LLVM API Documentation

X86FixupLEAs.cpp
Go to the documentation of this file.
00001 //===-- X86FixupLEAs.cpp - use or replace LEA instructions -----------===//
00002 //
00003 //                     The LLVM Compiler Infrastructure
00004 //
00005 // This file is distributed under the University of Illinois Open Source
00006 // License. See LICENSE.TXT for details.
00007 //
00008 //===----------------------------------------------------------------------===//
00009 //
00010 // This file defines the pass that finds instructions that can be
00011 // re-written as LEA instructions in order to reduce pipeline delays.
00012 //
00013 //===----------------------------------------------------------------------===//
00014 
00015 #include "X86.h"
00016 #include "X86InstrInfo.h"
00017 #include "X86Subtarget.h"
00018 #include "llvm/ADT/Statistic.h"
00019 #include "llvm/CodeGen/LiveVariables.h"
00020 #include "llvm/CodeGen/MachineFunctionPass.h"
00021 #include "llvm/CodeGen/MachineInstrBuilder.h"
00022 #include "llvm/CodeGen/MachineRegisterInfo.h"
00023 #include "llvm/CodeGen/Passes.h"
00024 #include "llvm/Support/Debug.h"
00025 #include "llvm/Support/raw_ostream.h"
00026 #include "llvm/Target/TargetInstrInfo.h"
00027 using namespace llvm;
00028 
00029 #define DEBUG_TYPE "x86-fixup-LEAs"
00030 
00031 STATISTIC(NumLEAs, "Number of LEA instructions created");
00032 
00033 namespace {
00034 class FixupLEAPass : public MachineFunctionPass {
00035   enum RegUsageState { RU_NotUsed, RU_Write, RU_Read };
00036   static char ID;
00037   /// \brief Loop over all of the instructions in the basic block
00038   /// replacing applicable instructions with LEA instructions,
00039   /// where appropriate.
00040   bool processBasicBlock(MachineFunction &MF, MachineFunction::iterator MFI);
00041 
00042   const char *getPassName() const override { return "X86 LEA Fixup"; }
00043 
00044   /// \brief Given a machine register, look for the instruction
00045   /// which writes it in the current basic block. If found,
00046   /// try to replace it with an equivalent LEA instruction.
00047   /// If replacement succeeds, then also process the the newly created
00048   /// instruction.
00049   void seekLEAFixup(MachineOperand &p, MachineBasicBlock::iterator &I,
00050                     MachineFunction::iterator MFI);
00051 
00052   /// \brief Given a memory access or LEA instruction
00053   /// whose address mode uses a base and/or index register, look for
00054   /// an opportunity to replace the instruction which sets the base or index
00055   /// register with an equivalent LEA instruction.
00056   void processInstruction(MachineBasicBlock::iterator &I,
00057                           MachineFunction::iterator MFI);
00058 
00059   /// \brief Given a LEA instruction which is unprofitable
00060   /// on Silvermont try to replace it with an equivalent ADD instruction
00061   void processInstructionForSLM(MachineBasicBlock::iterator &I,
00062                                 MachineFunction::iterator MFI);
00063 
00064   /// \brief Determine if an instruction references a machine register
00065   /// and, if so, whether it reads or writes the register.
00066   RegUsageState usesRegister(MachineOperand &p, MachineBasicBlock::iterator I);
00067 
00068   /// \brief Step backwards through a basic block, looking
00069   /// for an instruction which writes a register within
00070   /// a maximum of INSTR_DISTANCE_THRESHOLD instruction latency cycles.
00071   MachineBasicBlock::iterator searchBackwards(MachineOperand &p,
00072                                               MachineBasicBlock::iterator &I,
00073                                               MachineFunction::iterator MFI);
00074 
00075   /// \brief if an instruction can be converted to an
00076   /// equivalent LEA, insert the new instruction into the basic block
00077   /// and return a pointer to it. Otherwise, return zero.
00078   MachineInstr *postRAConvertToLEA(MachineFunction::iterator &MFI,
00079                                    MachineBasicBlock::iterator &MBBI) const;
00080 
00081 public:
00082   FixupLEAPass() : MachineFunctionPass(ID) {}
00083 
00084   /// \brief Loop over all of the basic blocks,
00085   /// replacing instructions by equivalent LEA instructions
00086   /// if needed and when possible.
00087   bool runOnMachineFunction(MachineFunction &MF) override;
00088 
00089 private:
00090   MachineFunction *MF;
00091   const TargetMachine *TM;
00092   const X86InstrInfo *TII; // Machine instruction info.
00093 };
00094 char FixupLEAPass::ID = 0;
00095 }
00096 
00097 MachineInstr *
00098 FixupLEAPass::postRAConvertToLEA(MachineFunction::iterator &MFI,
00099                                  MachineBasicBlock::iterator &MBBI) const {
00100   MachineInstr *MI = MBBI;
00101   MachineInstr *NewMI;
00102   switch (MI->getOpcode()) {
00103   case X86::MOV32rr:
00104   case X86::MOV64rr: {
00105     const MachineOperand &Src = MI->getOperand(1);
00106     const MachineOperand &Dest = MI->getOperand(0);
00107     NewMI = BuildMI(*MF, MI->getDebugLoc(),
00108                     TII->get(MI->getOpcode() == X86::MOV32rr ? X86::LEA32r
00109                                                              : X86::LEA64r))
00110                 .addOperand(Dest)
00111                 .addOperand(Src)
00112                 .addImm(1)
00113                 .addReg(0)
00114                 .addImm(0)
00115                 .addReg(0);
00116     MFI->insert(MBBI, NewMI); // Insert the new inst
00117     return NewMI;
00118   }
00119   case X86::ADD64ri32:
00120   case X86::ADD64ri8:
00121   case X86::ADD64ri32_DB:
00122   case X86::ADD64ri8_DB:
00123   case X86::ADD32ri:
00124   case X86::ADD32ri8:
00125   case X86::ADD32ri_DB:
00126   case X86::ADD32ri8_DB:
00127   case X86::ADD16ri:
00128   case X86::ADD16ri8:
00129   case X86::ADD16ri_DB:
00130   case X86::ADD16ri8_DB:
00131     if (!MI->getOperand(2).isImm()) {
00132       // convertToThreeAddress will call getImm()
00133       // which requires isImm() to be true
00134       return nullptr;
00135     }
00136     break;
00137   case X86::ADD16rr:
00138   case X86::ADD16rr_DB:
00139     if (MI->getOperand(1).getReg() != MI->getOperand(2).getReg()) {
00140       // if src1 != src2, then convertToThreeAddress will
00141       // need to create a Virtual register, which we cannot do
00142       // after register allocation.
00143       return nullptr;
00144     }
00145   }
00146   return TII->convertToThreeAddress(MFI, MBBI, nullptr);
00147 }
00148 
00149 FunctionPass *llvm::createX86FixupLEAs() { return new FixupLEAPass(); }
00150 
00151 bool FixupLEAPass::runOnMachineFunction(MachineFunction &Func) {
00152   MF = &Func;
00153   TM = &Func.getTarget();
00154   const X86Subtarget &ST = TM->getSubtarget<X86Subtarget>();
00155   if (!ST.LEAusesAG() && !ST.slowLEA())
00156     return false;
00157 
00158   TII =
00159       static_cast<const X86InstrInfo *>(TM->getSubtargetImpl()->getInstrInfo());
00160 
00161   DEBUG(dbgs() << "Start X86FixupLEAs\n";);
00162   // Process all basic blocks.
00163   for (MachineFunction::iterator I = Func.begin(), E = Func.end(); I != E; ++I)
00164     processBasicBlock(Func, I);
00165   DEBUG(dbgs() << "End X86FixupLEAs\n";);
00166 
00167   return true;
00168 }
00169 
00170 FixupLEAPass::RegUsageState
00171 FixupLEAPass::usesRegister(MachineOperand &p, MachineBasicBlock::iterator I) {
00172   RegUsageState RegUsage = RU_NotUsed;
00173   MachineInstr *MI = I;
00174 
00175   for (unsigned int i = 0; i < MI->getNumOperands(); ++i) {
00176     MachineOperand &opnd = MI->getOperand(i);
00177     if (opnd.isReg() && opnd.getReg() == p.getReg()) {
00178       if (opnd.isDef())
00179         return RU_Write;
00180       RegUsage = RU_Read;
00181     }
00182   }
00183   return RegUsage;
00184 }
00185 
00186 /// getPreviousInstr - Given a reference to an instruction in a basic
00187 /// block, return a reference to the previous instruction in the block,
00188 /// wrapping around to the last instruction of the block if the block
00189 /// branches to itself.
00190 static inline bool getPreviousInstr(MachineBasicBlock::iterator &I,
00191                                     MachineFunction::iterator MFI) {
00192   if (I == MFI->begin()) {
00193     if (MFI->isPredecessor(MFI)) {
00194       I = --MFI->end();
00195       return true;
00196     } else
00197       return false;
00198   }
00199   --I;
00200   return true;
00201 }
00202 
00203 MachineBasicBlock::iterator
00204 FixupLEAPass::searchBackwards(MachineOperand &p, MachineBasicBlock::iterator &I,
00205                               MachineFunction::iterator MFI) {
00206   int InstrDistance = 1;
00207   MachineBasicBlock::iterator CurInst;
00208   static const int INSTR_DISTANCE_THRESHOLD = 5;
00209 
00210   CurInst = I;
00211   bool Found;
00212   Found = getPreviousInstr(CurInst, MFI);
00213   while (Found && I != CurInst) {
00214     if (CurInst->isCall() || CurInst->isInlineAsm())
00215       break;
00216     if (InstrDistance > INSTR_DISTANCE_THRESHOLD)
00217       break; // too far back to make a difference
00218     if (usesRegister(p, CurInst) == RU_Write) {
00219       return CurInst;
00220     }
00221     InstrDistance += TII->getInstrLatency(
00222         TM->getSubtargetImpl()->getInstrItineraryData(), CurInst);
00223     Found = getPreviousInstr(CurInst, MFI);
00224   }
00225   return nullptr;
00226 }
00227 
00228 void FixupLEAPass::processInstruction(MachineBasicBlock::iterator &I,
00229                                       MachineFunction::iterator MFI) {
00230   // Process a load, store, or LEA instruction.
00231   MachineInstr *MI = I;
00232   int opcode = MI->getOpcode();
00233   const MCInstrDesc &Desc = MI->getDesc();
00234   int AddrOffset = X86II::getMemoryOperandNo(Desc.TSFlags, opcode);
00235   if (AddrOffset >= 0) {
00236     AddrOffset += X86II::getOperandBias(Desc);
00237     MachineOperand &p = MI->getOperand(AddrOffset + X86::AddrBaseReg);
00238     if (p.isReg() && p.getReg() != X86::ESP) {
00239       seekLEAFixup(p, I, MFI);
00240     }
00241     MachineOperand &q = MI->getOperand(AddrOffset + X86::AddrIndexReg);
00242     if (q.isReg() && q.getReg() != X86::ESP) {
00243       seekLEAFixup(q, I, MFI);
00244     }
00245   }
00246 }
00247 
00248 void FixupLEAPass::seekLEAFixup(MachineOperand &p,
00249                                 MachineBasicBlock::iterator &I,
00250                                 MachineFunction::iterator MFI) {
00251   MachineBasicBlock::iterator MBI = searchBackwards(p, I, MFI);
00252   if (MBI) {
00253     MachineInstr *NewMI = postRAConvertToLEA(MFI, MBI);
00254     if (NewMI) {
00255       ++NumLEAs;
00256       DEBUG(dbgs() << "FixLEA: Candidate to replace:"; MBI->dump(););
00257       // now to replace with an equivalent LEA...
00258       DEBUG(dbgs() << "FixLEA: Replaced by: "; NewMI->dump(););
00259       MFI->erase(MBI);
00260       MachineBasicBlock::iterator J =
00261           static_cast<MachineBasicBlock::iterator>(NewMI);
00262       processInstruction(J, MFI);
00263     }
00264   }
00265 }
00266 
00267 void FixupLEAPass::processInstructionForSLM(MachineBasicBlock::iterator &I,
00268                                             MachineFunction::iterator MFI) {
00269   MachineInstr *MI = I;
00270   const int opcode = MI->getOpcode();
00271   if (opcode != X86::LEA16r && opcode != X86::LEA32r && opcode != X86::LEA64r &&
00272       opcode != X86::LEA64_32r)
00273     return;
00274   if (MI->getOperand(5).getReg() != 0 || !MI->getOperand(4).isImm() ||
00275       !TII->isSafeToClobberEFLAGS(*MFI, I))
00276     return;
00277   const unsigned DstR = MI->getOperand(0).getReg();
00278   const unsigned SrcR1 = MI->getOperand(1).getReg();
00279   const unsigned SrcR2 = MI->getOperand(3).getReg();
00280   if ((SrcR1 == 0 || SrcR1 != DstR) && (SrcR2 == 0 || SrcR2 != DstR))
00281     return;
00282   if (MI->getOperand(2).getImm() > 1)
00283     return;
00284   int addrr_opcode, addri_opcode;
00285   switch (opcode) {
00286   case X86::LEA16r:
00287     addrr_opcode = X86::ADD16rr;
00288     addri_opcode = X86::ADD16ri;
00289     break;
00290   case X86::LEA32r:
00291     addrr_opcode = X86::ADD32rr;
00292     addri_opcode = X86::ADD32ri;
00293     break;
00294   case X86::LEA64_32r:
00295   case X86::LEA64r:
00296     addrr_opcode = X86::ADD64rr;
00297     addri_opcode = X86::ADD64ri32;
00298     break;
00299   default:
00300     assert(false && "Unexpected LEA instruction");
00301   }
00302   DEBUG(dbgs() << "FixLEA: Candidate to replace:"; I->dump(););
00303   DEBUG(dbgs() << "FixLEA: Replaced by: ";);
00304   MachineInstr *NewMI = nullptr;
00305   const MachineOperand &Dst = MI->getOperand(0);
00306   // Make ADD instruction for two registers writing to LEA's destination
00307   if (SrcR1 != 0 && SrcR2 != 0) {
00308     const MachineOperand &Src1 = MI->getOperand(SrcR1 == DstR ? 1 : 3);
00309     const MachineOperand &Src2 = MI->getOperand(SrcR1 == DstR ? 3 : 1);
00310     NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addrr_opcode))
00311                 .addOperand(Dst)
00312                 .addOperand(Src1)
00313                 .addOperand(Src2);
00314     MFI->insert(I, NewMI);
00315     DEBUG(NewMI->dump(););
00316   }
00317   // Make ADD instruction for immediate
00318   if (MI->getOperand(4).getImm() != 0) {
00319     const MachineOperand &SrcR = MI->getOperand(SrcR1 == DstR ? 1 : 3);
00320     NewMI = BuildMI(*MF, MI->getDebugLoc(), TII->get(addri_opcode))
00321                 .addOperand(Dst)
00322                 .addOperand(SrcR)
00323                 .addImm(MI->getOperand(4).getImm());
00324     MFI->insert(I, NewMI);
00325     DEBUG(NewMI->dump(););
00326   }
00327   if (NewMI) {
00328     MFI->erase(I);
00329     I = static_cast<MachineBasicBlock::iterator>(NewMI);
00330   }
00331 }
00332 
00333 bool FixupLEAPass::processBasicBlock(MachineFunction &MF,
00334                                      MachineFunction::iterator MFI) {
00335 
00336   for (MachineBasicBlock::iterator I = MFI->begin(); I != MFI->end(); ++I) {
00337     if (TM->getSubtarget<X86Subtarget>().isSLM())
00338       processInstructionForSLM(I, MFI);
00339     else
00340       processInstruction(I, MFI);
00341   }
00342   return false;
00343 }