LLVM API Documentation
00001 //===-- llvm/CodeGen/TargetSchedule.h - Sched Machine Model -----*- C++ -*-===// 00002 // 00003 // The LLVM Compiler Infrastructure 00004 // 00005 // This file is distributed under the University of Illinois Open Source 00006 // License. See LICENSE.TXT for details. 00007 // 00008 //===----------------------------------------------------------------------===// 00009 // 00010 // This file defines a wrapper around MCSchedModel that allows the interface to 00011 // benefit from information currently only available in TargetInstrInfo. 00012 // Ideally, the scheduling interface would be fully defined in the MC layer. 00013 // 00014 //===----------------------------------------------------------------------===// 00015 00016 #ifndef LLVM_CODEGEN_TARGETSCHEDULE_H 00017 #define LLVM_CODEGEN_TARGETSCHEDULE_H 00018 00019 #include "llvm/ADT/SmallVector.h" 00020 #include "llvm/MC/MCInstrItineraries.h" 00021 #include "llvm/MC/MCSchedule.h" 00022 #include "llvm/Target/TargetSubtargetInfo.h" 00023 00024 namespace llvm { 00025 00026 class TargetRegisterInfo; 00027 class TargetSubtargetInfo; 00028 class TargetInstrInfo; 00029 class MachineInstr; 00030 00031 /// Provide an instruction scheduling machine model to CodeGen passes. 00032 class TargetSchedModel { 00033 // For efficiency, hold a copy of the statically defined MCSchedModel for this 00034 // processor. 00035 MCSchedModel SchedModel; 00036 InstrItineraryData InstrItins; 00037 const TargetSubtargetInfo *STI; 00038 const TargetInstrInfo *TII; 00039 00040 SmallVector<unsigned, 16> ResourceFactors; 00041 unsigned MicroOpFactor; // Multiply to normalize microops to resource units. 00042 unsigned ResourceLCM; // Resource units per cycle. Latency normalization factor. 00043 public: 00044 TargetSchedModel(): SchedModel(MCSchedModel::GetDefaultSchedModel()), STI(nullptr), TII(nullptr) {} 00045 00046 /// \brief Initialize the machine model for instruction scheduling. 00047 /// 00048 /// The machine model API keeps a copy of the top-level MCSchedModel table 00049 /// indices and may query TargetSubtargetInfo and TargetInstrInfo to resolve 00050 /// dynamic properties. 00051 void init(const MCSchedModel &sm, const TargetSubtargetInfo *sti, 00052 const TargetInstrInfo *tii); 00053 00054 /// Return the MCSchedClassDesc for this instruction. 00055 const MCSchedClassDesc *resolveSchedClass(const MachineInstr *MI) const; 00056 00057 /// \brief TargetInstrInfo getter. 00058 const TargetInstrInfo *getInstrInfo() const { return TII; } 00059 00060 /// \brief Return true if this machine model includes an instruction-level 00061 /// scheduling model. 00062 /// 00063 /// This is more detailed than the course grain IssueWidth and default 00064 /// latency properties, but separate from the per-cycle itinerary data. 00065 bool hasInstrSchedModel() const; 00066 00067 const MCSchedModel *getMCSchedModel() const { return &SchedModel; } 00068 00069 /// \brief Return true if this machine model includes cycle-to-cycle itinerary 00070 /// data. 00071 /// 00072 /// This models scheduling at each stage in the processor pipeline. 00073 bool hasInstrItineraries() const; 00074 00075 const InstrItineraryData *getInstrItineraries() const { 00076 if (hasInstrItineraries()) 00077 return &InstrItins; 00078 return nullptr; 00079 } 00080 00081 /// \brief Identify the processor corresponding to the current subtarget. 00082 unsigned getProcessorID() const { return SchedModel.getProcessorID(); } 00083 00084 /// \brief Maximum number of micro-ops that may be scheduled per cycle. 00085 unsigned getIssueWidth() const { return SchedModel.IssueWidth; } 00086 00087 /// \brief Return the number of issue slots required for this MI. 00088 unsigned getNumMicroOps(const MachineInstr *MI, 00089 const MCSchedClassDesc *SC = nullptr) const; 00090 00091 /// \brief Get the number of kinds of resources for this target. 00092 unsigned getNumProcResourceKinds() const { 00093 return SchedModel.getNumProcResourceKinds(); 00094 } 00095 00096 /// \brief Get a processor resource by ID for convenience. 00097 const MCProcResourceDesc *getProcResource(unsigned PIdx) const { 00098 return SchedModel.getProcResource(PIdx); 00099 } 00100 00101 #ifndef NDEBUG 00102 const char *getResourceName(unsigned PIdx) const { 00103 if (!PIdx) 00104 return "MOps"; 00105 return SchedModel.getProcResource(PIdx)->Name; 00106 } 00107 #endif 00108 00109 typedef const MCWriteProcResEntry *ProcResIter; 00110 00111 // \brief Get an iterator into the processor resources consumed by this 00112 // scheduling class. 00113 ProcResIter getWriteProcResBegin(const MCSchedClassDesc *SC) const { 00114 // The subtarget holds a single resource table for all processors. 00115 return STI->getWriteProcResBegin(SC); 00116 } 00117 ProcResIter getWriteProcResEnd(const MCSchedClassDesc *SC) const { 00118 return STI->getWriteProcResEnd(SC); 00119 } 00120 00121 /// \brief Multiply the number of units consumed for a resource by this factor 00122 /// to normalize it relative to other resources. 00123 unsigned getResourceFactor(unsigned ResIdx) const { 00124 return ResourceFactors[ResIdx]; 00125 } 00126 00127 /// \brief Multiply number of micro-ops by this factor to normalize it 00128 /// relative to other resources. 00129 unsigned getMicroOpFactor() const { 00130 return MicroOpFactor; 00131 } 00132 00133 /// \brief Multiply cycle count by this factor to normalize it relative to 00134 /// other resources. This is the number of resource units per cycle. 00135 unsigned getLatencyFactor() const { 00136 return ResourceLCM; 00137 } 00138 00139 /// \brief Number of micro-ops that may be buffered for OOO execution. 00140 unsigned getMicroOpBufferSize() const { return SchedModel.MicroOpBufferSize; } 00141 00142 /// \brief Number of resource units that may be buffered for OOO execution. 00143 /// \return The buffer size in resource units or -1 for unlimited. 00144 int getResourceBufferSize(unsigned PIdx) const { 00145 return SchedModel.getProcResource(PIdx)->BufferSize; 00146 } 00147 00148 /// \brief Compute operand latency based on the available machine model. 00149 /// 00150 /// Compute and return the latency of the given data dependent def and use 00151 /// when the operand indices are already known. UseMI may be NULL for an 00152 /// unknown user. 00153 unsigned computeOperandLatency(const MachineInstr *DefMI, unsigned DefOperIdx, 00154 const MachineInstr *UseMI, unsigned UseOperIdx) 00155 const; 00156 00157 /// \brief Compute the instruction latency based on the available machine 00158 /// model. 00159 /// 00160 /// Compute and return the expected latency of this instruction independent of 00161 /// a particular use. computeOperandLatency is the preferred API, but this is 00162 /// occasionally useful to help estimate instruction cost. 00163 /// 00164 /// If UseDefaultDefLatency is false and no new machine sched model is 00165 /// present this method falls back to TII->getInstrLatency with an empty 00166 /// instruction itinerary (this is so we preserve the previous behavior of the 00167 /// if converter after moving it to TargetSchedModel). 00168 unsigned computeInstrLatency(const MachineInstr *MI, 00169 bool UseDefaultDefLatency = true) const; 00170 unsigned computeInstrLatency(unsigned Opcode) const; 00171 00172 /// \brief Output dependency latency of a pair of defs of the same register. 00173 /// 00174 /// This is typically one cycle. 00175 unsigned computeOutputLatency(const MachineInstr *DefMI, unsigned DefIdx, 00176 const MachineInstr *DepMI) const; 00177 }; 00178 00179 } // namespace llvm 00180 00181 #endif