ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0disj Unicode version

Theorem 0disj 3782
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
0disj  |- Disj  x  e.  A  (/)

Proof of Theorem 0disj
StepHypRef Expression
1 0ss 3282 . . 3  |-  (/)  C_  { x }
21rgenw 2418 . 2  |-  A. x  e.  A  (/)  C_  { x }
3 sndisj 3781 . 2  |- Disj  x  e.  A  { x }
4 disjss2 3769 . 2  |-  ( A. x  e.  A  (/)  C_  { x }  ->  (Disj  x  e.  A  { x }  -> Disj  x  e.  A  (/) ) )
52, 3, 4mp2 16 1  |- Disj  x  e.  A  (/)
Colors of variables: wff set class
Syntax hints:   A.wral 2348    C_ wss 2973   (/)c0 3251   {csn 3398  Disj wdisj 3766
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 576  ax-in2 577  ax-io 662  ax-5 1376  ax-7 1377  ax-gen 1378  ax-ie1 1422  ax-ie2 1423  ax-8 1435  ax-10 1436  ax-11 1437  ax-i12 1438  ax-bndl 1439  ax-4 1440  ax-17 1459  ax-i9 1463  ax-ial 1467  ax-i5r 1468  ax-ext 2063
This theorem depends on definitions:  df-bi 115  df-tru 1287  df-nf 1390  df-sb 1686  df-eu 1944  df-mo 1945  df-clab 2068  df-cleq 2074  df-clel 2077  df-nfc 2208  df-ral 2353  df-rmo 2356  df-v 2603  df-dif 2975  df-in 2979  df-ss 2986  df-nul 3252  df-sn 3404  df-disj 3767
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator