| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > alnex | Unicode version | ||
| Description: Theorem 19.7 of [Margaris] p. 89. |
| Ref | Expression |
|---|---|
| alnex1.1 |
|
| Ref | Expression |
|---|---|
| alnex |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alnex1.1 |
. . . . . 6
| |
| 2 | wfal 125 |
. . . . . 6
| |
| 3 | wnot 128 |
. . . . . . . . 9
| |
| 4 | 3, 1 | wc 45 |
. . . . . . . 8
|
| 5 | 4 | ax4 140 |
. . . . . . 7
|
| 6 | 5 | ax-cb1 29 |
. . . . . . . 8
|
| 7 | 1 | notval 135 |
. . . . . . . 8
|
| 8 | 6, 7 | a1i 28 |
. . . . . . 7
|
| 9 | 5, 8 | mpbi 72 |
. . . . . 6
|
| 10 | 1, 2, 9 | imp 147 |
. . . . 5
|
| 11 | wal 124 |
. . . . . 6
| |
| 12 | 4 | wl 59 |
. . . . . 6
|
| 13 | wv 58 |
. . . . . 6
| |
| 14 | 11, 13 | ax-17 95 |
. . . . . 6
|
| 15 | 4, 13 | ax-hbl1 93 |
. . . . . 6
|
| 16 | 11, 12, 13, 14, 15 | hbc 100 |
. . . . 5
|
| 17 | 2, 13 | ax-17 95 |
. . . . 5
|
| 18 | 10, 16, 17 | exlimd 171 |
. . . 4
|
| 19 | 18 | ex 148 |
. . 3
|
| 20 | wex 129 |
. . . . . 6
| |
| 21 | 1 | wl 59 |
. . . . . 6
|
| 22 | 20, 21 | wc 45 |
. . . . 5
|
| 23 | 22 | notval 135 |
. . . 4
|
| 24 | 6, 23 | a1i 28 |
. . 3
|
| 25 | 19, 24 | mpbir 77 |
. 2
|
| 26 | 1 | 19.8a 160 |
. . . . . 6
|
| 27 | wtru 40 |
. . . . . 6
| |
| 28 | 26, 27 | adantl 51 |
. . . . 5
|
| 29 | 28 | con3d 152 |
. . . 4
|
| 30 | 29 | trul 37 |
. . 3
|
| 31 | 3, 13 | ax-17 95 |
. . . 4
|
| 32 | 20, 13 | ax-17 95 |
. . . . 5
|
| 33 | 1, 13 | ax-hbl1 93 |
. . . . 5
|
| 34 | 20, 21, 13, 32, 33 | hbc 100 |
. . . 4
|
| 35 | 3, 22, 13, 31, 34 | hbc 100 |
. . 3
|
| 36 | 30, 35 | alrimi 170 |
. 2
|
| 37 | 25, 36 | dedi 75 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-refl 39 ax-eqmp 42 ax-ded 43 ax-ceq 46 ax-beta 60 ax-distrc 61 ax-leq 62 ax-distrl 63 ax-hbl1 93 ax-17 95 ax-inst 103 ax-eta 165 |
| This theorem depends on definitions: df-ov 65 df-al 116 df-fal 117 df-an 118 df-im 119 df-not 120 df-ex 121 |
| This theorem is referenced by: exnal1 175 exnal 188 ax9 199 |
| Copyright terms: Public domain | W3C validator |