameStr,
01973                          Instruction *InsertBefore);
01974   inline InsertValueInst(Value *Agg, Value *Val,
01975                          ArrayRef<unsigned> Idxs,
01976                          const Twine &NameStr, BasicBlock *InsertAtEnd);
01977 
01978   /// Constructors - These two constructors are convenience methods because one
01979   /// and two index insertvalue instructions are so common.
01980   InsertValueInst(Value *Agg, Value *Val,
01981                   unsigned Idx, const Twine &NameStr = "",
01982                   Instruction *InsertBefore = nullptr);
01983   InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
01984                   const Twine &NameStr, BasicBlock *InsertAtEnd);
01985 protected:
01986   InsertValueInst *clone_impl() const override;
01987 public:
01988   // allocate space for exactly two operands
01989   void *operator new(size_t s) {
01990     return User::operator new(s, 2);
01991   }
01992 
01993   static InsertValueInst *Create(Value *Agg, Value *Val,
01994                                  ArrayRef<unsigned> Idxs,
01995                                  const Twine &NameStr = "",
01996                                  Instruction *InsertBefore = nullptr) {
01997     return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertBefore);
01998   }
01999   static InsertValueInst *Create(Value *Agg, Value *Val,
02000                                  ArrayRef<unsigned> Idxs,
02001                                  const Twine &NameStr,
02002                                  BasicBlock *InsertAtEnd) {
02003     return new InsertValueInst(Agg, Val, Idxs, NameStr, InsertAtEnd);
02004   }
02005 
02006   /// Transparently provide more efficient getOperand methods.
02007   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
02008 
02009   typedef const unsigned* idx_iterator;
02010   inline idx_iterator idx_begin() const { return Indices.begin(); }
02011   inline idx_iterator idx_end()   const { return Indices.end(); }
02012 
02013   Value *getAggregateOperand() {
02014     return getOperand(0);
02015   }
02016   const Value *getAggregateOperand() const {
02017     return getOperand(0);
02018   }
02019   static unsigned getAggregateOperandIndex() {
02020     return 0U;                      // get index for modifying correct operand
02021   }
02022 
02023   Value *getInsertedValueOperand() {
02024     return getOperand(1);
02025   }
02026   const Value *getInsertedValueOperand() const {
02027     return getOperand(1);
02028   }
02029   static unsigned getInsertedValueOperandIndex() {
02030     return 1U;                      // get index for modifying correct operand
02031   }
02032 
02033   ArrayRef<unsigned> getIndices() const {
02034     return Indices;
02035   }
02036 
02037   unsigned getNumIndices() const {
02038     return (unsigned)Indices.size();
02039   }
02040 
02041   bool hasIndices() const {
02042     return true;
02043   }
02044 
02045   // Methods for support type inquiry through isa, cast, and dyn_cast:
02046   static inline bool classof(const Instruction *I) {
02047     return I->getOpcode() == Instruction::InsertValue;
02048   }
02049   static inline bool classof(const Value *V) {
02050     return isa<Instruction>(V) && classof(cast<Instruction>(V));
02051   }
02052 };
02053 
02054 template <>
02055 struct OperandTraits<InsertValueInst> :
02056   public FixedNumOperandTraits<InsertValueInst, 2> {
02057 };
02058 
02059 InsertValueInst::InsertValueInst(Value *Agg,
02060                                  Value *Val,
02061                                  ArrayRef<unsigned> Idxs,
02062                                  const Twine &NameStr,
02063                                  Instruction *InsertBefore)
02064   : Instruction(Agg->getType(), InsertValue,
02065                 OperandTraits<InsertValueInst>::op_begin(this),
02066                 2, InsertBefore) {
02067   init(Agg, Val, Idxs, NameStr);
02068 }
02069 InsertValueInst::InsertValueInst(Value *Agg,
02070                                  Value *Val,
02071                                  ArrayRef<unsigned> Idxs,
02072                                  const Twine &NameStr,
02073                                  BasicBlock *InsertAtEnd)
02074   : Instruction(Agg->getType(), InsertValue,
02075                 OperandTraits<InsertValueInst>::op_begin(this),
02076                 2, InsertAtEnd) {
02077   init(Agg, Val, Idxs, NameStr);
02078 }
02079 
02080 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
02081 
02082 //===----------------------------------------------------------------------===//
02083 //                               PHINode Class
02084 //===----------------------------------------------------------------------===//
02085 
02086 // PHINode - The PHINode class is used to represent the magical mystical PHI
02087 // node, that can not exist in nature, but can be synthesized in a computer
02088 // scientist's overactive imagination.
02089 //
02090 class PHINode : public Instruction {
02091   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
02092   /// ReservedSpace - The number of operands actually allocated.  NumOperands is
02093   /// the number actually in use.
02094   unsigned ReservedSpace;
02095   PHINode(const PHINode &PN);
02096   // allocate space for exactly zero operands
02097   void *operator new(size_t s) {
02098     return User::operator new(s, 0);
02099   }
02100   explicit PHINode(Type *Ty, unsigned NumReservedValues,
02101                    const Twine &NameStr = "",
02102                    Instruction *InsertBefore = nullptr)
02103     : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertBefore),
02104       ReservedSpace(NumReservedValues) {
02105     setName(NameStr);
02106     OperandList = allocHungoffUses(ReservedSpace);
02107   }
02108 
02109   PHINode(Type *Ty, unsigned NumReservedValues, const Twine &NameStr,
02110           BasicBlock *InsertAtEnd)
02111     : Instruction(Ty, Instruction::PHI, nullptr, 0, InsertAtEnd),
02112       ReservedSpace(NumReservedValues) {
02113     setName(NameStr);
02114     OperandList = allocHungoffUses(ReservedSpace);
02115   }
02116 protected:
02117   // allocHungoffUses - this is more complicated than the generic
02118   // User::allocHungoffUses, because we have to allocate Uses for the incoming
02119   // values and pointers to the incoming blocks, all in one allocation.
02120   Use *allocHungoffUses(unsigned) const;
02121 
02122   PHINode *clone_impl() const override;
02123 public:
02124   /// Constructors - NumReservedValues is a hint for the number of incoming
02125   /// edges that this phi node will have (use 0 if you really have no idea).
02126   static PHINode *Create(Type *Ty, unsigned NumReservedValues,
02127                          const Twine &NameStr = "",
02128                          Instruction *InsertBefore = nullptr) {
02129     return new PHINode(Ty, NumReservedValues, NameStr, InsertBefore);
02130   }
02131   static PHINode *Create(Type *Ty, unsigned NumReservedValues,
02132                          const Twine &NameStr, BasicBlock *InsertAtEnd) {
02133     return new PHINode(Ty, NumReservedValues, NameStr, InsertAtEnd);
02134   }
02135   ~PHINode();
02136 
02137   /// Provide fast operand accessors
02138   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
02139 
02140   // Block iterator interface. This provides access to the list of incoming
02141   // basic blocks, which parallels the list of incoming values.
02142 
02143   typedef BasicBlock **block_iterator;
02144   typedef BasicBlock * const *const_block_iterator;
02145 
02146   block_iterator block_begin() {
02147     Use::UserRef *ref =
02148       reinterpret_cast<Use::UserRef*>(op_begin() + ReservedSpace);
02149     return reinterpret_cast<block_iterator>(ref + 1);
02150   }
02151 
02152   const_block_iterator block_begin() const {
02153     const Use::UserRef *ref =
02154       reinterpret_cast<const Use::UserRef*>(op_begin() + ReservedSpace);
02155     return reinterpret_cast<const_block_iterator>(ref + 1);
02156   }
02157 
02158   block_iterator block_end() {
02159     return block_begin() + getNumOperands();
02160   }
02161 
02162   const_block_iterator block_end() const {
02163     return block_begin() + getNumOperands();
02164   }
02165 
02166   /// getNumIncomingValues - Return the number of incoming edges
02167   ///
02168   unsigned getNumIncomingValues() const { return getNumOperands(); }
02169 
02170   /// getIncomingValue - Return incoming value number x
02171   ///
02172   Value *getIncomingValue(unsigned i) const {
02173     return getOperand(i);
02174   }
02175   void setIncomingValue(unsigned i, Value *V) {
02176     setOperand(i, V);
02177   }
02178   static unsigned getOperandNumForIncomingValue(unsigned i) {
02179     return i;
02180   }
02181   static unsigned getIncomingValueNumForOperand(unsigned i) {
02182     return i;
02183   }
02184 
02185   /// getIncomingBlock - Return incoming basic block number @p i.
02186   ///
02187   BasicBlock *getIncomingBlock(unsigned i) const {
02188     return block_begin()[i];
02189   }
02190 
02191   /// getIncomingBlock - Return incoming basic block corresponding
02192   /// to an operand of the PHI.
02193   ///
02194   BasicBlock *getIncomingBlock(const Use &U) const {
02195     assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
02196     return getIncomingBlock(unsigned(&U - op_begin()));
02197   }
02198 
02199   /// getIncomingBlock - Return incoming basic block corresponding
02200   /// to value use iterator.
02201   ///
02202   BasicBlock *getIncomingBlock(Value::const_user_iterator I) const {
02203     return getIncomingBlock(I.getUse());
02204   }
02205 
02206   void setIncomingBlock(unsigned i, BasicBlock *BB) {
02207     block_begin()[i] = BB;
02208   }
02209 
02210   /// addIncoming - Add an incoming value to the end of the PHI list
02211   ///
02212   void addIncoming(Value *V, BasicBlock *BB) {
02213     assert(V && "PHI node got a null value!");
02214     assert(BB && "PHI node got a null basic block!");
02215     assert(getType() == V->getType() &&
02216            "All operands to PHI node must be the same type as the PHI node!");
02217     if (NumOperands == ReservedSpace)
02218       growOperands();  // Get more space!
02219     // Initialize some new operands.
02220     ++NumOperands;
02221     setIncomingValue(NumOperands - 1, V);
02222     setIncomingBlock(NumOperands - 1, BB);
02223   }
02224 
02225   /// removeIncomingValue - Remove an incoming value.  This is useful if a
02226   /// predecessor basic block is deleted.  The value removed is returned.
02227   ///
02228   /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
02229   /// is true), the PHI node is destroyed and any uses of it are replaced with
02230   /// dummy values.  The only time there should be zero incoming values to a PHI
02231   /// node is when the block is dead, so this strategy is sound.
02232   ///
02233   Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
02234 
02235   Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
02236     int Idx = getBasicBlockIndex(BB);
02237     assert(Idx >= 0 && "Invalid basic block argument to remove!");
02238     return removeIncomingValue(Idx, DeletePHIIfEmpty);
02239   }
02240 
02241   /// getBasicBlockIndex - Return the first index of the specified basic
02242   /// block in the value list for this PHI.  Returns -1 if no instance.
02243   ///
02244   int getBasicBlockIndex(const BasicBlock *BB) const {
02245     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
02246       if (block_begin()[i] == BB)
02247         return i;
02248     return -1;
02249   }
02250 
02251   Value *getIncomingValueForBlock(const BasicBlock *BB) const {
02252     int Idx = getBasicBlockIndex(BB);
02253     assert(Idx >= 0 && "Invalid basic block argument!");
02254     return getIncomingValue(Idx);
02255   }
02256 
02257   /// hasConstantValue - If the specified PHI node always merges together the
02258   /// same value, return the value, otherwise return null.
02259   Value *hasConstantValue() const;
02260 
02261   /// Methods for support type inquiry through isa, cast, and dyn_cast:
02262   static inline bool classof(const Instruction *I) {
02263     return I->getOpcode() == Instruction::PHI;
02264   }
02265   static inline bool classof(const Value *V) {
02266     return isa<Instruction>(V) && classof(cast<Instruction>(V));
02267   }
02268  private:
02269   void growOperands();
02270 };
02271 
02272 template <>
02273 struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
02274 };
02275 
02276 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
02277 
02278 //===----------------------------------------------------------------------===//
02279 //                           LandingPadInst Class
02280 //===----------------------------------------------------------------------===//
02281 
02282 //===---------------------------------------------------------------------------
02283 /// LandingPadInst - The landingpad instruction holds all of the information
02284 /// necessary to generate correct exception handling. The landingpad instruction
02285 /// cannot be moved from the top of a landing pad block, which itself is
02286 /// accessible only from the 'unwind' edge of an invoke. This uses the
02287 /// SubclassData field in Value to store whether or not the landingpad is a
02288 /// cleanup.
02289 ///
02290 class LandingPadInst : public Instruction {
02291   /// ReservedSpace - The number of operands actually allocated.  NumOperands is
02292   /// the number actually in use.
02293   unsigned ReservedSpace;
02294   LandingPadInst(const LandingPadInst &LP);
02295 public:
02296   enum ClauseType { Catch, Filter };
02297 private:
02298   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
02299   // Allocate space for exactly zero operands.
02300   void *operator new(size_t s) {
02301     return User::operator new(s, 0);
02302   }
02303   void growOperands(unsigned Size);
02304   void init(Value *PersFn, unsigned NumReservedValues, const Twine &NameStr);
02305 
02306   explicit LandingPadInst(Type *RetTy, Value *PersonalityFn,
02307                           unsigned NumReservedValues, const Twine &NameStr,
02308                           Instruction *InsertBefore);
02309   explicit LandingPadInst(Type *RetTy, Value *PersonalityFn,
02310                           unsigned NumReservedValues, const Twine &NameStr,
02311                           BasicBlock *InsertAtEnd);
02312 protected:
02313   LandingPadInst *clone_impl() const override;
02314 public:
02315   /// Constructors - NumReservedClauses is a hint for the number of incoming
02316   /// clauses that this landingpad will have (use 0 if you really have no idea).
02317   static LandingPadInst *Create(Type *RetTy, Value *PersonalityFn,
02318                                 unsigned NumReservedClauses,
02319                                 const Twine &NameStr = "",
02320                                 Instruction *InsertBefore = nullptr);
02321   static LandingPadInst *Create(Type *RetTy, Value *PersonalityFn,
02322                                 unsigned NumReservedClauses,
02323                                 const Twine &NameStr, BasicBlock *InsertAtEnd);
02324   ~LandingPadInst();
02325 
02326   /// Provide fast operand accessors
02327   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
02328 
02329   /// getPersonalityFn - Get the personality function associated with this
02330   /// landing pad.
02331   Value *getPersonalityFn() const { return getOperand(0); }
02332 
02333   /// isCleanup - Return 'true' if this landingpad instruction is a
02334   /// cleanup. I.e., it should be run when unwinding even if its landing pad
02335   /// doesn't catch the exception.
02336   bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
02337 
02338   /// setCleanup - Indicate that this landingpad instruction is a cleanup.
02339   void setCleanup(bool V) {
02340     setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
02341                                (V ? 1 : 0));
02342   }
02343 
02344   /// Add a catch or filter clause to the landing pad.
02345   void addClause(Constant *ClauseVal);
02346 
02347   /// Get the value of the clause at index Idx. Use isCatch/isFilter to
02348   /// determine what type of clause this is.
02349   Constant *getClause(unsigned Idx) const {
02350     return cast<Constant>(OperandList[Idx + 1]);
02351   }
02352 
02353   /// isCatch - Return 'true' if the clause and index Idx is a catch clause.
02354   bool isCatch(unsigned Idx) const {
02355     return !isa<ArrayType>(OperandList[Idx + 1]->getType());
02356   }
02357 
02358   /// isFilter - Return 'true' if the clause and index Idx is a filter clause.
02359   bool isFilter(unsigned Idx) const {
02360     return isa<ArrayType>(OperandList[Idx + 1]->getType());
02361   }
02362 
02363   /// getNumClauses - Get the number of clauses for this landing pad.
02364   unsigned getNumClauses() const { return getNumOperands() - 1; }
02365 
02366   /// reserveClauses - Grow the size of the operand list to accommodate the new
02367   /// number of clauses.
02368   void reserveClauses(unsigned Size) { growOperands(Size); }
02369 
02370   // Methods for support type inquiry through isa, cast, and dyn_cast:
02371   static inline bool classof(const Instruction *I) {
02372     return I->getOpcode() == Instruction::LandingPad;
02373   }
02374   static inline bool classof(const Value *V) {
02375     return isa<Instruction>(V) && classof(cast<Instruction>(V));
02376   }
02377 };
02378 
02379 template <>
02380 struct OperandTraits<LandingPadInst> : public HungoffOperandTraits<2> {
02381 };
02382 
02383 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst, Value)
02384 
02385 //===----------------------------------------------------------------------===//
02386 //                               ReturnInst Class
02387 //===----------------------------------------------------------------------===//
02388 
02389 //===---------------------------------------------------------------------------
02390 /// ReturnInst - Return a value (possibly void), from a function.  Execution
02391 /// does not continue in this function any longer.
02392 ///
02393 class ReturnInst : public TerminatorInst {
02394   ReturnInst(const ReturnInst &RI);
02395 
02396 private:
02397   // ReturnInst constructors:
02398   // ReturnInst()                  - 'ret void' instruction
02399   // ReturnInst(    null)          - 'ret void' instruction
02400   // ReturnInst(Value* X)          - 'ret X'    instruction
02401   // ReturnInst(    null, Inst *I) - 'ret void' instruction, insert before I
02402   // ReturnInst(Value* X, Inst *I) - 'ret X'    instruction, insert before I
02403   // ReturnInst(    null, BB *B)   - 'ret void' instruction, insert @ end of B
02404   // ReturnInst(Value* X, BB *B)   - 'ret X'    instruction, insert @ end of B
02405   //
02406   // NOTE: If the Value* passed is of type void then the constructor behaves as
02407   // if it was passed NULL.
02408   explicit ReturnInst(LLVMContext &C, Value *retVal = nullptr,
02409                       Instruction *InsertBefore = nullptr);
02410   ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
02411   explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
02412 protected:
02413   ReturnInst *clone_impl() const override;
02414 public:
02415   static ReturnInst* Create(LLVMContext &C, Value *retVal = nullptr,
02416                             Instruction *InsertBefore = nullptr) {
02417     return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
02418   }
02419   static ReturnInst* Create(LLVMContext &C, Value *retVal,
02420                             BasicBlock *InsertAtEnd) {
02421     return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
02422   }
02423   static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
02424     return new(0) ReturnInst(C, InsertAtEnd);
02425   }
02426   virtual ~ReturnInst();
02427 
02428   /// Provide fast operand accessors
02429   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
02430 
02431   /// Convenience accessor. Returns null if there is no return value.
02432   Value *getReturnValue() const {
02433     return getNumOperands() != 0 ? getOperand(0) : nullptr;
02434   }
02435 
02436   unsigned getNumSuccessors() const { return 0; }
02437 
02438   // Methods for support type inquiry through isa, cast, and dyn_cast:
02439   static inline bool classof(const Instruction *I) {
02440     return (I->getOpcode() == Instruction::Ret);
02441   }
02442   static inline bool classof(const Value *V) {
02443     return isa<Instruction>(V) && classof(cast<Instruction>(V));
02444   }
02445  private:
02446   BasicBlock *getSuccessorV(unsigned idx) const override;
02447   unsigned getNumSuccessorsV() const override;
02448   void setSuccessorV(unsigned idx, BasicBlock *B) override;
02449 };
02450 
02451 template <>
02452 struct OperandTraits<ReturnInst> : public VariadicOperandTraits<ReturnInst> {
02453 };
02454 
02455 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
02456 
02457 //===----------------------------------------------------------------------===//
02458 //                               BranchInst Class
02459 //===----------------------------------------------------------------------===//
02460 
02461 //===---------------------------------------------------------------------------
02462 /// BranchInst - Conditional or Unconditional Branch instruction.
02463 ///
02464 class BranchInst : public TerminatorInst {
02465   /// Ops list - Branches are strange.  The operands are ordered:
02466   ///  [Cond, FalseDest,] TrueDest.  This makes some accessors faster because
02467   /// they don't have to check for cond/uncond branchness. These are mostly
02468   /// accessed relative from op_end().
02469   BranchInst(const BranchInst &BI);
02470   void AssertOK();
02471   // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
02472   // BranchInst(BB *B)                           - 'br B'
02473   // BranchInst(BB* T, BB *F, Value *C)          - 'br C, T, F'
02474   // BranchInst(BB* B, Inst *I)                  - 'br B'        insert before I
02475   // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
02476   // BranchInst(BB* B, BB *I)                    - 'br B'        insert at end
02477   // BranchInst(BB* T, BB *F, Value *C, BB *I)   - 'br C, T, F', insert at end
02478   explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = nullptr);
02479   BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
02480              Instruction *InsertBefore = nullptr);
02481   BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
02482   BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
02483              BasicBlock *InsertAtEnd);
02484 protected:
02485   BranchInst *clone_impl() const override;
02486 public:
02487   static BranchInst *Create(BasicBlock *IfTrue,
02488                             Instruction *InsertBefore = nullptr) {
02489     return new(1) BranchInst(IfTrue, InsertBefore);
02490   }
02491   static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
02492                             Value *Cond, Instruction *InsertBefore = nullptr) {
02493     return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
02494   }
02495   static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
02496     return new(1) BranchInst(IfTrue, InsertAtEnd);
02497   }
02498   static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
02499                             Value *Cond, BasicBlock *InsertAtEnd) {
02500     return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
02501   }
02502 
02503   /// Transparently provide more efficient getOperand methods.
02504   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
02505 
02506   bool isUnconditional() const { return getNumOperands() == 1; }
02507   bool isConditional()   const { return getNumOperands() == 3; }
02508 
02509   Value *getCondition() const {
02510     assert(isConditional() && "Cannot get condition of an uncond branch!");
02511     return Op<-3>();
02512   }
02513 
02514   void setCondition(Value *V) {
02515     assert(isConditional() && "Cannot set condition of unconditional branch!");
02516     Op<-3>() = V;
02517   }
02518 
02519   unsigned getNumSuccessors() const { return 1+isConditional(); }
02520 
02521   BasicBlock *getSuccessor(unsigned i) const {
02522     assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
02523     return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
02524   }
02525 
02526   void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
02527     assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
02528     *(&Op<-1>() - idx) = (Value*)NewSucc;
02529   }
02530 
02531   /// \brief Swap the successors of this branch instruction.
02532   ///
02533   /// Swaps the successors of the branch instruction. This also swaps any
02534   /// branch weight metadata associated with the instruction so that it
02535   /// continues to map correctly to each operand.
02536   void swapSuccessors();
02537 
02538   // Methods for support type inquiry through isa, cast, and dyn_cast:
02539   static inline bool classof(const Instruction *I) {
02540     return (I->getOpcode() == Instruction::Br);
02541   }
02542   static inline bool classof(const Value *V) {
02543     return isa<Instruction>(V) && classof(cast<Instruction>(V));
02544   }
02545 private:
02546   BasicBlock *getSuccessorV(unsigned idx) const override;
02547   unsigned getNumSuccessorsV() const override;
02548   void setSuccessorV(unsigned idx, BasicBlock *B) override;
02549 };
02550 
02551 template <>
02552 struct OperandTraits<BranchInst> : public VariadicOperandTraits<BranchInst, 1> {
02553 };
02554 
02555 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
02556 
02557 //===----------------------------------------------------------------------===//
02558 //                               SwitchInst Class
02559 //===----------------------------------------------------------------------===//
02560 
02561 //===---------------------------------------------------------------------------
02562 /// SwitchInst - Multiway switch
02563 ///
02564 class SwitchInst : public TerminatorInst {
02565   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
02566   unsigned ReservedSpace;
02567   // Operand[0]    = Value to switch on
02568   // Operand[1]    = Default basic block destination
02569   // Operand[2n  ] = Value to match
02570   // Operand[2n+1] = BasicBlock to go to on match
02571   SwitchInst(const SwitchInst &SI);
02572   void init(Value *Value, BasicBlock *Default, unsigned NumReserved);
02573   void growOperands();
02574   // allocate space for exactly zero operands
02575   void *operator new(size_t s) {
02576     return User::operator new(s, 0);
02577   }
02578   /// SwitchInst ctor - Create a new switch instruction, specifying a value to
02579   /// switch on and a default destination.  The number of additional cases can
02580   /// be specified here to make memory allocation more efficient.  This
02581   /// constructor can also autoinsert before another instruction.
02582   SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
02583              Instruction *InsertBefore);
02584 
02585   /// SwitchInst ctor - Create a new switch instruction, specifying a value to
02586   /// switch on and a default destination.  The number of additional cases can
02587   /// be specified here to make memory allocation more efficient.  This
02588   /// constructor also autoinserts at the end of the specified BasicBlock.
02589   SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
02590              BasicBlock *InsertAtEnd);
02591 protected:
02592   SwitchInst *clone_impl() const override;
02593 public:
02594 
02595   // -2
02596   static const unsigned DefaultPseudoIndex = static_cast<unsigned>(~0L-1);
02597 
02598   template <class SwitchInstTy, class ConstantIntTy, class BasicBlockTy>
02599   class CaseIteratorT {
02600   protected:
02601 
02602     SwitchInstTy *SI;
02603     unsigned Index;
02604 
02605   public:
02606 
02607     typedef CaseIteratorT<SwitchInstTy, ConstantIntTy, BasicBlockTy> Self;
02608 
02609     /// Initializes case iterator for given SwitchInst and for given
02610     /// case number.
02611     CaseIteratorT(SwitchInstTy *SI, unsigned CaseNum) {
02612       this->SI = SI;
02613       Index = CaseNum;
02614     }
02615 
02616     /// Initializes case iterator for given SwitchInst and for given
02617     /// TerminatorInst's successor index.
02618     static Self fromSuccessorIndex(SwitchInstTy *SI, unsigned SuccessorIndex) {
02619       assert(SuccessorIndex < SI->getNumSuccessors() &&
02620              "Successor index # out of range!");
02621       return SuccessorIndex != 0 ?
02622              Self(SI, SuccessorIndex - 1) :
02623              Self(SI, DefaultPseudoIndex);
02624     }
02625 
02626     /// Resolves case value for current case.
02627     ConstantIntTy *getCaseValue() {
02628       assert(Index < SI->getNumCases() && "Index out the number of cases.");
02629       return reinterpret_cast<ConstantIntTy*>(SI->getOperand(2 + Index*2));
02630     }
02631 
02632     /// Resolves successor for current case.
02633     BasicBlockTy *getCaseSuccessor() {
02634       assert((Index < SI->getNumCases() ||
02635               Index == DefaultPseudoIndex) &&
02636              "Index out the number of cases.");
02637       return SI->getSuccessor(getSuccessorIndex());
02638     }
02639 
02640     /// Returns number of current case.
02641     unsigned getCaseIndex() const { return Index; }
02642 
02643     /// Returns TerminatorInst's successor index for current case successor.
02644     unsigned getSuccessorIndex() const {
02645       assert((Index == DefaultPseudoIndex || Index < SI->getNumCases()) &&
02646              "Index out the number of cases.");
02647       return Index != DefaultPseudoIndex ? Index + 1 : 0;
02648     }
02649 
02650     Self operator++() {
02651       // Check index correctness after increment.
02652       // Note: Index == getNumCases() means end().
02653       assert(Index+1 <= SI->getNumCases() && "Index out the number of cases.");
02654       ++Index;
02655       return *this;
02656     }
02657     Self operator++(int) {
02658       Self tmp = *this;
02659       ++(*this);
02660       return tmp;
02661     }
02662     Self operator--() {
02663       // Check index correctness after decrement.
02664       // Note: Index == getNumCases() means end().
02665       // Also allow "-1" iterator here. That will became valid after ++.
02666       assert((Index == 0 || Index-1 <= SI->getNumCases()) &&
02667              "Index out the number of cases.");
02668       --Index;
02669       return *this;
02670     }
02671     Self operator--(int) {
02672       Self tmp = *this;
02673       --(*this);
02674       return tmp;
02675     }
02676     bool operator==(const Self& RHS) const {
02677       assert(RHS.SI == SI && "Incompatible operators.");
02678       return RHS.Index == Index;
02679     }
02680     bool operator!=(const Self& RHS) const {
02681       assert(RHS.SI == SI && "Incompatible operators.");
02682       return RHS.Index != Index;
02683     }
02684     Self &operator*() {
02685       return *this;
02686     }
02687   };
02688 
02689   typedef CaseIteratorT<const SwitchInst, const ConstantInt, const BasicBlock>
02690     ConstCaseIt;
02691 
02692   class CaseIt : public CaseIteratorT<SwitchInst, ConstantInt, BasicBlock> {
02693 
02694     typedef CaseIteratorT<SwitchInst, ConstantInt, BasicBlock> ParentTy;
02695 
02696   public:
02697 
02698     CaseIt(const ParentTy& Src) : ParentTy(Src) {}
02699     CaseIt(SwitchInst *SI, unsigned CaseNum) : ParentTy(SI, CaseNum) {}
02700 
02701     /// Sets the new value for current case.
02702     void setValue(ConstantInt *V) {
02703       assert(Index < SI->getNumCases() && "Index out the number of cases.");
02704       SI->setOperand(2 + Index*2, reinterpret_cast<Value*>(V));
02705     }
02706 
02707     /// Sets the new successor for current case.
02708     void setSuccessor(BasicBlock *S) {
02709       SI->setSuccessor(getSuccessorIndex(), S);
02710     }
02711   };
02712 
02713   static SwitchInst *Create(Value *Value, BasicBlock *Default,
02714                             unsigned NumCases,
02715                             Instruction *InsertBefore = nullptr) {
02716     return new SwitchInst(Value, Default, NumCases, InsertBefore);
02717   }
02718   static SwitchInst *Create(Value *Value, BasicBlock *Default,
02719                             unsigned NumCases, BasicBlock *InsertAtEnd) {
02720     return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
02721   }
02722 
02723   ~SwitchInst();
02724 
02725   /// Provide fast operand accessors
02726   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
02727 
02728   // Accessor Methods for Switch stmt
02729   Value *getCondition() const { return getOperand(0); }
02730   void setCondition(Value *V) { setOperand(0, V); }
02731 
02732   BasicBlock *getDefaultDest() const {
02733     return cast<BasicBlock>(getOperand(1));
02734   }
02735 
02736   void setDefaultDest(BasicBlock *DefaultCase) {
02737     setOperand(1, reinterpret_cast<Value*>(DefaultCase));
02738   }
02739 
02740   /// getNumCases - return the number of 'cases' in this switch instruction,
02741   /// except the default case
02742   unsigned getNumCases() const {
02743     return getNumOperands()/2 - 1;
02744   }
02745 
02746   /// Returns a read/write iterator that points to the first
02747   /// case in SwitchInst.
02748   CaseIt case_begin() {
02749     return CaseIt(this, 0);
02750   }
02751   /// Returns a read-only iterator that points to the first
02752   /// case in the SwitchInst.
02753   ConstCaseIt case_begin() const {
02754     return ConstCaseIt(this, 0);
02755   }
02756 
02757   /// Returns a read/write iterator that points one past the last
02758   /// in the SwitchInst.
02759   CaseIt case_end() {
02760     return CaseIt(this, getNumCases());
02761   }
02762   /// Returns a read-only iterator that points one past the last
02763   /// in the SwitchInst.
02764   ConstCaseIt case_end() const {
02765     return ConstCaseIt(this, getNumCases());
02766   }
02767 
02768   /// cases - iteration adapter for range-for loops.
02769   iterator_range<CaseIt> cases() {
02770     return iterator_range<CaseIt>(case_begin(), case_end());
02771   }
02772 
02773   /// cases - iteration adapter for range-for loops.
02774   iterator_range<ConstCaseIt> cases() const {
02775     return iterator_range<ConstCaseIt>(case_begin(), case_end());
02776   }
02777 
02778   /// Returns an iterator that points to the default case.
02779   /// Note: this iterator allows to resolve successor only. Attempt
02780   /// to resolve case value causes an assertion.
02781   /// Also note, that increment and decrement also causes an assertion and
02782   /// makes iterator invalid.
02783   CaseIt case_default() {
02784     return CaseIt(this, DefaultPseudoIndex);
02785   }
02786   ConstCaseIt case_default() const {
02787     return ConstCaseIt(this, DefaultPseudoIndex);
02788   }
02789 
02790   /// findCaseValue - Search all of the case values for the specified constant.
02791   /// If it is explicitly handled, return the case iterator of it, otherwise
02792   /// return default case iterator to indicate
02793   /// that it is handled by the default handler.
02794   CaseIt findCaseValue(const ConstantInt *C) {
02795     for (CaseIt i = case_begin(), e = case_end(); i != e; ++i)
02796       if (i.getCaseValue() == C)
02797         return i;
02798     return case_default();
02799   }
02800   ConstCaseIt findCaseValue(const ConstantInt *C) const {
02801     for (ConstCaseIt i = case_begin(), e = case_end(); i != e; ++i)
02802       if (i.getCaseValue() == C)
02803         return i;
02804     return case_default();
02805   }
02806 
02807   /// findCaseDest - Finds the unique case value for a given successor. Returns
02808   /// null if the successor is not found, not unique, or is the default case.
02809   ConstantInt *findCaseDest(BasicBlock *BB) {
02810     if (BB == getDefaultDest()) return nullptr;
02811 
02812     ConstantInt *CI = nullptr;
02813     for (CaseIt i = case_begin(), e = case_end(); i != e; ++i) {
02814       if (i.getCaseSuccessor() == BB) {
02815         if (CI) return nullptr;   // Multiple cases lead to BB.
02816         else CI = i.getCaseValue();
02817       }
02818     }
02819     return CI;
02820   }
02821 
02822   /// addCase - Add an entry to the switch instruction...
02823   /// Note:
02824   /// This action invalidates case_end(). Old case_end() iterator will
02825   /// point to the added case.
02826   void addCase(ConstantInt *OnVal, BasicBlock *Dest);
02827 
02828   /// removeCase - This method removes the specified case and its successor
02829   /// from the switch instruction. Note that this operation may reorder the
02830   /// remaining cases at index idx and above.
02831   /// Note:
02832   /// This action invalidates iterators for all cases following the one removed,
02833   /// including the case_end() iterator.
02834   void removeCase(CaseIt i);
02835 
02836   unsigned getNumSuccessors() const { return getNumOperands()/2; }
02837   BasicBlock *getSuccessor(unsigned idx) const {
02838     assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
02839     return cast<BasicBlock>(getOperand(idx*2+1));
02840   }
02841   void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
02842     assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
02843     setOperand(idx*2+1, (Value*)NewSucc);
02844   }
02845 
02846   // Methods for support type inquiry through isa, cast, and dyn_cast:
02847   static inline bool classof(const Instruction *I) {
02848     return I->getOpcode() == Instruction::Switch;
02849   }
02850   static inline bool classof(const Value *V) {
02851     return isa<Instruction>(V) && classof(cast<Instruction>(V));
02852   }
02853 private:
02854   BasicBlock *getSuccessorV(unsigned idx) const override;
02855   unsigned getNumSuccessorsV() const override;
02856   void setSuccessorV(unsigned idx, BasicBlock *B) override;
02857 };
02858 
02859 template <>
02860 struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
02861 };
02862 
02863 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
02864 
02865 
02866 //===----------------------------------------------------------------------===//
02867 //                             IndirectBrInst Class
02868 //===----------------------------------------------------------------------===//
02869 
02870 //===---------------------------------------------------------------------------
02871 /// IndirectBrInst - Indirect Branch Instruction.
02872 ///
02873 class IndirectBrInst : public TerminatorInst {
02874   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
02875   unsigned ReservedSpace;
02876   // Operand[0]    = Value to switch on
02877   // Operand[1]    = Default basic block destination
02878   // Operand[2n  ] = Value to match
02879   // Operand[2n+1] = BasicBlock to go to on match
02880   IndirectBrInst(const IndirectBrInst &IBI);
02881   void init(Value *Address, unsigned NumDests);
02882   void growOperands();
02883   // allocate space for exactly zero operands
02884   void *operator new(size_t s) {
02885     return User::operator new(s, 0);
02886   }
02887   /// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an
02888   /// Address to jump to.  The number of expected destinations can be specified
02889   /// here to make memory allocation more efficient.  This constructor can also
02890   /// autoinsert before another instruction.
02891   IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
02892 
02893   /// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an
02894   /// Address to jump to.  The number of expected destinations can be specified
02895   /// here to make memory allocation more efficient.  This constructor also
02896   /// autoinserts at the end of the specified BasicBlock.
02897   IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
02898 protected:
02899   IndirectBrInst *clone_impl() const override;
02900 public:
02901   static IndirectBrInst *Create(Value *Address, unsigned NumDests,
02902                                 Instruction *InsertBefore = nullptr) {
02903     return new IndirectBrInst(Address, NumDests, InsertBefore);
02904   }
02905   static IndirectBrInst *Create(Value *Address, unsigned NumDests,
02906                                 BasicBlock *InsertAtEnd) {
02907     return new IndirectBrInst(Address, NumDests, InsertAtEnd);
02908   }
02909   ~IndirectBrInst();
02910 
02911   /// Provide fast operand accessors.
02912   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
02913 
02914   // Accessor Methods for IndirectBrInst instruction.
02915   Value *getAddress() { return getOperand(0); }
02916   const Value *getAddress() const { return getOperand(0); }
02917   void setAddress(Value *V) { setOperand(0, V); }
02918 
02919 
02920   /// getNumDestinations - return the number of possible destinations in this
02921   /// indirectbr instruction.
02922   unsigned getNumDestinations() const { return getNumOperands()-1; }
02923 
02924   /// getDestination - Return the specified destination.
02925   BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
02926   const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
02927 
02928   /// addDestination - Add a destination.
02929   ///
02930   void addDestination(BasicBlock *Dest);
02931 
02932   /// removeDestination - This method removes the specified successor from the
02933   /// indirectbr instruction.
02934   void removeDestination(unsigned i);
02935 
02936   unsigned getNumSuccessors() const { return getNumOperands()-1; }
02937   BasicBlock *getSuccessor(unsigned i) const {
02938     return cast<BasicBlock>(getOperand(i+1));
02939   }
02940   void setSuccessor(unsigned i, BasicBlock *NewSucc) {
02941     setOperand(i+1, (Value*)NewSucc);
02942   }
02943 
02944   // Methods for support type inquiry through isa, cast, and dyn_cast:
02945   static inline bool classof(const Instruction *I) {
02946     return I->getOpcode() == Instruction::IndirectBr;
02947   }
02948   static inline bool classof(const Value *V) {
02949     return isa<Instruction>(V) && classof(cast<Instruction>(V));
02950   }
02951 private:
02952   BasicBlock *getSuccessorV(unsigned idx) const override;
02953   unsigned getNumSuccessorsV() const override;
02954   void setSuccessorV(unsigned idx, BasicBlock *B) override;
02955 };
02956 
02957 template <>
02958 struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
02959 };
02960 
02961 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
02962 
02963 
02964 //===----------------------------------------------------------------------===//
02965 //                               InvokeInst Class
02966 //===----------------------------------------------------------------------===//
02967 
02968 /// InvokeInst - Invoke instruction.  The SubclassData field is used to hold the
02969 /// calling convention of the call.
02970 ///
02971 class InvokeInst : public TerminatorInst {
02972   AttributeSet AttributeList;
02973   InvokeInst(const InvokeInst &BI);
02974   void init(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
02975             ArrayRef<Value *> Args, const Twine &NameStr);
02976 
02977   /// Construct an InvokeInst given a range of arguments.
02978   ///
02979   /// \brief Construct an InvokeInst from a range of arguments
02980   inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
02981                     ArrayRef<Value *> Args, unsigned Values,
02982                     const Twine &NameStr, Instruction *InsertBefore);
02983 
02984   /// Construct an InvokeInst given a range of arguments.
02985   ///
02986   /// \brief Construct an InvokeInst from a range of arguments
02987   inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
02988                     ArrayRef<Value *> Args, unsigned Values,
02989                     const Twine &NameStr, BasicBlock *InsertAtEnd);
02990 protected:
02991   InvokeInst *clone_impl() const override;
02992 public:
02993   static InvokeInst *Create(Value *Func,
02994                             BasicBlock *IfNormal, BasicBlock *IfException,
02995                             ArrayRef<Value *> Args, const Twine &NameStr = "",
02996                             Instruction *InsertBefore = nullptr) {
02997     unsigned Values = unsigned(Args.size()) + 3;
02998     return new(Values) InvokeInst(Func, IfNormal, IfException, Args,
02999                                   Values, NameStr, InsertBefore);
03000   }
03001   static InvokeInst *Create(Value *Func,
03002                             BasicBlock *IfNormal, BasicBlock *IfException,
03003                             ArrayRef<Value *> Args, const Twine &NameStr,
03004                             BasicBlock *InsertAtEnd) {
03005     unsigned Values = unsigned(Args.size()) + 3;
03006     return new(Values) InvokeInst(Func, IfNormal, IfException, Args,
03007                                   Values, NameStr, InsertAtEnd);
03008   }
03009 
03010   /// Provide fast operand accessors
03011   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
03012 
03013   /// getNumArgOperands - Return the number of invoke arguments.
03014   ///
03015   unsigned getNumArgOperands() const { return getNumOperands() - 3; }
03016 
03017   /// getArgOperand/setArgOperand - Return/set the i-th invoke argument.
03018   ///
03019   Value *getArgOperand(unsigned i) const { return getOperand(i); }
03020   void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
03021 
03022   /// arg_operands - iteration adapter for range-for loops.
03023   iterator_range<op_iterator> arg_operands() {
03024     return iterator_range<op_iterator>(op_begin(), op_end() - 3);
03025   }
03026 
03027   /// arg_operands - iteration adapter for range-for loops.
03028   iterator_range<const_op_iterator> arg_operands() const {
03029     return iterator_range<const_op_iterator>(op_begin(), op_end() - 3);
03030   }
03031 
03032   /// \brief Wrappers for getting the \c Use of a invoke argument.
03033   const Use &getArgOperandUse(unsigned i) const { return getOperandUse(i); }
03034   Use &getArgOperandUse(unsigned i) { return getOperandUse(i); }
03035 
03036   /// getCallingConv/setCallingConv - Get or set the calling convention of this
03037   /// function call.
03038   CallingConv::ID getCallingConv() const {
03039     return static_cast<CallingConv::ID>(getSubclassDataFromInstruction());
03040   }
03041   void setCallingConv(CallingConv::ID CC) {
03042     setInstructionSubclassData(static_cast<unsigned>(CC));
03043   }
03044 
03045   /// getAttributes - Return the parameter attributes for this invoke.
03046   ///
03047   const AttributeSet &getAttributes() const { return AttributeList; }
03048 
03049   /// setAttributes - Set the parameter attributes for this invoke.
03050   ///
03051   void setAttributes(const AttributeSet &Attrs) { AttributeList = Attrs; }
03052 
03053   /// addAttribute - adds the attribute to the list of attributes.
03054   void addAttribute(unsigned i, Attribute::AttrKind attr);
03055 
03056   /// removeAttribute - removes the attribute from the list of attributes.
03057   void removeAttribute(unsigned i, Attribute attr);
03058 
03059   /// \brief Determine whether this call has the given attribute.
03060   bool hasFnAttr(Attribute::AttrKind A) const {
03061     assert(A != Attribute::NoBuiltin &&
03062            "Use CallInst::isNoBuiltin() to check for Attribute::NoBuiltin");
03063     return hasFnAttrImpl(A);
03064   }
03065 
03066   /// \brief Determine whether the call or the callee has the given attributes.
03067   bool paramHasAttr(unsigned i, Attribute::AttrKind A) const;
03068 
03069   /// \brief Extract the alignment for a call or parameter (0=unknown).
03070   unsigned getParamAlignment(unsigned i) const {
03071     return AttributeList.getParamAlignment(i);
03072   }
03073 
03074   /// \brief Extract the number of dereferenceable bytes for a call or
03075   /// parameter (0=unknown).
03076   uint64_t getDereferenceableBytes(unsigned i) const {
03077     return AttributeList.getDereferenceableBytes(i);
03078   }
03079 
03080   /// \brief Return true if the call should not be treated as a call to a
03081   /// builtin.
03082   bool isNoBuiltin() const {
03083     // We assert in hasFnAttr if one passes in Attribute::NoBuiltin, so we have
03084     // to check it by hand.
03085     return hasFnAttrImpl(Attribute::NoBuiltin) &&
03086       !hasFnAttrImpl(Attribute::Builtin);
03087   }
03088 
03089   /// \brief Return true if the call should not be inlined.
03090   bool isNoInline() const { return hasFnAttr(Attribute::NoInline); }
03091   void setIsNoInline() {
03092     addAttribute(AttributeSet::FunctionIndex, Attribute::NoInline);
03093   }
03094 
03095   /// \brief Determine if the call does not access memory.
03096   bool doesNotAccessMemory() const {
03097     return hasFnAttr(Attribute::ReadNone);
03098   }
03099   void setDoesNotAccessMemory() {
03100     addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
03101   }
03102 
03103   /// \brief Determine if the call does not access or only reads memory.
03104   bool onlyReadsMemory() const {
03105     return doesNotAccessMemory() || hasFnAttr(Attribute::ReadOnly);
03106   }
03107   void setOnlyReadsMemory() {
03108     addAttribute(AttributeSet::FunctionIndex, Attribute::ReadOnly);
03109   }
03110 
03111   /// \brief Determine if the call cannot return.
03112   bool doesNotReturn() const { return hasFnAttr(Attribute::NoReturn); }
03113   void setDoesNotReturn() {
03114     addAttribute(AttributeSet::FunctionIndex, Attribute::NoReturn);
03115   }
03116 
03117   /// \brief Determine if the call cannot unwind.
03118   bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind); }
03119   void setDoesNotThrow() {
03120     addAttribute(AttributeSet::FunctionIndex, Attribute::NoUnwind);
03121   }
03122 
03123   /// \brief Determine if the invoke cannot be duplicated.
03124   bool cannotDuplicate() const {return hasFnAttr(Attribute::NoDuplicate); }
03125   void setCannotDuplicate() {
03126     addAttribute(AttributeSet::FunctionIndex, Attribute::NoDuplicate);
03127   }
03128 
03129   /// \brief Determine if the call returns a structure through first
03130   /// pointer argument.
03131   bool hasStructRetAttr() const {
03132     // Be friendly and also check the callee.
03133     return paramHasAttr(1, Attribute::StructRet);
03134   }
03135 
03136   /// \brief Determine if any call argument is an aggregate passed by value.
03137   bool hasByValArgument() const {
03138     return AttributeList.hasAttrSomewhere(Attribute::ByVal);
03139   }
03140 
03141   /// getCalledFunction - Return the function called, or null if this is an
03142   /// indirect function invocation.
03143   ///
03144   Function *getCalledFunction() const {
03145     return dyn_cast<Function>(Op<-3>());
03146   }
03147 
03148   /// getCalledValue - Get a pointer to the function that is invoked by this
03149   /// instruction
03150   const Value *getCalledValue() const { return Op<-3>(); }
03151         Value *getCalledValue()       { return Op<-3>(); }
03152 
03153   /// setCalledFunction - Set the function called.
03154   void setCalledFunction(Value* Fn) {
03155     Op<-3>() = Fn;
03156   }
03157 
03158   // get*Dest - Return the destination basic blocks...
03159   BasicBlock *getNormalDest() const {
03160     return cast<BasicBlock>(Op<-2>());
03161   }
03162   BasicBlock *getUnwindDest() const {
03163     return cast<BasicBlock>(Op<-1>());
03164   }
03165   void setNormalDest(BasicBlock *B) {
03166     Op<-2>() = reinterpret_cast<Value*>(B);
03167   }
03168   void setUnwindDest(BasicBlock *B) {
03169     Op<-1>() = reinterpret_cast<Value*>(B);
03170   }
03171 
03172   /// getLandingPadInst - Get the landingpad instruction from the landing pad
03173   /// block (the unwind destination).
03174   LandingPadInst *getLandingPadInst() const;
03175 
03176   BasicBlock *getSuccessor(unsigned i) const {
03177     assert(i < 2 && "Successor # out of range for invoke!");
03178     return i == 0 ? getNormalDest() : getUnwindDest();
03179   }
03180 
03181   void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
03182     assert(idx < 2 && "Successor # out of range for invoke!");
03183     *(&Op<-2>() + idx) = reinterpret_cast<Value*>(NewSucc);
03184   }
03185 
03186   unsigned getNumSuccessors() const { return 2; }
03187 
03188   // Methods for support type inquiry through isa, cast, and dyn_cast:
03189   static inline bool classof(const Instruction *I) {
03190     return (I->getOpcode() == Instruction::Invoke);
03191   }
03192   static inline bool classof(const Value *V) {
03193     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03194   }
03195 
03196 private:
03197   BasicBlock *getSuccessorV(unsigned idx) const override;
03198   unsigned getNumSuccessorsV() const override;
03199   void setSuccessorV(unsigned idx, BasicBlock *B) override;
03200 
03201   bool hasFnAttrImpl(Attribute::AttrKind A) const;
03202 
03203   // Shadow Instruction::setInstructionSubclassData with a private forwarding
03204   // method so that subclasses cannot accidentally use it.
03205   void setInstructionSubclassData(unsigned short D) {
03206     Instruction::setInstructionSubclassData(D);
03207   }
03208 };
03209 
03210 template <>
03211 struct OperandTraits<InvokeInst> : public VariadicOperandTraits<InvokeInst, 3> {
03212 };
03213 
03214 InvokeInst::InvokeInst(Value *Func,
03215                        BasicBlock *IfNormal, BasicBlock *IfException,
03216                        ArrayRef<Value *> Args, unsigned Values,
03217                        const Twine &NameStr, Instruction *InsertBefore)
03218   : TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
03219                                       ->getElementType())->getReturnType(),
03220                    Instruction::Invoke,
03221                    OperandTraits<InvokeInst>::op_end(this) - Values,
03222                    Values, InsertBefore) {
03223   init(Func, IfNormal, IfException, Args, NameStr);
03224 }
03225 InvokeInst::InvokeInst(Value *Func,
03226                        BasicBlock *IfNormal, BasicBlock *IfException,
03227                        ArrayRef<Value *> Args, unsigned Values,
03228                        const Twine &NameStr, BasicBlock *InsertAtEnd)
03229   : TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
03230                                       ->getElementType())->getReturnType(),
03231                    Instruction::Invoke,
03232                    OperandTraits<InvokeInst>::op_end(this) - Values,
03233                    Values, InsertAtEnd) {
03234   init(Func, IfNormal, IfException, Args, NameStr);
03235 }
03236 
03237 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InvokeInst, Value)
03238 
03239 //===----------------------------------------------------------------------===//
03240 //                              ResumeInst Class
03241 //===----------------------------------------------------------------------===//
03242 
03243 //===---------------------------------------------------------------------------
03244 /// ResumeInst - Resume the propagation of an exception.
03245 ///
03246 class ResumeInst : public TerminatorInst {
03247   ResumeInst(const ResumeInst &RI);
03248 
03249   explicit ResumeInst(Value *Exn, Instruction *InsertBefore=nullptr);
03250   ResumeInst(Value *Exn, BasicBlock *InsertAtEnd);
03251 protected:
03252   ResumeInst *clone_impl() const override;
03253 public:
03254   static ResumeInst *Create(Value *Exn, Instruction *InsertBefore = nullptr) {
03255     return new(1) ResumeInst(Exn, InsertBefore);
03256   }
03257   static ResumeInst *Create(Value *Exn, BasicBlock *InsertAtEnd) {
03258     return new(1) ResumeInst(Exn, InsertAtEnd);
03259   }
03260 
03261   /// Provide fast operand accessors
03262   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
03263 
03264   /// Convenience accessor.
03265   Value *getValue() const { return Op<0>(); }
03266 
03267   unsigned getNumSuccessors() const { return 0; }
03268 
03269   // Methods for support type inquiry through isa, cast, and dyn_cast:
03270   static inline bool classof(const Instruction *I) {
03271     return I->getOpcode() == Instruction::Resume;
03272   }
03273   static inline bool classof(const Value *V) {
03274     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03275   }
03276 private:
03277   BasicBlock *getSuccessorV(unsigned idx) const override;
03278   unsigned getNumSuccessorsV() const override;
03279   void setSuccessorV(unsigned idx, BasicBlock *B) override;
03280 };
03281 
03282 template <>
03283 struct OperandTraits<ResumeInst> :
03284     public FixedNumOperandTraits<ResumeInst, 1> {
03285 };
03286 
03287 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst, Value)
03288 
03289 //===----------------------------------------------------------------------===//
03290 //                           UnreachableInst Class
03291 //===----------------------------------------------------------------------===//
03292 
03293 //===---------------------------------------------------------------------------
03294 /// UnreachableInst - This function has undefined behavior.  In particular, the
03295 /// presence of this instruction indicates some higher level knowledge that the
03296 /// end of the block cannot be reached.
03297 ///
03298 class UnreachableInst : public TerminatorInst {
03299   void *operator new(size_t, unsigned) LLVM_DELETED_FUNCTION;
03300 protected:
03301   UnreachableInst *clone_impl() const override;
03302 
03303 public:
03304   // allocate space for exactly zero operands
03305   void *operator new(size_t s) {
03306     return User::operator new(s, 0);
03307   }
03308   explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = nullptr);
03309   explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
03310 
03311   unsigned getNumSuccessors() const { return 0; }
03312 
03313   // Methods for support type inquiry through isa, cast, and dyn_cast:
03314   static inline bool classof(const Instruction *I) {
03315     return I->getOpcode() == Instruction::Unreachable;
03316   }
03317   static inline bool classof(const Value *V) {
03318     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03319   }
03320 private:
03321   BasicBlock *getSuccessorV(unsigned idx) const override;
03322   unsigned getNumSuccessorsV() const override;
03323   void setSuccessorV(unsigned idx, BasicBlock *B) override;
03324 };
03325 
03326 //===----------------------------------------------------------------------===//
03327 //                                 TruncInst Class
03328 //===----------------------------------------------------------------------===//
03329 
03330 /// \brief This class represents a truncation of integer types.
03331 class TruncInst : public CastInst {
03332 protected:
03333   /// \brief Clone an identical TruncInst
03334   TruncInst *clone_impl() const override;
03335 
03336 public:
03337   /// \brief Constructor with insert-before-instruction semantics
03338   TruncInst(
03339     Value *S,                           ///< The value to be truncated
03340     Type *Ty,                           ///< The (smaller) type to truncate to
03341     const Twine &NameStr = "",          ///< A name for the new instruction
03342     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
03343   );
03344 
03345   /// \brief Constructor with insert-at-end-of-block semantics
03346   TruncInst(
03347     Value *S,                     ///< The value to be truncated
03348     Type *Ty,                     ///< The (smaller) type to truncate to
03349     const Twine &NameStr,         ///< A name for the new instruction
03350     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
03351   );
03352 
03353   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
03354   static inline bool classof(const Instruction *I) {
03355     return I->getOpcode() == Trunc;
03356   }
03357   static inline bool classof(const Value *V) {
03358     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03359   }
03360 };
03361 
03362 //===----------------------------------------------------------------------===//
03363 //                                 ZExtInst Class
03364 //===----------------------------------------------------------------------===//
03365 
03366 /// \brief This class represents zero extension of integer types.
03367 class ZExtInst : public CastInst {
03368 protected:
03369   /// \brief Clone an identical ZExtInst
03370   ZExtInst *clone_impl() const override;
03371 
03372 public:
03373   /// \brief Constructor with insert-before-instruction semantics
03374   ZExtInst(
03375     Value *S,                           ///< The value to be zero extended
03376     Type *Ty,                           ///< The type to zero extend to
03377     const Twine &NameStr = "",          ///< A name for the new instruction
03378     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
03379   );
03380 
03381   /// \brief Constructor with insert-at-end semantics.
03382   ZExtInst(
03383     Value *S,                     ///< The value to be zero extended
03384     Type *Ty,                     ///< The type to zero extend to
03385     const Twine &NameStr,         ///< A name for the new instruction
03386     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
03387   );
03388 
03389   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
03390   static inline bool classof(const Instruction *I) {
03391     return I->getOpcode() == ZExt;
03392   }
03393   static inline bool classof(const Value *V) {
03394     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03395   }
03396 };
03397 
03398 //===----------------------------------------------------------------------===//
03399 //                                 SExtInst Class
03400 //===----------------------------------------------------------------------===//
03401 
03402 /// \brief This class represents a sign extension of integer types.
03403 class SExtInst : public CastInst {
03404 protected:
03405   /// \brief Clone an identical SExtInst
03406   SExtInst *clone_impl() const override;
03407 
03408 public:
03409   /// \brief Constructor with insert-before-instruction semantics
03410   SExtInst(
03411     Value *S,                           ///< The value to be sign extended
03412     Type *Ty,                           ///< The type to sign extend to
03413     const Twine &NameStr = "",          ///< A name for the new instruction
03414     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
03415   );
03416 
03417   /// \brief Constructor with insert-at-end-of-block semantics
03418   SExtInst(
03419     Value *S,                     ///< The value to be sign extended
03420     Type *Ty,                     ///< The type to sign extend to
03421     const Twine &NameStr,         ///< A name for the new instruction
03422     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
03423   );
03424 
03425   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
03426   static inline bool classof(const Instruction *I) {
03427     return I->getOpcode() == SExt;
03428   }
03429   static inline bool classof(const Value *V) {
03430     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03431   }
03432 };
03433 
03434 //===----------------------------------------------------------------------===//
03435 //                                 FPTruncInst Class
03436 //===----------------------------------------------------------------------===//
03437 
03438 /// \brief This class represents a truncation of floating point types.
03439 class FPTruncInst : public CastInst {
03440 protected:
03441   /// \brief Clone an identical FPTruncInst
03442   FPTruncInst *clone_impl() const override;
03443 
03444 public:
03445   /// \brief Constructor with insert-before-instruction semantics
03446   FPTruncInst(
03447     Value *S,                           ///< The value to be truncated
03448     Type *Ty,                           ///< The type to truncate to
03449     const Twine &NameStr = "",          ///< A name for the new instruction
03450     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
03451   );
03452 
03453   /// \brief Constructor with insert-before-instruction semantics
03454   FPTruncInst(
03455     Value *S,                     ///< The value to be truncated
03456     Type *Ty,                     ///< The type to truncate to
03457     const Twine &NameStr,         ///< A name for the new instruction
03458     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
03459   );
03460 
03461   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
03462   static inline bool classof(const Instruction *I) {
03463     return I->getOpcode() == FPTrunc;
03464   }
03465   static inline bool classof(const Value *V) {
03466     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03467   }
03468 };
03469 
03470 //===----------------------------------------------------------------------===//
03471 //                                 FPExtInst Class
03472 //===----------------------------------------------------------------------===//
03473 
03474 /// \brief This class represents an extension of floating point types.
03475 class FPExtInst : public CastInst {
03476 protected:
03477   /// \brief Clone an identical FPExtInst
03478   FPExtInst *clone_impl() const override;
03479 
03480 public:
03481   /// \brief Constructor with insert-before-instruction semantics
03482   FPExtInst(
03483     Value *S,                           ///< The value to be extended
03484     Type *Ty,                           ///< The type to extend to
03485     const Twine &NameStr = "",          ///< A name for the new instruction
03486     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
03487   );
03488 
03489   /// \brief Constructor with insert-at-end-of-block semantics
03490   FPExtInst(
03491     Value *S,                     ///< The value to be extended
03492     Type *Ty,                     ///< The type to extend to
03493     const Twine &NameStr,         ///< A name for the new instruction
03494     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
03495   );
03496 
03497   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
03498   static inline bool classof(const Instruction *I) {
03499     return I->getOpcode() == FPExt;
03500   }
03501   static inline bool classof(const Value *V) {
03502     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03503   }
03504 };
03505 
03506 //===----------------------------------------------------------------------===//
03507 //                                 UIToFPInst Class
03508 //===----------------------------------------------------------------------===//
03509 
03510 /// \brief This class represents a cast unsigned integer to floating point.
03511 class UIToFPInst : public CastInst {
03512 protected:
03513   /// \brief Clone an identical UIToFPInst
03514   UIToFPInst *clone_impl() const override;
03515 
03516 public:
03517   /// \brief Constructor with insert-before-instruction semantics
03518   UIToFPInst(
03519     Value *S,                           ///< The value to be converted
03520     Type *Ty,                           ///< The type to convert to
03521     const Twine &NameStr = "",          ///< A name for the new instruction
03522     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
03523   );
03524 
03525   /// \brief Constructor with insert-at-end-of-block semantics
03526   UIToFPInst(
03527     Value *S,                     ///< The value to be converted
03528     Type *Ty,                     ///< The type to convert to
03529     const Twine &NameStr,         ///< A name for the new instruction
03530     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
03531   );
03532 
03533   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
03534   static inline bool classof(const Instruction *I) {
03535     return I->getOpcode() == UIToFP;
03536   }
03537   static inline bool classof(const Value *V) {
03538     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03539   }
03540 };
03541 
03542 //===----------------------------------------------------------------------===//
03543 //                                 SIToFPInst Class
03544 //===----------------------------------------------------------------------===//
03545 
03546 /// \brief This class represents a cast from signed integer to floating point.
03547 class SIToFPInst : public CastInst {
03548 protected:
03549   /// \brief Clone an identical SIToFPInst
03550   SIToFPInst *clone_impl() const override;
03551 
03552 public:
03553   /// \brief Constructor with insert-before-instruction semantics
03554   SIToFPInst(
03555     Value *S,                           ///< The value to be converted
03556     Type *Ty,                           ///< The type to convert to
03557     const Twine &NameStr = "",          ///< A name for the new instruction
03558     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
03559   );
03560 
03561   /// \brief Constructor with insert-at-end-of-block semantics
03562   SIToFPInst(
03563     Value *S,                     ///< The value to be converted
03564     Type *Ty,                     ///< The type to convert to
03565     const Twine &NameStr,         ///< A name for the new instruction
03566     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
03567   );
03568 
03569   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
03570   static inline bool classof(const Instruction *I) {
03571     return I->getOpcode() == SIToFP;
03572   }
03573   static inline bool classof(const Value *V) {
03574     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03575   }
03576 };
03577 
03578 //===----------------------------------------------------------------------===//
03579 //                                 FPToUIInst Class
03580 //===----------------------------------------------------------------------===//
03581 
03582 /// \brief This class represents a cast from floating point to unsigned integer
03583 class FPToUIInst  : public CastInst {
03584 protected:
03585   /// \brief Clone an identical FPToUIInst
03586   FPToUIInst *clone_impl() const override;
03587 
03588 public:
03589   /// \brief Constructor with insert-before-instruction semantics
03590   FPToUIInst(
03591     Value *S,                           ///< The value to be converted
03592     Type *Ty,                           ///< The type to convert to
03593     const Twine &NameStr = "",          ///< A name for the new instruction
03594     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
03595   );
03596 
03597   /// \brief Constructor with insert-at-end-of-block semantics
03598   FPToUIInst(
03599     Value *S,                     ///< The value to be converted
03600     Type *Ty,                     ///< The type to convert to
03601     const Twine &NameStr,         ///< A name for the new instruction
03602     BasicBlock *InsertAtEnd       ///< Where to insert the new instruction
03603   );
03604 
03605   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
03606   static inline bool classof(const Instruction *I) {
03607     return I->getOpcode() == FPToUI;
03608   }
03609   static inline bool classof(const Value *V) {
03610     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03611   }
03612 };
03613 
03614 //===----------------------------------------------------------------------===//
03615 //                                 FPToSIInst Class
03616 //===----------------------------------------------------------------------===//
03617 
03618 /// \brief This class represents a cast from floating point to signed integer.
03619 class FPToSIInst  : public CastInst {
03620 protected:
03621   /// \brief Clone an identical FPToSIInst
03622   FPToSIInst *clone_impl() const override;
03623 
03624 public:
03625   /// \brief Constructor with insert-before-instruction semantics
03626   FPToSIInst(
03627     Value *S,                           ///< The value to be converted
03628     Type *Ty,                           ///< The type to convert to
03629     const Twine &NameStr = "",          ///< A name for the new instruction
03630     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
03631   );
03632 
03633   /// \brief Constructor with insert-at-end-of-block semantics
03634   FPToSIInst(
03635     Value *S,                     ///< The value to be converted
03636     Type *Ty,                     ///< The type to convert to
03637     const Twine &NameStr,         ///< A name for the new instruction
03638     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
03639   );
03640 
03641   /// \brief Methods for support type inquiry through isa, cast, and dyn_cast:
03642   static inline bool classof(const Instruction *I) {
03643     return I->getOpcode() == FPToSI;
03644   }
03645   static inline bool classof(const Value *V) {
03646     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03647   }
03648 };
03649 
03650 //===----------------------------------------------------------------------===//
03651 //                                 IntToPtrInst Class
03652 //===----------------------------------------------------------------------===//
03653 
03654 /// \brief This class represents a cast from an integer to a pointer.
03655 class IntToPtrInst : public CastInst {
03656 public:
03657   /// \brief Constructor with insert-before-instruction semantics
03658   IntToPtrInst(
03659     Value *S,                           ///< The value to be converted
03660     Type *Ty,                           ///< The type to convert to
03661     const Twine &NameStr = "",          ///< A name for the new instruction
03662     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
03663   );
03664 
03665   /// \brief Constructor with insert-at-end-of-block semantics
03666   IntToPtrInst(
03667     Value *S,                     ///< The value to be converted
03668     Type *Ty,                     ///< The type to convert to
03669     const Twine &NameStr,         ///< A name for the new instruction
03670     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
03671   );
03672 
03673   /// \brief Clone an identical IntToPtrInst
03674   IntToPtrInst *clone_impl() const override;
03675 
03676   /// \brief Returns the address space of this instruction's pointer type.
03677   unsigned getAddressSpace() const {
03678     return getType()->getPointerAddressSpace();
03679   }
03680 
03681   // Methods for support type inquiry through isa, cast, and dyn_cast:
03682   static inline bool classof(const Instruction *I) {
03683     return I->getOpcode() == IntToPtr;
03684   }
03685   static inline bool classof(const Value *V) {
03686     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03687   }
03688 };
03689 
03690 //===----------------------------------------------------------------------===//
03691 //                                 PtrToIntInst Class
03692 //===----------------------------------------------------------------------===//
03693 
03694 /// \brief This class represents a cast from a pointer to an integer
03695 class PtrToIntInst : public CastInst {
03696 protected:
03697   /// \brief Clone an identical PtrToIntInst
03698   PtrToIntInst *clone_impl() const override;
03699 
03700 public:
03701   /// \brief Constructor with insert-before-instruction semantics
03702   PtrToIntInst(
03703     Value *S,                           ///< The value to be converted
03704     Type *Ty,                           ///< The type to convert to
03705     const Twine &NameStr = "",          ///< A name for the new instruction
03706     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
03707   );
03708 
03709   /// \brief Constructor with insert-at-end-of-block semantics
03710   PtrToIntInst(
03711     Value *S,                     ///< The value to be converted
03712     Type *Ty,                     ///< The type to convert to
03713     const Twine &NameStr,         ///< A name for the new instruction
03714     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
03715   );
03716 
03717   /// \brief Gets the pointer operand.
03718   Value *getPointerOperand() { return getOperand(0); }
03719   /// \brief Gets the pointer operand.
03720   const Value *getPointerOperand() const { return getOperand(0); }
03721   /// \brief Gets the operand index of the pointer operand.
03722   static unsigned getPointerOperandIndex() { return 0U; }
03723 
03724   /// \brief Returns the address space of the pointer operand.
03725   unsigned getPointerAddressSpace() const {
03726     return getPointerOperand()->getType()->getPointerAddressSpace();
03727   }
03728 
03729   // Methods for support type inquiry through isa, cast, and dyn_cast:
03730   static inline bool classof(const Instruction *I) {
03731     return I->getOpcode() == PtrToInt;
03732   }
03733   static inline bool classof(const Value *V) {
03734     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03735   }
03736 };
03737 
03738 //===----------------------------------------------------------------------===//
03739 //                             BitCastInst Class
03740 //===----------------------------------------------------------------------===//
03741 
03742 /// \brief This class represents a no-op cast from one type to another.
03743 class BitCastInst : public CastInst {
03744 protected:
03745   /// \brief Clone an identical BitCastInst
03746   BitCastInst *clone_impl() const override;
03747 
03748 public:
03749   /// \brief Constructor with insert-before-instruction semantics
03750   BitCastInst(
03751     Value *S,                           ///< The value to be casted
03752     Type *Ty,                           ///< The type to casted to
03753     const Twine &NameStr = "",          ///< A name for the new instruction
03754     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
03755   );
03756 
03757   /// \brief Constructor with insert-at-end-of-block semantics
03758   BitCastInst(
03759     Value *S,                     ///< The value to be casted
03760     Type *Ty,                     ///< The type to casted to
03761     const Twine &NameStr,         ///< A name for the new instruction
03762     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
03763   );
03764 
03765   // Methods for support type inquiry through isa, cast, and dyn_cast:
03766   static inline bool classof(const Instruction *I) {
03767     return I->getOpcode() == BitCast;
03768   }
03769   static inline bool classof(const Value *V) {
03770     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03771   }
03772 };
03773 
03774 //===----------------------------------------------------------------------===//
03775 //                          AddrSpaceCastInst Class
03776 //===----------------------------------------------------------------------===//
03777 
03778 /// \brief This class represents a conversion between pointers from
03779 /// one address space to another.
03780 class AddrSpaceCastInst : public CastInst {
03781 protected:
03782   /// \brief Clone an identical AddrSpaceCastInst
03783   AddrSpaceCastInst *clone_impl() const override;
03784 
03785 public:
03786   /// \brief Constructor with insert-before-instruction semantics
03787   AddrSpaceCastInst(
03788     Value *S,                           ///< The value to be casted
03789     Type *Ty,                           ///< The type to casted to
03790     const Twine &NameStr = "",          ///< A name for the new instruction
03791     Instruction *InsertBefore = nullptr ///< Where to insert the new instruction
03792   );
03793 
03794   /// \brief Constructor with insert-at-end-of-block semantics
03795   AddrSpaceCastInst(
03796     Value *S,                     ///< The value to be casted
03797     Type *Ty,                     ///< The type to casted to
03798     const Twine &NameStr,         ///< A name for the new instruction
03799     BasicBlock *InsertAtEnd       ///< The block to insert the instruction into
03800   );
03801 
03802   // Methods for support type inquiry through isa, cast, and dyn_cast:
03803   static inline bool classof(const Instruction *I) {
03804     return I->getOpcode() == AddrSpaceCast;
03805   }
03806   static inline bool classof(const Value *V) {
03807     return isa<Instruction>(V) && classof(cast<Instruction>(V));
03808   }
03809 };
03810 
03811 } // End llvm namespace
03812 
03813 #endif