LLVM API Documentation
00001 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file contains the SplitAnalysis class as well as mutator functions for 00011 // live range splitting. 00012 // 00013 //===----------------------------------------------------------------------===// 00014 00015 #include "SplitKit.h" 00016 #include "llvm/ADT/Statistic.h" 00017 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 00018 #include "llvm/CodeGen/LiveRangeEdit.h" 00019 #include "llvm/CodeGen/MachineDominators.h" 00020 #include "llvm/CodeGen/MachineInstrBuilder.h" 00021 #include "llvm/CodeGen/MachineLoopInfo.h" 00022 #include "llvm/CodeGen/MachineRegisterInfo.h" 00023 #include "llvm/CodeGen/VirtRegMap.h" 00024 #include "llvm/Support/Debug.h" 00025 #include "llvm/Support/raw_ostream.h" 00026 #include "llvm/Target/TargetInstrInfo.h" 00027 #include "llvm/Target/TargetMachine.h" 00028 00029 using namespace llvm; 00030 00031 #define DEBUG_TYPE "regalloc" 00032 00033 STATISTIC(NumFinished, "Number of splits finished"); 00034 STATISTIC(NumSimple, "Number of splits that were simple"); 00035 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 00036 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 00037 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 00038 00039 //===----------------------------------------------------------------------===// 00040 // Split Analysis 00041 //===----------------------------------------------------------------------===// 00042 00043 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 00044 const MachineLoopInfo &mli) 00045 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 00046 TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr), 00047 LastSplitPoint(MF.getNumBlockIDs()) {} 00048 00049 void SplitAnalysis::clear() { 00050 UseSlots.clear(); 00051 UseBlocks.clear(); 00052 ThroughBlocks.clear(); 00053 CurLI = nullptr; 00054 DidRepairRange = false; 00055 } 00056 00057 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) { 00058 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num); 00059 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor(); 00060 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num]; 00061 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB); 00062 00063 // Compute split points on the first call. The pair is independent of the 00064 // current live interval. 00065 if (!LSP.first.isValid()) { 00066 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator(); 00067 if (FirstTerm == MBB->end()) 00068 LSP.first = MBBEnd; 00069 else 00070 LSP.first = LIS.getInstructionIndex(FirstTerm); 00071 00072 // If there is a landing pad successor, also find the call instruction. 00073 if (!LPad) 00074 return LSP.first; 00075 // There may not be a call instruction (?) in which case we ignore LPad. 00076 LSP.second = LSP.first; 00077 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin(); 00078 I != E;) { 00079 --I; 00080 if (I->isCall()) { 00081 LSP.second = LIS.getInstructionIndex(I); 00082 break; 00083 } 00084 } 00085 } 00086 00087 // If CurLI is live into a landing pad successor, move the last split point 00088 // back to the call that may throw. 00089 if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad)) 00090 return LSP.first; 00091 00092 // Find the value leaving MBB. 00093 const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd); 00094 if (!VNI) 00095 return LSP.first; 00096 00097 // If the value leaving MBB was defined after the call in MBB, it can't 00098 // really be live-in to the landing pad. This can happen if the landing pad 00099 // has a PHI, and this register is undef on the exceptional edge. 00100 // <rdar://problem/10664933> 00101 if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd) 00102 return LSP.first; 00103 00104 // Value is properly live-in to the landing pad. 00105 // Only allow splits before the call. 00106 return LSP.second; 00107 } 00108 00109 MachineBasicBlock::iterator 00110 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) { 00111 SlotIndex LSP = getLastSplitPoint(MBB->getNumber()); 00112 if (LSP == LIS.getMBBEndIdx(MBB)) 00113 return MBB->end(); 00114 return LIS.getInstructionFromIndex(LSP); 00115 } 00116 00117 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 00118 void SplitAnalysis::analyzeUses() { 00119 assert(UseSlots.empty() && "Call clear first"); 00120 00121 // First get all the defs from the interval values. This provides the correct 00122 // slots for early clobbers. 00123 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(), 00124 E = CurLI->vni_end(); I != E; ++I) 00125 if (!(*I)->isPHIDef() && !(*I)->isUnused()) 00126 UseSlots.push_back((*I)->def); 00127 00128 // Get use slots form the use-def chain. 00129 const MachineRegisterInfo &MRI = MF.getRegInfo(); 00130 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg)) 00131 if (!MO.isUndef()) 00132 UseSlots.push_back(LIS.getInstructionIndex(MO.getParent()).getRegSlot()); 00133 00134 array_pod_sort(UseSlots.begin(), UseSlots.end()); 00135 00136 // Remove duplicates, keeping the smaller slot for each instruction. 00137 // That is what we want for early clobbers. 00138 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 00139 SlotIndex::isSameInstr), 00140 UseSlots.end()); 00141 00142 // Compute per-live block info. 00143 if (!calcLiveBlockInfo()) { 00144 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 00145 // I am looking at you, RegisterCoalescer! 00146 DidRepairRange = true; 00147 ++NumRepairs; 00148 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 00149 const_cast<LiveIntervals&>(LIS) 00150 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 00151 UseBlocks.clear(); 00152 ThroughBlocks.clear(); 00153 bool fixed = calcLiveBlockInfo(); 00154 (void)fixed; 00155 assert(fixed && "Couldn't fix broken live interval"); 00156 } 00157 00158 DEBUG(dbgs() << "Analyze counted " 00159 << UseSlots.size() << " instrs in " 00160 << UseBlocks.size() << " blocks, through " 00161 << NumThroughBlocks << " blocks.\n"); 00162 } 00163 00164 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 00165 /// where CurLI is live. 00166 bool SplitAnalysis::calcLiveBlockInfo() { 00167 ThroughBlocks.resize(MF.getNumBlockIDs()); 00168 NumThroughBlocks = NumGapBlocks = 0; 00169 if (CurLI->empty()) 00170 return true; 00171 00172 LiveInterval::const_iterator LVI = CurLI->begin(); 00173 LiveInterval::const_iterator LVE = CurLI->end(); 00174 00175 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 00176 UseI = UseSlots.begin(); 00177 UseE = UseSlots.end(); 00178 00179 // Loop over basic blocks where CurLI is live. 00180 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start); 00181 for (;;) { 00182 BlockInfo BI; 00183 BI.MBB = MFI; 00184 SlotIndex Start, Stop; 00185 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 00186 00187 // If the block contains no uses, the range must be live through. At one 00188 // point, RegisterCoalescer could create dangling ranges that ended 00189 // mid-block. 00190 if (UseI == UseE || *UseI >= Stop) { 00191 ++NumThroughBlocks; 00192 ThroughBlocks.set(BI.MBB->getNumber()); 00193 // The range shouldn't end mid-block if there are no uses. This shouldn't 00194 // happen. 00195 if (LVI->end < Stop) 00196 return false; 00197 } else { 00198 // This block has uses. Find the first and last uses in the block. 00199 BI.FirstInstr = *UseI; 00200 assert(BI.FirstInstr >= Start); 00201 do ++UseI; 00202 while (UseI != UseE && *UseI < Stop); 00203 BI.LastInstr = UseI[-1]; 00204 assert(BI.LastInstr < Stop); 00205 00206 // LVI is the first live segment overlapping MBB. 00207 BI.LiveIn = LVI->start <= Start; 00208 00209 // When not live in, the first use should be a def. 00210 if (!BI.LiveIn) { 00211 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 00212 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 00213 BI.FirstDef = BI.FirstInstr; 00214 } 00215 00216 // Look for gaps in the live range. 00217 BI.LiveOut = true; 00218 while (LVI->end < Stop) { 00219 SlotIndex LastStop = LVI->end; 00220 if (++LVI == LVE || LVI->start >= Stop) { 00221 BI.LiveOut = false; 00222 BI.LastInstr = LastStop; 00223 break; 00224 } 00225 00226 if (LastStop < LVI->start) { 00227 // There is a gap in the live range. Create duplicate entries for the 00228 // live-in snippet and the live-out snippet. 00229 ++NumGapBlocks; 00230 00231 // Push the Live-in part. 00232 BI.LiveOut = false; 00233 UseBlocks.push_back(BI); 00234 UseBlocks.back().LastInstr = LastStop; 00235 00236 // Set up BI for the live-out part. 00237 BI.LiveIn = false; 00238 BI.LiveOut = true; 00239 BI.FirstInstr = BI.FirstDef = LVI->start; 00240 } 00241 00242 // A Segment that starts in the middle of the block must be a def. 00243 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 00244 if (!BI.FirstDef) 00245 BI.FirstDef = LVI->start; 00246 } 00247 00248 UseBlocks.push_back(BI); 00249 00250 // LVI is now at LVE or LVI->end >= Stop. 00251 if (LVI == LVE) 00252 break; 00253 } 00254 00255 // Live segment ends exactly at Stop. Move to the next segment. 00256 if (LVI->end == Stop && ++LVI == LVE) 00257 break; 00258 00259 // Pick the next basic block. 00260 if (LVI->start < Stop) 00261 ++MFI; 00262 else 00263 MFI = LIS.getMBBFromIndex(LVI->start); 00264 } 00265 00266 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 00267 return true; 00268 } 00269 00270 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 00271 if (cli->empty()) 00272 return 0; 00273 LiveInterval *li = const_cast<LiveInterval*>(cli); 00274 LiveInterval::iterator LVI = li->begin(); 00275 LiveInterval::iterator LVE = li->end(); 00276 unsigned Count = 0; 00277 00278 // Loop over basic blocks where li is live. 00279 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start); 00280 SlotIndex Stop = LIS.getMBBEndIdx(MFI); 00281 for (;;) { 00282 ++Count; 00283 LVI = li->advanceTo(LVI, Stop); 00284 if (LVI == LVE) 00285 return Count; 00286 do { 00287 ++MFI; 00288 Stop = LIS.getMBBEndIdx(MFI); 00289 } while (Stop <= LVI->start); 00290 } 00291 } 00292 00293 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 00294 unsigned OrigReg = VRM.getOriginal(CurLI->reg); 00295 const LiveInterval &Orig = LIS.getInterval(OrigReg); 00296 assert(!Orig.empty() && "Splitting empty interval?"); 00297 LiveInterval::const_iterator I = Orig.find(Idx); 00298 00299 // Range containing Idx should begin at Idx. 00300 if (I != Orig.end() && I->start <= Idx) 00301 return I->start == Idx; 00302 00303 // Range does not contain Idx, previous must end at Idx. 00304 return I != Orig.begin() && (--I)->end == Idx; 00305 } 00306 00307 void SplitAnalysis::analyze(const LiveInterval *li) { 00308 clear(); 00309 CurLI = li; 00310 analyzeUses(); 00311 } 00312 00313 00314 //===----------------------------------------------------------------------===// 00315 // Split Editor 00316 //===----------------------------------------------------------------------===// 00317 00318 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 00319 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm, 00320 MachineDominatorTree &mdt, 00321 MachineBlockFrequencyInfo &mbfi) 00322 : SA(sa), LIS(lis), VRM(vrm), MRI(vrm.getMachineFunction().getRegInfo()), 00323 MDT(mdt), TII(*vrm.getMachineFunction() 00324 .getTarget() 00325 .getSubtargetImpl() 00326 ->getInstrInfo()), 00327 TRI(*vrm.getMachineFunction() 00328 .getTarget() 00329 .getSubtargetImpl() 00330 ->getRegisterInfo()), 00331 MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition), 00332 RegAssign(Allocator) {} 00333 00334 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 00335 Edit = &LRE; 00336 SpillMode = SM; 00337 OpenIdx = 0; 00338 RegAssign.clear(); 00339 Values.clear(); 00340 00341 // Reset the LiveRangeCalc instances needed for this spill mode. 00342 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 00343 &LIS.getVNInfoAllocator()); 00344 if (SpillMode) 00345 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 00346 &LIS.getVNInfoAllocator()); 00347 00348 // We don't need an AliasAnalysis since we will only be performing 00349 // cheap-as-a-copy remats anyway. 00350 Edit->anyRematerializable(nullptr); 00351 } 00352 00353 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 00354 void SplitEditor::dump() const { 00355 if (RegAssign.empty()) { 00356 dbgs() << " empty\n"; 00357 return; 00358 } 00359 00360 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 00361 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 00362 dbgs() << '\n'; 00363 } 00364 #endif 00365 00366 VNInfo *SplitEditor::defValue(unsigned RegIdx, 00367 const VNInfo *ParentVNI, 00368 SlotIndex Idx) { 00369 assert(ParentVNI && "Mapping NULL value"); 00370 assert(Idx.isValid() && "Invalid SlotIndex"); 00371 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 00372 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 00373 00374 // Create a new value. 00375 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 00376 00377 // Use insert for lookup, so we can add missing values with a second lookup. 00378 std::pair<ValueMap::iterator, bool> InsP = 00379 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), 00380 ValueForcePair(VNI, false))); 00381 00382 // This was the first time (RegIdx, ParentVNI) was mapped. 00383 // Keep it as a simple def without any liveness. 00384 if (InsP.second) 00385 return VNI; 00386 00387 // If the previous value was a simple mapping, add liveness for it now. 00388 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 00389 SlotIndex Def = OldVNI->def; 00390 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI)); 00391 // No longer a simple mapping. Switch to a complex, non-forced mapping. 00392 InsP.first->second = ValueForcePair(); 00393 } 00394 00395 // This is a complex mapping, add liveness for VNI 00396 SlotIndex Def = VNI->def; 00397 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI)); 00398 00399 return VNI; 00400 } 00401 00402 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) { 00403 assert(ParentVNI && "Mapping NULL value"); 00404 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)]; 00405 VNInfo *VNI = VFP.getPointer(); 00406 00407 // ParentVNI was either unmapped or already complex mapped. Either way, just 00408 // set the force bit. 00409 if (!VNI) { 00410 VFP.setInt(true); 00411 return; 00412 } 00413 00414 // This was previously a single mapping. Make sure the old def is represented 00415 // by a trivial live range. 00416 SlotIndex Def = VNI->def; 00417 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 00418 LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI)); 00419 // Mark as complex mapped, forced. 00420 VFP = ValueForcePair(nullptr, true); 00421 } 00422 00423 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 00424 VNInfo *ParentVNI, 00425 SlotIndex UseIdx, 00426 MachineBasicBlock &MBB, 00427 MachineBasicBlock::iterator I) { 00428 MachineInstr *CopyMI = nullptr; 00429 SlotIndex Def; 00430 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 00431 00432 // We may be trying to avoid interference that ends at a deleted instruction, 00433 // so always begin RegIdx 0 early and all others late. 00434 bool Late = RegIdx != 0; 00435 00436 // Attempt cheap-as-a-copy rematerialization. 00437 LiveRangeEdit::Remat RM(ParentVNI); 00438 if (Edit->canRematerializeAt(RM, UseIdx, true)) { 00439 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late); 00440 ++NumRemats; 00441 } else { 00442 // Can't remat, just insert a copy from parent. 00443 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg) 00444 .addReg(Edit->getReg()); 00445 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late) 00446 .getRegSlot(); 00447 ++NumCopies; 00448 } 00449 00450 // Define the value in Reg. 00451 return defValue(RegIdx, ParentVNI, Def); 00452 } 00453 00454 /// Create a new virtual register and live interval. 00455 unsigned SplitEditor::openIntv() { 00456 // Create the complement as index 0. 00457 if (Edit->empty()) 00458 Edit->createEmptyInterval(); 00459 00460 // Create the open interval. 00461 OpenIdx = Edit->size(); 00462 Edit->createEmptyInterval(); 00463 return OpenIdx; 00464 } 00465 00466 void SplitEditor::selectIntv(unsigned Idx) { 00467 assert(Idx != 0 && "Cannot select the complement interval"); 00468 assert(Idx < Edit->size() && "Can only select previously opened interval"); 00469 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 00470 OpenIdx = Idx; 00471 } 00472 00473 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 00474 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 00475 DEBUG(dbgs() << " enterIntvBefore " << Idx); 00476 Idx = Idx.getBaseIndex(); 00477 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 00478 if (!ParentVNI) { 00479 DEBUG(dbgs() << ": not live\n"); 00480 return Idx; 00481 } 00482 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 00483 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 00484 assert(MI && "enterIntvBefore called with invalid index"); 00485 00486 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 00487 return VNI->def; 00488 } 00489 00490 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 00491 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 00492 DEBUG(dbgs() << " enterIntvAfter " << Idx); 00493 Idx = Idx.getBoundaryIndex(); 00494 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 00495 if (!ParentVNI) { 00496 DEBUG(dbgs() << ": not live\n"); 00497 return Idx; 00498 } 00499 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 00500 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 00501 assert(MI && "enterIntvAfter called with invalid index"); 00502 00503 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 00504 std::next(MachineBasicBlock::iterator(MI))); 00505 return VNI->def; 00506 } 00507 00508 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 00509 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 00510 SlotIndex End = LIS.getMBBEndIdx(&MBB); 00511 SlotIndex Last = End.getPrevSlot(); 00512 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last); 00513 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 00514 if (!ParentVNI) { 00515 DEBUG(dbgs() << ": not live\n"); 00516 return End; 00517 } 00518 DEBUG(dbgs() << ": valno " << ParentVNI->id); 00519 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 00520 SA.getLastSplitPointIter(&MBB)); 00521 RegAssign.insert(VNI->def, End, OpenIdx); 00522 DEBUG(dump()); 00523 return VNI->def; 00524 } 00525 00526 /// useIntv - indicate that all instructions in MBB should use OpenLI. 00527 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 00528 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 00529 } 00530 00531 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 00532 assert(OpenIdx && "openIntv not called before useIntv"); 00533 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 00534 RegAssign.insert(Start, End, OpenIdx); 00535 DEBUG(dump()); 00536 } 00537 00538 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 00539 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 00540 DEBUG(dbgs() << " leaveIntvAfter " << Idx); 00541 00542 // The interval must be live beyond the instruction at Idx. 00543 SlotIndex Boundary = Idx.getBoundaryIndex(); 00544 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 00545 if (!ParentVNI) { 00546 DEBUG(dbgs() << ": not live\n"); 00547 return Boundary.getNextSlot(); 00548 } 00549 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 00550 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 00551 assert(MI && "No instruction at index"); 00552 00553 // In spill mode, make live ranges as short as possible by inserting the copy 00554 // before MI. This is only possible if that instruction doesn't redefine the 00555 // value. The inserted COPY is not a kill, and we don't need to recompute 00556 // the source live range. The spiller also won't try to hoist this copy. 00557 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 00558 MI->readsVirtualRegister(Edit->getReg())) { 00559 forceRecompute(0, ParentVNI); 00560 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 00561 return Idx; 00562 } 00563 00564 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 00565 std::next(MachineBasicBlock::iterator(MI))); 00566 return VNI->def; 00567 } 00568 00569 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 00570 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 00571 DEBUG(dbgs() << " leaveIntvBefore " << Idx); 00572 00573 // The interval must be live into the instruction at Idx. 00574 Idx = Idx.getBaseIndex(); 00575 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 00576 if (!ParentVNI) { 00577 DEBUG(dbgs() << ": not live\n"); 00578 return Idx.getNextSlot(); 00579 } 00580 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 00581 00582 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 00583 assert(MI && "No instruction at index"); 00584 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 00585 return VNI->def; 00586 } 00587 00588 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 00589 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 00590 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 00591 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start); 00592 00593 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 00594 if (!ParentVNI) { 00595 DEBUG(dbgs() << ": not live\n"); 00596 return Start; 00597 } 00598 00599 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 00600 MBB.SkipPHIsAndLabels(MBB.begin())); 00601 RegAssign.insert(Start, VNI->def, OpenIdx); 00602 DEBUG(dump()); 00603 return VNI->def; 00604 } 00605 00606 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 00607 assert(OpenIdx && "openIntv not called before overlapIntv"); 00608 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 00609 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 00610 "Parent changes value in extended range"); 00611 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 00612 "Range cannot span basic blocks"); 00613 00614 // The complement interval will be extended as needed by LRCalc.extend(). 00615 if (ParentVNI) 00616 forceRecompute(0, ParentVNI); 00617 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 00618 RegAssign.insert(Start, End, OpenIdx); 00619 DEBUG(dump()); 00620 } 00621 00622 //===----------------------------------------------------------------------===// 00623 // Spill modes 00624 //===----------------------------------------------------------------------===// 00625 00626 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 00627 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 00628 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 00629 RegAssignMap::iterator AssignI; 00630 AssignI.setMap(RegAssign); 00631 00632 for (unsigned i = 0, e = Copies.size(); i != e; ++i) { 00633 VNInfo *VNI = Copies[i]; 00634 SlotIndex Def = VNI->def; 00635 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 00636 assert(MI && "No instruction for back-copy"); 00637 00638 MachineBasicBlock *MBB = MI->getParent(); 00639 MachineBasicBlock::iterator MBBI(MI); 00640 bool AtBegin; 00641 do AtBegin = MBBI == MBB->begin(); 00642 while (!AtBegin && (--MBBI)->isDebugValue()); 00643 00644 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 00645 LI->removeValNo(VNI); 00646 LIS.RemoveMachineInstrFromMaps(MI); 00647 MI->eraseFromParent(); 00648 00649 // Adjust RegAssign if a register assignment is killed at VNI->def. We 00650 // want to avoid calculating the live range of the source register if 00651 // possible. 00652 AssignI.find(Def.getPrevSlot()); 00653 if (!AssignI.valid() || AssignI.start() >= Def) 00654 continue; 00655 // If MI doesn't kill the assigned register, just leave it. 00656 if (AssignI.stop() != Def) 00657 continue; 00658 unsigned RegIdx = AssignI.value(); 00659 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 00660 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n'); 00661 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def)); 00662 } else { 00663 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot(); 00664 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 00665 AssignI.setStop(Kill); 00666 } 00667 } 00668 } 00669 00670 MachineBasicBlock* 00671 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 00672 MachineBasicBlock *DefMBB) { 00673 if (MBB == DefMBB) 00674 return MBB; 00675 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 00676 00677 const MachineLoopInfo &Loops = SA.Loops; 00678 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 00679 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 00680 00681 // Best candidate so far. 00682 MachineBasicBlock *BestMBB = MBB; 00683 unsigned BestDepth = UINT_MAX; 00684 00685 for (;;) { 00686 const MachineLoop *Loop = Loops.getLoopFor(MBB); 00687 00688 // MBB isn't in a loop, it doesn't get any better. All dominators have a 00689 // higher frequency by definition. 00690 if (!Loop) { 00691 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 00692 << MBB->getNumber() << " at depth 0\n"); 00693 return MBB; 00694 } 00695 00696 // We'll never be able to exit the DefLoop. 00697 if (Loop == DefLoop) { 00698 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 00699 << MBB->getNumber() << " in the same loop\n"); 00700 return MBB; 00701 } 00702 00703 // Least busy dominator seen so far. 00704 unsigned Depth = Loop->getLoopDepth(); 00705 if (Depth < BestDepth) { 00706 BestMBB = MBB; 00707 BestDepth = Depth; 00708 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#" 00709 << MBB->getNumber() << " at depth " << Depth << '\n'); 00710 } 00711 00712 // Leave loop by going to the immediate dominator of the loop header. 00713 // This is a bigger stride than simply walking up the dominator tree. 00714 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 00715 00716 // Too far up the dominator tree? 00717 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 00718 return BestMBB; 00719 00720 MBB = IDom->getBlock(); 00721 } 00722 } 00723 00724 void SplitEditor::hoistCopiesForSize() { 00725 // Get the complement interval, always RegIdx 0. 00726 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 00727 LiveInterval *Parent = &Edit->getParent(); 00728 00729 // Track the nearest common dominator for all back-copies for each ParentVNI, 00730 // indexed by ParentVNI->id. 00731 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair; 00732 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 00733 00734 // Find the nearest common dominator for parent values with multiple 00735 // back-copies. If a single back-copy dominates, put it in DomPair.second. 00736 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 00737 VI != VE; ++VI) { 00738 VNInfo *VNI = *VI; 00739 if (VNI->isUnused()) 00740 continue; 00741 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 00742 assert(ParentVNI && "Parent not live at complement def"); 00743 00744 // Don't hoist remats. The complement is probably going to disappear 00745 // completely anyway. 00746 if (Edit->didRematerialize(ParentVNI)) 00747 continue; 00748 00749 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 00750 DomPair &Dom = NearestDom[ParentVNI->id]; 00751 00752 // Keep directly defined parent values. This is either a PHI or an 00753 // instruction in the complement range. All other copies of ParentVNI 00754 // should be eliminated. 00755 if (VNI->def == ParentVNI->def) { 00756 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 00757 Dom = DomPair(ValMBB, VNI->def); 00758 continue; 00759 } 00760 // Skip the singly mapped values. There is nothing to gain from hoisting a 00761 // single back-copy. 00762 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 00763 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 00764 continue; 00765 } 00766 00767 if (!Dom.first) { 00768 // First time we see ParentVNI. VNI dominates itself. 00769 Dom = DomPair(ValMBB, VNI->def); 00770 } else if (Dom.first == ValMBB) { 00771 // Two defs in the same block. Pick the earlier def. 00772 if (!Dom.second.isValid() || VNI->def < Dom.second) 00773 Dom.second = VNI->def; 00774 } else { 00775 // Different basic blocks. Check if one dominates. 00776 MachineBasicBlock *Near = 00777 MDT.findNearestCommonDominator(Dom.first, ValMBB); 00778 if (Near == ValMBB) 00779 // Def ValMBB dominates. 00780 Dom = DomPair(ValMBB, VNI->def); 00781 else if (Near != Dom.first) 00782 // None dominate. Hoist to common dominator, need new def. 00783 Dom = DomPair(Near, SlotIndex()); 00784 } 00785 00786 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def 00787 << " for parent " << ParentVNI->id << '@' << ParentVNI->def 00788 << " hoist to BB#" << Dom.first->getNumber() << ' ' 00789 << Dom.second << '\n'); 00790 } 00791 00792 // Insert the hoisted copies. 00793 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 00794 DomPair &Dom = NearestDom[i]; 00795 if (!Dom.first || Dom.second.isValid()) 00796 continue; 00797 // This value needs a hoisted copy inserted at the end of Dom.first. 00798 VNInfo *ParentVNI = Parent->getValNumInfo(i); 00799 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 00800 // Get a less loopy dominator than Dom.first. 00801 Dom.first = findShallowDominator(Dom.first, DefMBB); 00802 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 00803 Dom.second = 00804 defFromParent(0, ParentVNI, Last, *Dom.first, 00805 SA.getLastSplitPointIter(Dom.first))->def; 00806 } 00807 00808 // Remove redundant back-copies that are now known to be dominated by another 00809 // def with the same value. 00810 SmallVector<VNInfo*, 8> BackCopies; 00811 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end(); 00812 VI != VE; ++VI) { 00813 VNInfo *VNI = *VI; 00814 if (VNI->isUnused()) 00815 continue; 00816 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 00817 const DomPair &Dom = NearestDom[ParentVNI->id]; 00818 if (!Dom.first || Dom.second == VNI->def) 00819 continue; 00820 BackCopies.push_back(VNI); 00821 forceRecompute(0, ParentVNI); 00822 } 00823 removeBackCopies(BackCopies); 00824 } 00825 00826 00827 /// transferValues - Transfer all possible values to the new live ranges. 00828 /// Values that were rematerialized are left alone, they need LRCalc.extend(). 00829 bool SplitEditor::transferValues() { 00830 bool Skipped = false; 00831 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 00832 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(), 00833 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) { 00834 DEBUG(dbgs() << " blit " << *ParentI << ':'); 00835 VNInfo *ParentVNI = ParentI->valno; 00836 // RegAssign has holes where RegIdx 0 should be used. 00837 SlotIndex Start = ParentI->start; 00838 AssignI.advanceTo(Start); 00839 do { 00840 unsigned RegIdx; 00841 SlotIndex End = ParentI->end; 00842 if (!AssignI.valid()) { 00843 RegIdx = 0; 00844 } else if (AssignI.start() <= Start) { 00845 RegIdx = AssignI.value(); 00846 if (AssignI.stop() < End) { 00847 End = AssignI.stop(); 00848 ++AssignI; 00849 } 00850 } else { 00851 RegIdx = 0; 00852 End = std::min(End, AssignI.start()); 00853 } 00854 00855 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 00856 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx); 00857 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx)); 00858 00859 // Check for a simply defined value that can be blitted directly. 00860 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 00861 if (VNInfo *VNI = VFP.getPointer()) { 00862 DEBUG(dbgs() << ':' << VNI->id); 00863 LR.addSegment(LiveInterval::Segment(Start, End, VNI)); 00864 Start = End; 00865 continue; 00866 } 00867 00868 // Skip values with forced recomputation. 00869 if (VFP.getInt()) { 00870 DEBUG(dbgs() << "(recalc)"); 00871 Skipped = true; 00872 Start = End; 00873 continue; 00874 } 00875 00876 LiveRangeCalc &LRC = getLRCalc(RegIdx); 00877 00878 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 00879 // so the live range is accurate. Add live-in blocks in [Start;End) to the 00880 // LiveInBlocks. 00881 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start); 00882 SlotIndex BlockStart, BlockEnd; 00883 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB); 00884 00885 // The first block may be live-in, or it may have its own def. 00886 if (Start != BlockStart) { 00887 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End)); 00888 assert(VNI && "Missing def for complex mapped value"); 00889 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber()); 00890 // MBB has its own def. Is it also live-out? 00891 if (BlockEnd <= End) 00892 LRC.setLiveOutValue(MBB, VNI); 00893 00894 // Skip to the next block for live-in. 00895 ++MBB; 00896 BlockStart = BlockEnd; 00897 } 00898 00899 // Handle the live-in blocks covered by [Start;End). 00900 assert(Start <= BlockStart && "Expected live-in block"); 00901 while (BlockStart < End) { 00902 DEBUG(dbgs() << ">BB#" << MBB->getNumber()); 00903 BlockEnd = LIS.getMBBEndIdx(MBB); 00904 if (BlockStart == ParentVNI->def) { 00905 // This block has the def of a parent PHI, so it isn't live-in. 00906 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 00907 VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End)); 00908 assert(VNI && "Missing def for complex mapped parent PHI"); 00909 if (End >= BlockEnd) 00910 LRC.setLiveOutValue(MBB, VNI); // Live-out as well. 00911 } else { 00912 // This block needs a live-in value. The last block covered may not 00913 // be live-out. 00914 if (End < BlockEnd) 00915 LRC.addLiveInBlock(LR, MDT[MBB], End); 00916 else { 00917 // Live-through, and we don't know the value. 00918 LRC.addLiveInBlock(LR, MDT[MBB]); 00919 LRC.setLiveOutValue(MBB, nullptr); 00920 } 00921 } 00922 BlockStart = BlockEnd; 00923 ++MBB; 00924 } 00925 Start = End; 00926 } while (Start != ParentI->end); 00927 DEBUG(dbgs() << '\n'); 00928 } 00929 00930 LRCalc[0].calculateValues(); 00931 if (SpillMode) 00932 LRCalc[1].calculateValues(); 00933 00934 return Skipped; 00935 } 00936 00937 void SplitEditor::extendPHIKillRanges() { 00938 // Extend live ranges to be live-out for successor PHI values. 00939 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 00940 E = Edit->getParent().vni_end(); I != E; ++I) { 00941 const VNInfo *PHIVNI = *I; 00942 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef()) 00943 continue; 00944 unsigned RegIdx = RegAssign.lookup(PHIVNI->def); 00945 LiveRange &LR = LIS.getInterval(Edit->get(RegIdx)); 00946 LiveRangeCalc &LRC = getLRCalc(RegIdx); 00947 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def); 00948 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(), 00949 PE = MBB->pred_end(); PI != PE; ++PI) { 00950 SlotIndex End = LIS.getMBBEndIdx(*PI); 00951 SlotIndex LastUse = End.getPrevSlot(); 00952 // The predecessor may not have a live-out value. That is OK, like an 00953 // undef PHI operand. 00954 if (Edit->getParent().liveAt(LastUse)) { 00955 assert(RegAssign.lookup(LastUse) == RegIdx && 00956 "Different register assignment in phi predecessor"); 00957 LRC.extend(LR, End); 00958 } 00959 } 00960 } 00961 } 00962 00963 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 00964 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 00965 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()), 00966 RE = MRI.reg_end(); RI != RE;) { 00967 MachineOperand &MO = *RI; 00968 MachineInstr *MI = MO.getParent(); 00969 ++RI; 00970 // LiveDebugVariables should have handled all DBG_VALUE instructions. 00971 if (MI->isDebugValue()) { 00972 DEBUG(dbgs() << "Zapping " << *MI); 00973 MO.setReg(0); 00974 continue; 00975 } 00976 00977 // <undef> operands don't really read the register, so it doesn't matter 00978 // which register we choose. When the use operand is tied to a def, we must 00979 // use the same register as the def, so just do that always. 00980 SlotIndex Idx = LIS.getInstructionIndex(MI); 00981 if (MO.isDef() || MO.isUndef()) 00982 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 00983 00984 // Rewrite to the mapped register at Idx. 00985 unsigned RegIdx = RegAssign.lookup(Idx); 00986 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 00987 MO.setReg(LI->reg); 00988 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t' 00989 << Idx << ':' << RegIdx << '\t' << *MI); 00990 00991 // Extend liveness to Idx if the instruction reads reg. 00992 if (!ExtendRanges || MO.isUndef()) 00993 continue; 00994 00995 // Skip instructions that don't read Reg. 00996 if (MO.isDef()) { 00997 if (!MO.getSubReg() && !MO.isEarlyClobber()) 00998 continue; 00999 // We may wan't to extend a live range for a partial redef, or for a use 01000 // tied to an early clobber. 01001 Idx = Idx.getPrevSlot(); 01002 if (!Edit->getParent().liveAt(Idx)) 01003 continue; 01004 } else 01005 Idx = Idx.getRegSlot(true); 01006 01007 getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot()); 01008 } 01009 } 01010 01011 void SplitEditor::deleteRematVictims() { 01012 SmallVector<MachineInstr*, 8> Dead; 01013 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){ 01014 LiveInterval *LI = &LIS.getInterval(*I); 01015 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end(); 01016 LII != LIE; ++LII) { 01017 // Dead defs end at the dead slot. 01018 if (LII->end != LII->valno->def.getDeadSlot()) 01019 continue; 01020 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def); 01021 assert(MI && "Missing instruction for dead def"); 01022 MI->addRegisterDead(LI->reg, &TRI); 01023 01024 if (!MI->allDefsAreDead()) 01025 continue; 01026 01027 DEBUG(dbgs() << "All defs dead: " << *MI); 01028 Dead.push_back(MI); 01029 } 01030 } 01031 01032 if (Dead.empty()) 01033 return; 01034 01035 Edit->eliminateDeadDefs(Dead); 01036 } 01037 01038 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 01039 ++NumFinished; 01040 01041 // At this point, the live intervals in Edit contain VNInfos corresponding to 01042 // the inserted copies. 01043 01044 // Add the original defs from the parent interval. 01045 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(), 01046 E = Edit->getParent().vni_end(); I != E; ++I) { 01047 const VNInfo *ParentVNI = *I; 01048 if (ParentVNI->isUnused()) 01049 continue; 01050 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 01051 defValue(RegIdx, ParentVNI, ParentVNI->def); 01052 01053 // Force rematted values to be recomputed everywhere. 01054 // The new live ranges may be truncated. 01055 if (Edit->didRematerialize(ParentVNI)) 01056 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 01057 forceRecompute(i, ParentVNI); 01058 } 01059 01060 // Hoist back-copies to the complement interval when in spill mode. 01061 switch (SpillMode) { 01062 case SM_Partition: 01063 // Leave all back-copies as is. 01064 break; 01065 case SM_Size: 01066 hoistCopiesForSize(); 01067 break; 01068 case SM_Speed: 01069 llvm_unreachable("Spill mode 'speed' not implemented yet"); 01070 } 01071 01072 // Transfer the simply mapped values, check if any are skipped. 01073 bool Skipped = transferValues(); 01074 if (Skipped) 01075 extendPHIKillRanges(); 01076 else 01077 ++NumSimple; 01078 01079 // Rewrite virtual registers, possibly extending ranges. 01080 rewriteAssigned(Skipped); 01081 01082 // Delete defs that were rematted everywhere. 01083 if (Skipped) 01084 deleteRematVictims(); 01085 01086 // Get rid of unused values and set phi-kill flags. 01087 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) { 01088 LiveInterval &LI = LIS.getInterval(*I); 01089 LI.RenumberValues(); 01090 } 01091 01092 // Provide a reverse mapping from original indices to Edit ranges. 01093 if (LRMap) { 01094 LRMap->clear(); 01095 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 01096 LRMap->push_back(i); 01097 } 01098 01099 // Now check if any registers were separated into multiple components. 01100 ConnectedVNInfoEqClasses ConEQ(LIS); 01101 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 01102 // Don't use iterators, they are invalidated by create() below. 01103 LiveInterval *li = &LIS.getInterval(Edit->get(i)); 01104 unsigned NumComp = ConEQ.Classify(li); 01105 if (NumComp <= 1) 01106 continue; 01107 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n'); 01108 SmallVector<LiveInterval*, 8> dups; 01109 dups.push_back(li); 01110 for (unsigned j = 1; j != NumComp; ++j) 01111 dups.push_back(&Edit->createEmptyInterval()); 01112 ConEQ.Distribute(&dups[0], MRI); 01113 // The new intervals all map back to i. 01114 if (LRMap) 01115 LRMap->resize(Edit->size(), i); 01116 } 01117 01118 // Calculate spill weight and allocation hints for new intervals. 01119 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI); 01120 01121 assert(!LRMap || LRMap->size() == Edit->size()); 01122 } 01123 01124 01125 //===----------------------------------------------------------------------===// 01126 // Single Block Splitting 01127 //===----------------------------------------------------------------------===// 01128 01129 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 01130 bool SingleInstrs) const { 01131 // Always split for multiple instructions. 01132 if (!BI.isOneInstr()) 01133 return true; 01134 // Don't split for single instructions unless explicitly requested. 01135 if (!SingleInstrs) 01136 return false; 01137 // Splitting a live-through range always makes progress. 01138 if (BI.LiveIn && BI.LiveOut) 01139 return true; 01140 // No point in isolating a copy. It has no register class constraints. 01141 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 01142 return false; 01143 // Finally, don't isolate an end point that was created by earlier splits. 01144 return isOriginalEndpoint(BI.FirstInstr); 01145 } 01146 01147 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 01148 openIntv(); 01149 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber()); 01150 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 01151 LastSplitPoint)); 01152 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 01153 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 01154 } else { 01155 // The last use is after the last valid split point. 01156 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 01157 useIntv(SegStart, SegStop); 01158 overlapIntv(SegStop, BI.LastInstr); 01159 } 01160 } 01161 01162 01163 //===----------------------------------------------------------------------===// 01164 // Global Live Range Splitting Support 01165 //===----------------------------------------------------------------------===// 01166 01167 // These methods support a method of global live range splitting that uses a 01168 // global algorithm to decide intervals for CFG edges. They will insert split 01169 // points and color intervals in basic blocks while avoiding interference. 01170 // 01171 // Note that splitSingleBlock is also useful for blocks where both CFG edges 01172 // are on the stack. 01173 01174 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 01175 unsigned IntvIn, SlotIndex LeaveBefore, 01176 unsigned IntvOut, SlotIndex EnterAfter){ 01177 SlotIndex Start, Stop; 01178 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 01179 01180 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop 01181 << ") intf " << LeaveBefore << '-' << EnterAfter 01182 << ", live-through " << IntvIn << " -> " << IntvOut); 01183 01184 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 01185 01186 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 01187 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 01188 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 01189 01190 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 01191 01192 if (!IntvOut) { 01193 DEBUG(dbgs() << ", spill on entry.\n"); 01194 // 01195 // <<<<<<<<< Possible LeaveBefore interference. 01196 // |-----------| Live through. 01197 // -____________ Spill on entry. 01198 // 01199 selectIntv(IntvIn); 01200 SlotIndex Idx = leaveIntvAtTop(*MBB); 01201 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 01202 (void)Idx; 01203 return; 01204 } 01205 01206 if (!IntvIn) { 01207 DEBUG(dbgs() << ", reload on exit.\n"); 01208 // 01209 // >>>>>>> Possible EnterAfter interference. 01210 // |-----------| Live through. 01211 // ___________-- Reload on exit. 01212 // 01213 selectIntv(IntvOut); 01214 SlotIndex Idx = enterIntvAtEnd(*MBB); 01215 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 01216 (void)Idx; 01217 return; 01218 } 01219 01220 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 01221 DEBUG(dbgs() << ", straight through.\n"); 01222 // 01223 // |-----------| Live through. 01224 // ------------- Straight through, same intv, no interference. 01225 // 01226 selectIntv(IntvOut); 01227 useIntv(Start, Stop); 01228 return; 01229 } 01230 01231 // We cannot legally insert splits after LSP. 01232 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 01233 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 01234 01235 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 01236 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 01237 DEBUG(dbgs() << ", switch avoiding interference.\n"); 01238 // 01239 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 01240 // |-----------| Live through. 01241 // ------======= Switch intervals between interference. 01242 // 01243 selectIntv(IntvOut); 01244 SlotIndex Idx; 01245 if (LeaveBefore && LeaveBefore < LSP) { 01246 Idx = enterIntvBefore(LeaveBefore); 01247 useIntv(Idx, Stop); 01248 } else { 01249 Idx = enterIntvAtEnd(*MBB); 01250 } 01251 selectIntv(IntvIn); 01252 useIntv(Start, Idx); 01253 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 01254 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 01255 return; 01256 } 01257 01258 DEBUG(dbgs() << ", create local intv for interference.\n"); 01259 // 01260 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 01261 // |-----------| Live through. 01262 // ==---------== Switch intervals before/after interference. 01263 // 01264 assert(LeaveBefore <= EnterAfter && "Missed case"); 01265 01266 selectIntv(IntvOut); 01267 SlotIndex Idx = enterIntvAfter(EnterAfter); 01268 useIntv(Idx, Stop); 01269 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 01270 01271 selectIntv(IntvIn); 01272 Idx = leaveIntvBefore(LeaveBefore); 01273 useIntv(Start, Idx); 01274 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 01275 } 01276 01277 01278 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 01279 unsigned IntvIn, SlotIndex LeaveBefore) { 01280 SlotIndex Start, Stop; 01281 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 01282 01283 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 01284 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 01285 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore 01286 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 01287 01288 assert(IntvIn && "Must have register in"); 01289 assert(BI.LiveIn && "Must be live-in"); 01290 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 01291 01292 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 01293 DEBUG(dbgs() << " before interference.\n"); 01294 // 01295 // <<< Interference after kill. 01296 // |---o---x | Killed in block. 01297 // ========= Use IntvIn everywhere. 01298 // 01299 selectIntv(IntvIn); 01300 useIntv(Start, BI.LastInstr); 01301 return; 01302 } 01303 01304 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 01305 01306 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 01307 // 01308 // <<< Possible interference after last use. 01309 // |---o---o---| Live-out on stack. 01310 // =========____ Leave IntvIn after last use. 01311 // 01312 // < Interference after last use. 01313 // |---o---o--o| Live-out on stack, late last use. 01314 // ============ Copy to stack after LSP, overlap IntvIn. 01315 // \_____ Stack interval is live-out. 01316 // 01317 if (BI.LastInstr < LSP) { 01318 DEBUG(dbgs() << ", spill after last use before interference.\n"); 01319 selectIntv(IntvIn); 01320 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 01321 useIntv(Start, Idx); 01322 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 01323 } else { 01324 DEBUG(dbgs() << ", spill before last split point.\n"); 01325 selectIntv(IntvIn); 01326 SlotIndex Idx = leaveIntvBefore(LSP); 01327 overlapIntv(Idx, BI.LastInstr); 01328 useIntv(Start, Idx); 01329 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 01330 } 01331 return; 01332 } 01333 01334 // The interference is overlapping somewhere we wanted to use IntvIn. That 01335 // means we need to create a local interval that can be allocated a 01336 // different register. 01337 unsigned LocalIntv = openIntv(); 01338 (void)LocalIntv; 01339 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 01340 01341 if (!BI.LiveOut || BI.LastInstr < LSP) { 01342 // 01343 // <<<<<<< Interference overlapping uses. 01344 // |---o---o---| Live-out on stack. 01345 // =====----____ Leave IntvIn before interference, then spill. 01346 // 01347 SlotIndex To = leaveIntvAfter(BI.LastInstr); 01348 SlotIndex From = enterIntvBefore(LeaveBefore); 01349 useIntv(From, To); 01350 selectIntv(IntvIn); 01351 useIntv(Start, From); 01352 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 01353 return; 01354 } 01355 01356 // <<<<<<< Interference overlapping uses. 01357 // |---o---o--o| Live-out on stack, late last use. 01358 // =====------- Copy to stack before LSP, overlap LocalIntv. 01359 // \_____ Stack interval is live-out. 01360 // 01361 SlotIndex To = leaveIntvBefore(LSP); 01362 overlapIntv(To, BI.LastInstr); 01363 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 01364 useIntv(From, To); 01365 selectIntv(IntvIn); 01366 useIntv(Start, From); 01367 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 01368 } 01369 01370 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 01371 unsigned IntvOut, SlotIndex EnterAfter) { 01372 SlotIndex Start, Stop; 01373 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 01374 01375 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop 01376 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr 01377 << ", reg-out " << IntvOut << ", enter after " << EnterAfter 01378 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 01379 01380 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber()); 01381 01382 assert(IntvOut && "Must have register out"); 01383 assert(BI.LiveOut && "Must be live-out"); 01384 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 01385 01386 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 01387 DEBUG(dbgs() << " after interference.\n"); 01388 // 01389 // >>>> Interference before def. 01390 // | o---o---| Defined in block. 01391 // ========= Use IntvOut everywhere. 01392 // 01393 selectIntv(IntvOut); 01394 useIntv(BI.FirstInstr, Stop); 01395 return; 01396 } 01397 01398 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 01399 DEBUG(dbgs() << ", reload after interference.\n"); 01400 // 01401 // >>>> Interference before def. 01402 // |---o---o---| Live-through, stack-in. 01403 // ____========= Enter IntvOut before first use. 01404 // 01405 selectIntv(IntvOut); 01406 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 01407 useIntv(Idx, Stop); 01408 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 01409 return; 01410 } 01411 01412 // The interference is overlapping somewhere we wanted to use IntvOut. That 01413 // means we need to create a local interval that can be allocated a 01414 // different register. 01415 DEBUG(dbgs() << ", interference overlaps uses.\n"); 01416 // 01417 // >>>>>>> Interference overlapping uses. 01418 // |---o---o---| Live-through, stack-in. 01419 // ____---====== Create local interval for interference range. 01420 // 01421 selectIntv(IntvOut); 01422 SlotIndex Idx = enterIntvAfter(EnterAfter); 01423 useIntv(Idx, Stop); 01424 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 01425 01426 openIntv(); 01427 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 01428 useIntv(From, Idx); 01429 }